The singular value decomposition

Nicholas Hu · Last updated on 2025-01-09

Let $A \in \mathbb{C}^{m \times n}$. The **singular value decomposition (SVD)** is a factorization of A as $U\Sigma V^*$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is (rectangular) diagonal with *nonnegative* entries. In other words, $A = \sum_{i=1}^{\min\{m,n\}} \sigma_i u_i v_i^*$, where u_i and v_i are the i^{th} columns of U and V and σ_i is the i^{th} diagonal entry of Σ . The vectors u_i and v_i are called **left** and **right singular vectors** of A and the scalars σ_i are called **singular values** of A; by convention, we arrange the singular values in decreasing order.

If an SVD of A has r nonzero singular values, then $\{u_i\}_{i=1}^r$ is an orthonormal basis of $\operatorname{im}(A)$ because $Av_i = \sigma_i u_i$ for all i. Hence r must be the rank of A and $\{u_i\}_{i=r+1}^m$ an orthonormal basis of $\ker(A^*)$; similarly, $\{v_i\}_{i=1}^r$ and $\{v_i\}_{i=r+1}^n$ are orthonormal bases of $\operatorname{im}(A^*)$ and $\ker(A)$.

Existence

Assume without loss of generality that $m \ge n$. Clearly, the matrix A^*A is (Hermitian) positive semidefinite, so by the spectral theorem, $A^*A = V\Lambda V^*$ for some unitary $V \in \mathbb{C}^{n \times n}$ and some diagonal $\Lambda \in \mathbb{R}^{n \times n}$ with diagonal entries $\lambda_1 \ge \cdots \ge \lambda_n \ge 0$. Set $\sigma_i = \sqrt{\lambda_i}$ for each i and $Av_i = \sigma_i u_i$ for each nonzero σ_i . If r is as above, $\hat{U} := [u_1 \quad \cdots \quad u_r] \in \mathbb{C}^{m \times r}$, and $\hat{\Sigma} := \operatorname{diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{r \times r}$, then by construction

$$AV = \hat{U}egin{bmatrix} \hat{\Sigma} & 0_{r imes(n-r)} \end{bmatrix}$$

Moreover, $\langle u_i, u_j \rangle = \langle Av_i / \sigma_i, Av_j / \sigma_j \rangle = \langle \lambda_i v_i, v_j \rangle / \sigma_i \sigma_j = \delta_{ij}$, so $\{u_i\}_{i=1}^r$ is orthonormal. Extending this set to an orthonormal basis $\{u_i\}_{i=1}^m$, and defining $U = [u_1 \quad \cdots \quad u_m] \in \mathbb{C}^{m \times m}$ and

$$\Sigma = egin{bmatrix} \hat{\Sigma} & 0_{r imes (n-r)} \ 0_{(m-r) imes r} & 0_{(m-r) imes (n-r)} \end{bmatrix} \in \mathbb{R}^{m imes n},$$

we obtain $A = U \Sigma V^*$ as required. ²

Although an SVD is not unique, this argument shows that the singular values are unique and that the singular vectors are unique up to complex signs if m = n and the singular values are distinct, since we must have $A^*A = V(\Sigma^*\Sigma)V^*$.

Low-rank approximation

Eckart-Young theorem

Suppose that $U\Sigma V^*$ is an SVD of a matrix $A \in \mathbb{C}^{m \times n}$ with rank r. If $k \leq r$ and $A_k := \sum_{i=1}^k \sigma_i u_i v_i^*$, then $||A - B||_2 \geq \sigma_{k+1} = ||A - A_k||_2$ for all $B \in \mathbb{C}^{m \times n}$ such that $\operatorname{rank}(B) \leq k$ (where $\sigma_{r+1} := 0$). In particular, $||A||_2 = \sigma_1$.

