Divided differences

Nicholas Hu

Let $\{x_j\}_{j=0}^n \subseteq \mathbb{R}$ be a set of *distinct* abscissae (also called "nodes") and let P_n denote the real vector space of polynomials of degree at most n with real coefficients. If f is a real-valued function defined on $\{x_j\}_{j=0}^n$, then there exists a polynomial $p_n \in P_n$ that *interpolates* f at the abscissae in the sense that $p_n(x_j) = f(x_j)$ for each j: namely, $p_n = \sum_j f(x_j)\ell_j$, where $\ell_j(x) = \prod_{i \neq j} \frac{x - x_i}{x_j - x_i}$. Furthermore, it is the only such polynomial, for if $q_n \in P_n$ also interpolates f at the same abscissae, then $p_n - q_n \in P_n$ has n + 1 distinct roots and must therefore be the zero polynomial.

The polynomials $\{\ell_j\}_{j=0}^n$ constitute a basis of P_n known as the **Lagrange basis**. Other bases of P_n include the **monomial basis** $\{\varphi_j\}_{j=0}^n$, given by $\varphi_j(x) = x^j$, and the **Newton basis** $\{\omega_j\}_{j=0}^n$, given by $\omega_j(x) = \prod_{i < j} (x - x_i)$.

Divided differences are quantities that can be used (among other things) to compute the coefficients of p_n in the Newton basis. We define the **divided difference** $f[x_0, x_1, \ldots, x_n]$ as the coefficient of φ_n in the monomial basis representation of p_n (which for simplicity we will refer to as the "leading coefficient" of p_n despite the fact that it may be zero). Below we present several properties of divided differences.

Coefficients of polynomial interpolant in Newton basis

$$p_n = \sum_j f[x_0,\ldots,x_j] \omega_j$$

Proof. Write $p_n = \sum_j c_j \omega_j$. For each j, the polynomial $\sum_{i \leq j} c_i \omega_i \in P_j$ interpolates f at $\{x_0, \ldots, x_j\}$ since $\omega_k(x_i) = 0$ for all $i \leq j < k$. Clearly, its leading coefficient is c_j , so by definition, $c_j = f[x_0, \ldots, x_j]$.

Notably, divided differences obey a recurrence relation that allows for their recursive computation.

Recurrence relation

$$f[x_0,\ldots,x_n] = rac{f[x_1,\ldots,x_n]-f[x_0,\ldots,x_{n-1}]}{x_n-x_0} \ f[x_0] = f(x_0)$$

Proof. Suppose that $n \ge 1$. If $p_+ \in P_{n-1}$ interpolates f at $\{x_1, \ldots, x_n\}$ and $p_- \in P_{n-1}$ interpolates f at $\{x_0, \ldots, x_{n-1}\}$, then the polynomial $p \in P_n$ given by $p(x) = p_-(x) + \frac{x - x_0}{x_n - x_0}(p_+ - p_-)(x)$ interpolates f at $\{x_0, \ldots, x_n\}$. For the base case, observe that the constant polynomial $f(x_0) \in P_0$ interpolates f at $\{x_0\}$.

Interestingly, we observe that p(x) is a convex combination of $p_-(x)$ and $p_+(x)$ for $x_0 \le x \le x_n$. The formula above also yields a recursive algorithm for evaluating p known as **Neville's algorithm**. Namely, if $p_{i,j} \in P_{j-i}$ interpolates f at $\{x_i, \ldots, x_j\}$ so that $p = p_{0,n}$, then $p_{i,j}(x) = \frac{(x-x_i)p_{i+1,j}(x)-(x-x_j)p_{i,j-1}(x)}{x_j-x_i}$, where $p_{i,i}(x) = f(x_i)$.

An explicit formula for divided differences can also be deduced by inspecting the Lagrange basis representation of p_n .

$$f[x_0,\ldots,x_n] = \sum_j f(x_j) \prod_{i
eq j} rac{1}{x_j-x_i}$$

Linearity

If
$$lpha,eta\in\mathbb{R}$$
 , then $(lpha f+eta g)[x_0,\ldots,x_n]=lpha(f[x_0,\ldots,x_n])+eta(g[x_0,\ldots,x_n]).$

Proof. If $p_f \in P_n$ and $p_g \in P_n$ interpolate f and g, respectively, at $\{x_0, \ldots, x_n\}$, then $\alpha p_f + \beta p_g \in P_n$ interpolates $\alpha f + \beta g$ at $\{x_0, \ldots, x_n\}$.

Symmetry

If σ is a permutation of $\{0, \ldots, n\}$, then

$$f[x_0,\ldots,x_n]=f[x_{\sigma(0)},\ldots,x_{\sigma(n)}].$$

Proof. In view of the definition above, this is immediate since $\{x_0, \ldots, x_n\} = \{x_{\sigma(0)}, \ldots, x_{\sigma(n)}\}$.

