ON THE MODULARITY OF WILDLY RAMIFIED GALOIS REPRESENTATIONS

EDRAY HERBER GOINS

1. INTRODUCTION

There is considerable interest in continuous homomorphisms

$$\rho: G_{\mathbb{Q}} \to GL_2\left(\overline{\mathbb{Q}}_\ell\right)$$

where $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ is the absolute Galois group of \mathbb{Q} and ℓ is a fixed rational prime. For example, $\rho = \rho_{E,\ell}$ may be the ℓ -adic representation of an elliptic curve E over \mathbb{Q} , or $\rho = \rho_f$ may be the ℓ -adic representation associated to a modular form. The continuity of such Galois representations implies the image lies in $GL_2(\mathcal{O})$ for some ring of integers \mathcal{O} with maximal ideal λ in a finite extension K of \mathbb{Q}_{ℓ} ; then $k = \mathcal{O}/\lambda$ is a finite extension of \mathbb{F}_{ℓ} . We define the residual representation $\overline{\rho}$ as the composition

$$\overline{\rho}: G_{\mathbb{O}} \to GL_2\left(\mathcal{O}\right) \to GL_2\left(\overline{\mathbb{F}}_\ell\right).$$

For example, $\overline{\rho} = \overline{\rho}_{E,\ell}$ may be the mod ℓ representation of an elliptic curve, or $\overline{\rho} = \overline{\rho}_f$ may be the mod ℓ reduction of the representation associated to a modular form. We also consider the projective representation $\widetilde{\rho}$ as the composition

$$\widetilde{\rho}: G_{\mathbb{Q}} \to GL_2\left(\overline{\mathbb{Q}}_\ell\right) \to PGL_2\left(\overline{\mathbb{Q}}_\ell\right).$$

A common question is: Given a continuous ℓ -adic Galois representation ρ such that $\overline{\rho}$ is modular i.e. $\overline{\rho} \simeq \overline{\rho}_f$, when is ρ modular i.e. $\rho \simeq \rho_f$?

Our main result is:

Theorem 1. For ℓ an odd prime, let $\rho : G_{\mathbb{Q}} \to GL_2(\mathcal{O})$ be a continuous ℓ -adic representation such that

- (1) ρ is ordinary and ramified at finitely many primes;
- (2) $\overline{\rho}$ is absolutely irreducible when restricted to $Gal\left(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{(-1)^{(\ell-1)/2} \ell})\right)$, modular, and wildly ramified at ℓ .

Then ρ is ℓ -adically modular i.e. $\rho \simeq \rho_f$ for an ℓ -adic cusp form f.

One application is:

Theorem 2. For ℓ an odd prime, let $\rho : G_{\mathbb{Q}} \to GL_2(\mathcal{O})$ be a continuous Galois representation such that

- (1) ρ is ramified at finitely many primes;
- (2) $\overline{\rho}$ is absolutely irreducible when restricted to $Gal\left(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{(-1)^{(\ell-1)/2} \ell})\right)$, modular, and wildly ramified at ℓ ;
- (3) $\rho(G_{\ell})$ is finite and $\tilde{\rho}(G_{\ell})$ is a cyclic group of ℓ -power order.

Then $i \circ \rho : G_{\mathbb{Q}} \to GL_2(\mathbb{C})$ is modular for each embedding $i : K \hookrightarrow \mathbb{C}$.

For any continuous *complex* Galois representation ρ , there is a finite extension L/\mathbb{Q} which makes the following diagram commute:

The projective image $\tilde{\rho}(G_{\mathbb{Q}})$ can either be cyclic, dihedral, tetrahedral $(A_4 \simeq PSL_2(\mathbb{F}_3))$, octahedral $(S_4 \simeq PGL_2(\mathbb{F}_3))$, or icosahedral $(A_5 \simeq PSL_2(\mathbb{F}_5))$. Our third result is:

Theorem 3. Let $\rho : G_{\mathbb{Q}} \to GL_2(\mathbb{C})$ be a continuous representation with nonsolvable image. If L is the splitting field of a quintic $x^5 + Bx + C$ such that $75 C^2/\sqrt{256 B^5 + 3125 C^4}$ is the square of a 5-adic unit, then ρ is (classically) modular.

