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Let  be a set of distinct abscissae (also called "nodes") and let  denote the real vector space 

of polynomials of degree at most  with real coefficients. If  is a real-valued function defined on , 

then there exists a polynomial  that interpolates  at the abscissae in the sense that 
 for each : namely, , where . Furthermore, it is the 

only such polynomial, for if  also interpolates  at the same abscissae, then  has 
 distinct roots and must therefore be the zero polynomial.

The polynomials  constitute a basis of  known as the Lagrange basis. Other bases of  include 

the monomial basis , given by , and the Newton basis , given by 

.

Divided differences are quantities that can be used (among other things) to compute the coefficients of  
in the Newton basis. We define the divided difference  as the coefficient of  in the 
monomial basis representation of  (which for simplicity we will refer to as the "leading coefficient" of  
despite the fact that it may be zero). Below we present several properties of divided differences.

Coefficients of polynomial interpolant in Newton basis

Proof. Write . For each , the polynomial  interpolates  at  since 

 for all . Clearly, its leading coefficient is , so by definition, . ∎

Notably, divided differences obey a recurrence relation that allows for their recursive computation.

Recurrence relation

Proof. Suppose that . If  interpolates  at  and  interpolates  at 
, then the polynomial  given by  interpolates  

at . For the base case, observe that the constant polynomial  interpolates  at 
. ∎

Interestingly, we observe that  is a convex combination of  and  for . The 
formula above also yields a recursive algorithm for evaluating  known as Neville's algorithm. Namely, if 

 interpolates  at  so that , then , 

where .

An explicit formula for divided differences can also be deduced by inspecting the Lagrange basis 
representation of .
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Linearity

If , then

Proof. If  and  interpolate  and , respectively, at , then  
interpolates  at . ∎

Symmetry

If  is a permutation of , then

Proof. In view of the definition above, this is immediate since . ∎

Factor property

If  and , then

Proof. If  interpolates  at , then the polynomial  given by 
 interpolates  at . ∎

In fact, the recurrence relation (excluding the base case) can be derived solely from linearity, symmetry, and 
the factor property: 

Thus, these three properties along with the property  determine the values of all divided 
differences.

The identity  suggests a relationship between divided differences and derivatives: if, 

say, , , and  exists on , then the mean value theorem amounts to the 
assertion that  for some . This generalizes readily to divided differences and 
derivatives of higher order.

Mean value theorem

Let  and . If  and  exists on , then

for some .



Proof. By symmetry, we may assume that . If  interpolates  at 
, then  has  distinct zeroes in . By (repeated applications of) Rolle's theorem, 

 has a zero . ∎

Polynomial interpolation error

Let  and . If  and  exists on , then for all 

 there exists a  for which

Proof. If , the conclusion is trivial; otherwise, the polynomial  

interpolates  at  and the conclusion follows from the mean value theorem. ∎

In the same vein,  as  if  is differentiable at , the 
geometric interpretation being that the slope of the secant line through  and 

 tends to that of the tangent line through . This observation along with the 
identity  allows us to recover the product rule for 
derivatives. More generally, we have the following identity for divided differences.

Product rule

Proof. If  interpolates  at , then  since  agrees 
with  on . By linearity and the factor property, we have 

By Taylor's theorem,  if  is  times differentiable at , where  
denotes the forward difference operator with step  (that is, ). As a result,

and from the above we can derive the generalized product rule for derivatives, .
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