Factor property

If $g(x)=(x-x_0)f(x)$ and $n\geq 1$, then

$$g[x_0,x_1,\ldots,x_n]=f[x_1,\ldots,x_n].$$

Proof. If $p_f \in P_{n-1}$ interpolates f at $\{x_1, \ldots, x_n\}$, then the polynomial $p_g \in P_n$ given by $p_g(x) = (x - x_0)p_f(x)$ interpolates g at $\{x_0, \ldots, x_n\}$.

In fact, the recurrence relation (excluding the base case) can be derived solely from linearity, symmetry, and the factor property:

$$egin{aligned} &(x_n-x_0)(f[x_0,\ldots,x_n])=([(x-x_0)-(x-x_n)]f)[x_0,\ldots,x_n]\ &=f[x_1,\ldots,x_n]-f[x_0,\ldots,x_{n-1}] \end{aligned}$$

Thus, these three properties along with the property $f[x_0] = f(x_0)$ determine the values of all divided differences.

The identity $f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ suggests a relationship between divided differences and derivatives: if, say, $x_0 < x_1$, $f \in C([x_0, x_1])$, and f' exists on (x_0, x_1) , then the mean value theorem amounts to the assertion that $f[x_0, x_1] = f'(\xi)$ for some $\xi \in (x_0, x_1)$. This generalizes readily to divided differences and derivatives of higher order.

Mean value theorem

Let
$$a = \min{\{x_j\}_{j=0}^n}$$
 and $b = \max{\{x_j\}_{j=0}^n}$. If $f \in C([a,b])$ and $f^{(n)}$ exists on (a,b) , then $f[x_0,\ldots,x_n] = rac{f^{(n)}(\xi)}{n!}$

for some $\xi \in (a, b)$.

Proof. By symmetry, we may assume that $a = x_0 < \cdots < x_n = b$. If $p \in P_n$ interpolates f at $\{x_0, \ldots, x_n\}$, then f - p has n + 1 distinct zeroes in $[x_0, x_n]$. By (repeated applications of) Rolle's theorem, $(f - p)^{(n)} = f^{(n)} - f[x_0, \ldots, x_n]n!$ has a zero $\xi \in (x_0, x_n)$.

Polynomial interpolation error

Let $a = \min \{x_j\}_{j=0}^n$ and $b = \max \{x_j\}_{j=0}^n$. If $f \in C([a, b])$ and $f^{(n+1)}$ exists on (a, b), then for all $x \in [a, b]$ there exists a $\xi \in (a, b)$ for which

$$f(x) - p_n(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) = rac{f^{(n+1)}(\xi)}{(n+1)!} \prod_j (x - x_j)$$

Proof. If $x \in \{x_j\}_{j=0}^n$, the conclusion is trivial; otherwise, the polynomial $p_n + f[x_0, \ldots, x_n, x]\omega_{n+1}$ interpolates f at $\{x_0, \ldots, x_n, x\}$ and the conclusion follows from the mean value theorem.

In the same vein, $f[x_0, x_0 + h] = \frac{f(x_0+h)-f(x_0)}{h} \rightarrow f'(x_0)$ as $h \rightarrow 0$ if f is differentiable at x_0 , the geometric interpretation being that the slope of the secant line through $(x_0, f(x_0))$ and $(x_0 + h, f(x_0 + h))$ tends to that of the tangent line through $(x_0, f(x_0))$. This observation along with the identity $(fg)[x_0, x_1] = f[x_0]g[x_0, x_1] + f[x_0, x_1]g[x_1]$ allows us to recover the product rule for derivatives. More generally, we have the following identity for divided differences.

Product rule

$$(fg)[x_0,\ldots,x_n]=\sum_j f[x_0,\ldots,x_j]g[x_j,\ldots,x_n]$$

Proof. If $p \in P_n$ interpolates f at $\{x_0, \ldots, x_n\}$, then $(fg)[x_0, \ldots, x_n] = (pg)[x_0, \ldots, x_n]$ since fg agrees with pg on $\{x_0, \ldots, x_n\}$. By linearity and the factor property, we have

$$egin{aligned} (pg)[x_0,\ldots,x_n]&=\left(\sum_j f[x_0,\ldots,x_j]\omega_j g
ight)[x_0,\ldots,x_n]\ &=\sum_j f[x_0,\ldots,x_j](\omega_j g)[x_0,\ldots,x_n]\ &=\sum_j f[x_0,\ldots,x_j]g[x_j,\ldots,x_n]. \end{aligned}$$

By Taylor's theorem, $(\Delta_h^k f)(x_0 + jh) = f^{(k)}(x_0)h^k + o(h^k)$ if f is k times differentiable at x_0 , where Δ_h denotes the forward difference operator with step h (that is, $(\Delta_h f)(x) = f(x+h) - f(x)$). As a result,

$$f[x_0+jh,\ldots,x_0+nh]=rac{(\Delta_h^{n-j}f)(x_0+jh)}{(n-j)!h^{n-j}}
ightarrowrac{f^{(n-j)}(x_0)}{(n-j)!}$$

and from the above we can derive the generalized product rule for derivatives, $(fg)^{(n)} = \sum_j {n \choose j} f^{(j)} g^{(n-j)}$.