Here is one example: the polynomials

$$x^{5} + 10x^{3} + 10x^{2} + 35x + 18$$
 and $5x^{5} + 20x + 16$

generate the same splitting field. An infinite family of examples are

$$x^{5} + 5\left(\frac{9-5u^{4}}{5u^{4}}\right)x + 4\left(\frac{9-5u^{4}}{5u^{4}}\right), \qquad u \in \mathbb{Q} \cap \mathbb{Z}_{5}^{\times}.$$

This result gives the first known proof of infinitely many examples of icosahedral Galois representations satisfying Artin's Conjecture which are ramified at 5.

2. Applications of Theorem 1

We explain how the second main result follows from the first. We know from Theorem 1 that, under suitable hypotheses, ρ is ℓ -adically modular, but this cusp form may not be classical.

Proof of Theorem 2. If $\rho(G_{\ell})$ is finite and $\tilde{\rho}(G_{\ell})$ is cyclic of ℓ -power order, there exist characters χ_1 and χ_2 such that the characters $\chi_{\ell} = \chi_1^{-1}\chi_2$ and $\chi_0 = \det \rho/(\chi_1 \chi_2)$ are wildly ramified at ℓ and unramified at ℓ , respectively. Consider the twists $\rho_i = \chi_i^{-1} \otimes \rho$ for i = 1, 2; then

$$\rho_1|_{I_\ell} \simeq \begin{pmatrix} \chi_\ell & * \\ & 1 \end{pmatrix} \quad \text{and} \quad \rho_2|_{I_\ell} \simeq \begin{pmatrix} \chi_\ell^{-1} & * \\ & 1 \end{pmatrix}.$$

Each ρ_i is ordinary and residually modular, so using Theorem 1 let $f(\tau) = \sum_n a_n q^n$ denote the ℓ -adic form associated with ρ_1 and $g(\tau) = \sum_n b_n q^n$ denote the ℓ -adic form associated with ρ_2 . We have

- (1) f and g are ordinary cusp forms of weight 1;
- (2) f and g have nebentype det $\rho_1 = \chi_0 \cdot \chi_\ell$ and det $\rho_2 = \chi_0 \cdot \chi_\ell^{-1}$;
- (3) $\rho_1 = \chi_\ell \otimes \rho_2$ i.e. $a_p = \chi_\ell (\operatorname{Frob}_p) \cdot b_p$ for almost all $p \neq \ell$; and
- (4) $a_\ell = b_\ell = \chi_0 (\operatorname{Frob}_\ell).$

We use Kevin Buzzard's results to "glue" them together.

Now we explain how the new case of Artin's conjecture follows from the second main result.

3

Proposition 4. Let $q(x) = x^5 + Bx + C$ be a quintic over \mathbb{Q} with Galois group A_5 , and denote L as its splitting field. For $t \in \mathbb{Q}^{\times}$, define the quintic and the curve

$$q_t(x) = x^5 + 5\left(\frac{9-5t^2}{5t^2}\right)x + 4\left(\frac{9-5t^2}{5t^2}\right); \quad E_t: \ y^2 = x^3 + 2x^2 + \frac{3+\sqrt{5}t}{2\sqrt{5}t}.$$

We have the following.

- (1) E_t is a 2-isogenous Q-curve. If L_t denotes the splitting field of $q_t(x)$, then $L_t(\sqrt{5}) \subseteq \mathbb{Q}(E[5])$. Specifically, $L_t(\sqrt{5})$ is the field generated by sum $x_P +$ x_{2P} of x-coordinates of the 5-torsion of E.
- (2) $Gal(L_t/\mathbb{Q}) \subseteq A_5$. If t is square of a rational number then $Gal(L_t/\mathbb{Q}) = A_5$. If t is the square of a 5-adic unit, then the decomposition, inertia, and wild inertia groups at 5 are cyclic of order 5.
- (3) When $t = 75 C^2 / \sqrt{Disc(q)}$ then $L = L_t$.
- (4) There exists ω : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{5})) \to \mathbb{C}^{\times}$ such that $\rho_E^{(1)} = \omega \otimes (\pi \circ \overline{\rho}_{E,5})$ and $\rho_E^{(2)} = \omega \otimes \rho_{E,5} \text{ are restictions of representations of } G_{\mathbb{Q}}.$ (5) E_t is modular. In particular, $\rho_E^{(2)}$ is modular while $\rho_E^{(1)}$ is residually modu-

Any A_5 -extension which is unramified outside of $\{2, 5, \infty\}$ comes from such quintics. Any quintic in Bring-Jerrard form yields a modular residual representation.