Proof. Suppose that $B \in \mathbb{C}^{m \times n}$ is such that $\operatorname{rank}(B) \leq k$. Then $\dim(\ker(B)) \geq n - k$, so there exists a $v \in \ker(B) \cap \operatorname{span}\{v_i\}_{i=1}^{k+1}$ such that $\|v\|_2 = 1$. Hence $\|A - B\|_2^2 \geq \|(A - B)v\|_2^2 = \|Av\|_2^2 = \sum_{i=1}^{k+1} \sigma_i^2 |\langle v, v_i \rangle|^2 \geq \sigma_{k+1}^2$. Similarly, if $v \in \mathbb{C}^n$ with $\|v\|_2 = 1$, then $\|(A - A_k)v\|_2^2 = \sum_{i=k+1}^r \sigma_i^2 |\langle v, v_i \rangle|^2 \leq \sigma_{k+1}^2$, with equality if $v = v_{k+1}$.

An analogous theorem holds for the Frobenius norm (which can be proven similarly). In fact, we have the following generalization.

Eckart-Young-Mirsky theorem

Suppose that $U\Sigma V^*$ is an SVD of a matrix $A \in \mathbb{C}^{m \times n}$ with rank r and let $\|\cdot\|$ be a *unitarily invariant* norm. If $k \leq r$ and $A_k := \sum_{i=1}^k \sigma_i u_i v_i^*$, then $\|A - B\| \geq \|A - A_k\|$ for all $B \in \mathbb{C}^{m \times n}$ such that rank $(B) \leq k$.

Proof. We begin by proving *Weyl's inequality* for singular values:

$$\sigma_{i+j-1}(A+B) \leq \sigma_i(A) + \sigma_j(B),$$

where $\sigma_i(\cdot)$ denotes the i^{th} singular value of a given matrix. Let $A_k := \sum_{i=1}^k \sigma_i(A) u_i v_i^*$. Then $\operatorname{rank}(A_{i-1} + B_{j-1}) \leq (i-1) + (j-1) = i+j-2$, so by the Eckart-Young theorem, $\sigma_{i+j-1}(A+B) \leq \|(A+B) - (A_{i-1} + B_{j-1})\|_2 \leq \|A - A_{i-1}\|_2 + \|B - B_{j-1}\|_2 = \sigma_i(A) + \sigma_j(B)$.

Now suppose that $B \in \mathbb{C}^{m \times n}$ is such that $\operatorname{rank}(B) \leq k$. By Weyl's inequality, $\sigma_{k+i}(A) \leq \sigma_{k+1}(B) + \sigma_i(A - B) = \sigma_i(A - B)$ for all i (where $\sigma_{k+i}(\cdot) := 0$ if $k + i > \min\{m, n\}$), so there exist $\theta_i \in [0, 1]$ such that $\sigma_{k+i}(A) = \theta_i \sigma_i(A - B)$. For $0 \leq j \leq \min\{m, n\}$, let $D_j^{\pm} \in \mathbb{R}^{m \times n}$ be the (rectangular) diagonal matrix with diagonal entries

$$(D_j^{\pm})_{ii} := egin{cases} \sigma_i(A-B) & ext{if } i < j, \ \pm \sigma_i(A-B) & ext{if } i = j, \ \sigma_{k+i}(A) & ext{if } i > j. \end{cases}$$

Then $||A - A_k|| = ||D_0^+||$ and $||A - B|| = ||D_{\min\{m,n\}}^+||$ since $||\cdot||$ is unitarily invariant. Moreover, $||D_j^+|| = ||D_j^-||$ is increasing in j because $||D_{j-1}^+|| = ||\frac{1+\theta_j}{2}D_j^+ + \frac{1-\theta_j}{2}D_j^-|| \le \frac{1+\theta_j}{2}||D_j^+|| + \frac{1-\theta_j}{2}||D_j^-|| = ||D_j^+||$, so $||A - A_k|| \le ||A - B||$.

^{1.} If $A \in \mathbb{R}^{m imes n}$, an SVD is defined analogously; i.e., with U and V orthogonal. 🔁

^{2.} If we instead add n - r rows of zeroes to $[\hat{\Sigma} \quad 0]$, forming a square matrix, the resulting decomposition is sometimes called the **thin SVD**; if we instead omit the last n - r columns, what remains is sometimes called the **compact SVD**.