Proof of Theorem 3: Set $t = 75 C^2 / \sqrt{256 B^5 + 3125 C^4}$ and $E = E_t$. Then ρ is a twist of $\rho_E^{(1)}$ because there are only two projective complex representations of A_5 and they are Galois conjugates of each other. The result follows from Theorem 2. \square

3. Proof of Theorem 1

3.1. Universal Deformation Ring. The residual representation $\overline{\rho}$ induces an action of the absolute Galois group on the k-vector space of 2×2 matrices with trace zero given by $\sigma \cdot m = \overline{\rho}(\sigma) m \overline{\rho}(\sigma)^{-1}$; we denote this k-vector space with such an action by $\mathrm{ad}^0\overline{\rho}$.

Proposition 5. Let $\overline{\rho} : G_{\mathbb{Q}} \to GL_2(k)$ be a continuous Galois representation, and let ϵ be an infinitesimal i.e. $\epsilon^2 = 0$. The equivalence classes of infinitesimal $\textit{deformations } \overline{\rho}_{\epsilon}: G_{\mathbb{Q}} \to GL_2\left(k[\epsilon]\right) \textit{ satisfying } \overline{\rho}_{\epsilon} \equiv \overline{\rho} \mod \epsilon \, k[\epsilon] \textit{ and } \det \overline{\rho}_{\epsilon} = \det \overline{\rho}$ are in one-to-one correspondence with the cohomology classes in $H^1(G_{\mathbb{Q}}, ad^0\overline{\rho})$.

Proof. Express an infinitesimal deformation in the form $\overline{\rho}_{\epsilon}(\sigma) = (1_2 + \epsilon \xi_{\sigma}) \overline{\rho}(\sigma)$ for some $\xi_{\sigma} \in \operatorname{Mat}_2(k)$, where ξ_{σ} must have trace zero since det $\overline{\rho}(\sigma) = \det \overline{\rho}_{\epsilon}(\sigma) =$ $(1 + \epsilon \operatorname{tr} \xi_{\sigma}) \operatorname{det} \overline{\rho}(\sigma)$. Equivalence classes of homomorphisms are in one-to-one correspondence with $\xi \in H^1(G_{\mathbb{O}}, \operatorname{ad}^0\overline{\rho})$.

Recall that for each place ν of \mathbb{Q} , we have restriction maps $\operatorname{res}_{\nu} : H^1(G_{\mathbb{Q}}, \operatorname{ad}^0\overline{\rho}) \to$ $H^1(G_{\nu}, \mathrm{ad}^0\overline{\rho})$. When $\nu \neq \ell$ each deformation $\overline{\rho}_{\epsilon}$ should be (un)ramified when $\overline{\rho}$ is (un)ramified so the restriction of a class from $H^1(G_{\nu}, \mathrm{ad}^0\overline{\rho})$ to $H^1(I_{\nu}, \mathrm{ad}^0\overline{\rho})$ should be trivial. Define

$$H_f^1\left(G_{\nu}, \operatorname{ad}^0\overline{\rho}\right) = \ker\left[H^1\left(G_{\nu}, \operatorname{ad}^0\overline{\rho}\right) \to H^1\left(I_{\nu}, \operatorname{ad}^0\overline{\rho}\right)\right] \qquad \text{for } \nu \neq \ell.$$

When $\nu = \ell$ and $\overline{\rho}$ is ordinary i.e. the restriction of $\overline{\rho}$ to G_{ℓ} is upper-triangular, each deformation $\overline{\rho}_{\epsilon}$ should be ordinary as well. We choose

$$\begin{aligned} H_f^1\left(G_\ell, \operatorname{ad}^0\overline{\rho}\right) &\subseteq \operatorname{ker}\left[H^1\left(G_\ell, \operatorname{ad}^0\overline{\rho}\right) \to H^1\left(G_\ell, \operatorname{ad}^0\overline{\rho}/\operatorname{ad}^1\overline{\rho}\right)\right] \\ &= \operatorname{im}\left[H^1\left(G_\ell, \operatorname{ad}^1\overline{\rho}\right) \to H^1\left(G_\ell, \operatorname{ad}^0\overline{\rho}\right)\right]. \end{aligned}$$

When restricted to the inertia group, the diagonal terms of $\overline{\rho}_{\epsilon}$ should be the same as those of $\overline{\rho}$ so the restriction of a class from $H^1(G_{\ell}, \operatorname{ad}^1 \overline{\rho})$ to $H^1(I_{\ell}, \operatorname{ad}^1 \overline{\rho}/\operatorname{ad}^2 \overline{\rho})$ should be trivial. Define

$$\begin{array}{l} H_{f}^{1}\left(G_{\ell},\,\mathrm{ad}^{\circ}\overline{\rho}\right) \\ (1) \\ = \mathrm{im}\left[\mathrm{ker}\left[H^{1}\left(G_{\ell},\,\mathrm{ad}^{1}\overline{\rho}\right) \to H^{1}\left(I_{\ell},\,\mathrm{ad}^{1}\overline{\rho}/\mathrm{ad}^{2}\overline{\rho}\right)\right] \to H^{1}\left(G_{\ell},\,\mathrm{ad}^{0}\overline{\rho}\right)\right]. \end{array}$$

Remark. We explain how this definition for $\nu = \ell$ compares to the usual one. In general we have the exact sequence

$$H^1_f(G_\ell, \operatorname{ad}^0\overline{\rho}) \longrightarrow H^1(G_\ell, \operatorname{ad}^0\overline{\rho}) \longrightarrow H^1(I_\ell, \operatorname{ad}^0\overline{\rho}/\operatorname{ad}^2\overline{\rho})$$

but the map $H^1(G_\ell, \operatorname{ad}^1\overline{\rho}) \to H^1(G_\ell, \operatorname{ad}^0\overline{\rho})$ is not an injection. However when $\operatorname{det} \rho = \varepsilon_\ell$ is the cyclotomic character, the group $H^0(G_\ell, \operatorname{ad}^0\overline{\rho}/\operatorname{ad}^1\overline{\rho})$ is trivial, so we recover the usual definition:

 $H^1_f\left(G_\ell, \operatorname{ad}^0\overline{\rho}\right) = \ker\left[H^1\left(G_\ell, \operatorname{ad}^0\overline{\rho}\right) \to H^1\left(I_\ell, \operatorname{ad}^0\overline{\rho}/\operatorname{ad}^2\overline{\rho}\right)\right].$

Fix a finite set Σ of places that does not contain ℓ . We define the Selmer group $H^1_{\Sigma}(\mathbb{Q}, \operatorname{ad}^0 \overline{\rho})$ as the the collection of classes $\xi \in H^1(G_{\mathbb{Q}}, \operatorname{ad}^0 \overline{\rho})$ such that $\operatorname{res}_{\nu}(\xi) \in H^1_f(G_{\nu}, \operatorname{ad}^0 \overline{\rho})$ for all places $\nu \notin \Sigma$. We say a representation $\rho' : G_{\mathbb{Q}} \to GL_2(\mathcal{O}')$ is a deformation of $\overline{\rho}$ of type Σ if

- (1) $\overline{\rho}' \simeq \overline{\rho} \otimes_k k'$ and $\det \rho' = \det \rho;$ (2) $\rho' = \rho \otimes_k k'$ for all $\psi \not\in \nabla_k$ and
- (2) $\rho'|_{I_{\nu}} \simeq \rho|_{I_{\nu}} \otimes_K K'$ for all $\nu \notin \Sigma$; and (3) $\rho'|_{G_{\ell}} \simeq \begin{pmatrix} \chi_{\ell} & * \\ & \chi_0 \end{pmatrix}$ where $\chi_{\ell} = \det \rho \cdot \chi_0^{-1}$ and $\chi_0|_{I_{\ell}} = 1$.

Proposition 6. (1) There exists a universal deformation $\rho_{\Sigma}^{univ}: G_{\mathbb{Q}} \to GL_2(R_{\Sigma})$ of $\overline{\rho}$ of type Σ .

- (2) R_{Σ} can be topologically generated as an \mathcal{O} -algebra by $\dim_k H^1_{\Sigma}(\mathbb{Q}, ad^0\overline{\rho})$ elements.
- (3) We have the identity

$$\dim_k H^1_f \left(G_\ell, \ ad^0 \overline{\rho} \right) = 1 + \dim_k H^0 \left(G_\ell, \ ad^0 \overline{\rho} \right)$$

3.2. Modular Deformation Ring. Fix a positive integer κ , a positive integer $N = N_0 \ell$ in terms of an integer N_0 prime to ℓ , and a Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

Denote $\Lambda = \mathcal{O}[[X]]$ as the power series ring in the variable X. For each positive rational integer κ , we have a specialization map $\varphi_{\kappa} : \Lambda \to \mathcal{O}$ defined by $1 + X \mapsto (1+\ell)^{\kappa}$. Consider a collection of forms $\sum_{n} a_{n}^{(\kappa)} q^{n} \in S_{\kappa}(N, \chi \omega_{\ell}^{1-\kappa})$ for each κ . We call such a collection a Hida family if for each n there exist power series $a_{n}(X) \in \Lambda$ such that $a_{n}^{(\kappa)} = a_{n} ((1+\ell)^{\kappa} - 1)$ for all but finitely many κ . The collection $S(N, \chi)$ of formal series $F(X; \tau) = \sum_{n} a_{n}(X) q^{n}$ are called Λ -adic cusp forms of level N and nebentype χ if $F((1+\ell)^{\kappa} - 1; \tau) \in S_{\kappa}(N, \chi \omega_{\ell}^{1-\kappa})$ for all but finitely many κ . For all κ , the specializations $\varphi_{\kappa} \circ F$ are called ℓ -adic modular forms – even when they are not classical.

5

Define the Hecke operators

$$(F|T_p)(X;\tau) = \sum_{p|n} a_n(X) q^{n/p} + \chi(p) \sigma_\ell(p) \sum_n a_n(X) q^{pn} \quad \text{for } p \nmid N \text{ and}$$
$$(F|U_p)(X;\tau) = \sum_{p|n} a_n(X) q^{n/p} \quad \text{for } p \mid N,$$

in terms of the character $\sigma_{\ell}: \mathbb{Z}_{\ell}^{\times} \to \Lambda^{\times}$ mapping $d \mapsto ((1+X)/(1+\ell))^{s(d)}$ where $s(d) = \log \langle d \rangle / \log(1+\ell) \in \mathbb{Z}_{\ell}$; and define the Λ -adic Hecke algebra $h(N,\chi)$ as the A-algebra generated by these operators. One checks that the composition $\varphi_{\kappa} \circ \sigma_{\ell}$ sends $p \mapsto \langle p \rangle^{\kappa-1} = (\varepsilon_{\ell}/\omega_{\ell})^{\kappa-1}$ for $p \nmid N$, and for any operator T and A-adic cusp form F we have $(\varphi_{\kappa} \circ F)|T = \varphi_{\kappa} \circ (F|T)$.

Denote $h^0(N,\chi) = e \cdot h(N,\chi)$ as the ordinary part of the Hecke algebra, and define the ordinary Λ -adic cusp forms $S^0(N,\chi)$ as those cusp forms.

Associated to each ordinary normalized Λ -adic eigenform $F(X; \tau) = \sum_{n} a_n(X) q^n$ of level N and nebentype χ there is a continuous A-adic Galois representation $\rho_F: G_{\mathbb{Q}} \to GL_2\left(\overline{\mathbb{Q}}_{\ell}[[X]]\right)$ with the properties

- (1) ρ_F is unramified outside of the primes that divide N;
- (2) tr ρ_F (Frob_p) = $a_p(X)$ for $p \nmid N$;
- (3) det $\rho_F = \chi \cdot \sigma_\ell$; and
- (4) ρ_F is ordinary.

As F specializes to ℓ -adic cusp forms $f = \varphi_{\kappa} \circ F$ the Galois representation ρ_F specializes to ℓ -adic representations $\rho_f = \varphi_\kappa \circ \rho_F$.

Define a map $\pi : h^0(N_{\Sigma}, \chi) \to \prod_{F \text{ type } \Sigma} \Lambda$ by

$$\pi: \quad T_p \mapsto (\dots, \pi_F(T_p), \dots) = (\dots, \operatorname{tr} \rho_F(\operatorname{Frob}_p), \dots) \quad \text{for} \quad p \nmid N_{\Sigma};$$

where each component corresponds to a cusp form for $\overline{\rho}$ of type Σ . We define the modular deformation ring \mathbb{T}_{Σ} to be the Λ -algebra generated by the images of T_p for $p \nmid N_{\Sigma}$. Note there is a continuous representation

$$\rho_{\Sigma}^{\mathrm{mod}}: G_{\mathbb{Q}} \to GL_2\left(\mathbb{T}_{\Sigma}\right)$$

where $\rho_{\Sigma}^{\text{mod}} \simeq \prod_{F \text{ type } \Sigma} \rho_F$ is a deformation of $\overline{\rho}$ of type Σ .

3.3. Isomorphism Criteria. The modular deformation ring \mathbb{T}_{Σ} is a complete, Noetherian, local Λ -algebra so there is a unique Λ -algebra surjection $\phi_{\Sigma} : R_{\Sigma} \to \mathbb{T}_{\Sigma}$ of the universal deformation ring such that $\rho_{\Sigma}^{\text{mod}} \simeq \phi_{\Sigma} \circ \rho_{\Sigma}^{\text{univ}}$. The following result states that this map is an isomorphism if and only if it is an isomorphism upon specializing the weight.

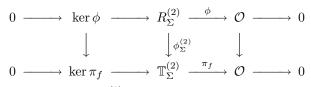
Proposition 7. TFAE:

- φ_Σ: R_Σ → T_Σ is an isomorphism.
 φ^(κ)_Σ: R^(κ)_Σ → T^(κ)_Σ is an isomorphism for all positive integers κ.
 φ^(κ)_Σ: R^(κ)_Σ → T^(κ)_Σ is an isomorphism for some positive integer κ.

If any of the above hold for every finite set Σ not containing ℓ , then ρ is ℓ -adically modular i.e. $\rho \simeq \rho_f$ for some ℓ -adic cusp form f.

EDRAY HERBER GOINS

Proof of Theorem 1. It suffices to show $\phi_{\Sigma}^{(2)} : R_{\Sigma}^{(2)} \to \mathbb{T}_{\Sigma}^{(2)}$ (i.e. the weight $\kappa = 2$ case). The following commutative diagram is exact for the unique surjection ϕ :



Denote the "tangent space" of $R_{\Sigma}^{(2)}$ as $\Phi_{\Sigma} = (\ker \phi) / (\ker \phi)^2$, as well as the ideals $\mathfrak{p}_{\Sigma} = \ker \pi_f$ and $I_{\Sigma} = \operatorname{Ann}_{\mathbb{T}_{\Sigma}^{(2)}} \ker \pi_f$ in $\mathbb{T}_{\Sigma}^{(2)}$. We assume for the moment that there exists a family of $\mathbb{T}_{\Sigma}^{(2)}$ -modules J_{Σ} satisfying the following properties:

HM1: J_{Σ} is free over \mathcal{O} with $\operatorname{rank}_{\mathcal{O}} J_{\Sigma} = 2 \cdot \operatorname{rank}_{\mathcal{O}} \mathbb{T}_{\Sigma}^{(2)}$. HM2: $\operatorname{rank}_{\mathcal{O}} J_{\Sigma}[\mathfrak{p}_{\Sigma}] = 2$.

Step 1: The Minimal Case. $R_{\emptyset}^{(2)} \to \mathbb{T}_{\emptyset}^{(2)}$ is an isomorphism of complete intersections if and only if $\overline{R}_{\emptyset}^{(2)} \to \overline{\mathbb{T}}_{\emptyset}^{(2)}$ is an isomorphism of complete intersections. There exists an integer r and a collection Q of r primes such that $R_Q^{(2)}$ may be generated by r elements as an \mathcal{O} -algebra. The following diagram commutes:

where the horizontal maps are surjections, and the vertical maps are chosen so that the image of \mathfrak{a} in $R_{\emptyset}^{(2)}$ is trivial. Now impose the extra condition

HM4: J_Q is free over $\mathcal{O}[\Delta_Q]$ and $J_Q/\mathfrak{a} J_Q \simeq J_{\emptyset}$.

Then $\overline{R}_{\emptyset}^{(2)} \simeq \overline{\mathbb{T}}_{\emptyset}^{(2)}$ and J_{\emptyset} is free over $R_{\emptyset}^{(2)}$.

Step 2: Reduction to the Minimal Case. Denote $\operatorname{ad}^0 \rho_{f,n} = \operatorname{ad}^0 \rho_f \otimes_{\mathcal{O}} \lambda^{-n} \mathcal{O}/\mathcal{O}$ so that change in size from Φ_{\emptyset} to Φ_{Σ} satisfies

$$\frac{\#\Phi_{\Sigma}}{\#\Phi_{\emptyset}} \leq = \lim_{n \to \infty} \prod_{p \in \Sigma} \# H^0\left(G_p, \operatorname{ad}^0 \rho_{f,n}(1)\right) = \prod_{p \in \Sigma} c_p.$$

Impose the extra condition

HM3: $\#\Omega_{\Sigma}/\#\Omega_{\emptyset} \ge \prod_{p\in\Sigma} c_p^2$ where $\Omega_{\Sigma} = J_{\Sigma}/(J_{\Sigma}[\mathfrak{p}_{\Sigma}] + J_{\Sigma}[I_{\Sigma}]).$

Then $R_{\Sigma}^{(2)} \simeq \mathbb{T}_{\Sigma}^{(2)}$ as desired.

Step $\overline{3}$: Construction of Hecke Modules. We construct the modules using modular curves.

 $\mathbf{6}$