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Let A € C™*™ The QR factorization is a factorization of A as QR, where Q € C™*™ is unitary and
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R € C™*™is (rectangular) upper triangular. * We will show below that such a factorization always exists by

describing three different methods to compute it.

When A has full column rank, we have a; = 3, 7;q; for each j, so span {a;} ;< C span {g;} < for
each k. As these subspaces are both k-dimensional, they must be equal, which also implies that the
diagonal entries of R are nonzero. Moreover, if () denotes the left m x n submatrix of ) and R denotes

the upper n X m submatrix of R, we have the thin/reduced QR factorization A = QR

The thin QR factorization of a full column rank matrix is nearly unique in the sense that if A = QR for some

Q € C™"™ with orthonormal columns and some upper triangular R € C™™, then Q = QD and R = DR
for some diagonal matrix D whose diagonal entries have unit modulus. This follows from the observation

that D := Q*Q = RR ' = R *R* must be both upper and lower triangular. Thus, if we specify a

(complex) sign for each diagonal entry of R the factorization is unique.

Gram-Schmidt orthogonalization

Suppose that (aj)jzl is a sequence of vectors in a Hilbert space V. Gram-Schmidt orthogonalization
defines an orthogonal sequence of vectors (b;) j>1 in V such that
Aj := span {a;} ;< = By := span {b;} ;< for each k. To wit, let Proj; := Projgy,y gy for b € H; thatis,

(ab) o -
proj,a = ¢ (&b b ifb#0,
b ifb=0.

We then inductively define

bj:=a; — Zprojbi aj.
i<j
Assuming that {bj}j<k is orthogonal for a given k, we then have
(bk,bj) = (ar — D ;1 PIojy, ar, bj) = (ar — Proj,, ax, b;) = 0forall j < k, which shows that {b;} <y is
orthogonal. Moreover, if A1 = By_1, thenb, € ar, — By_1 = ar, — Ai_1 C Aj and
ar € by, + Br_1 C By, so A = By.

To compute a QR factorization of A, we can apply Gram-Schmidt orthogonalization to the columns of
A=:[a1 --- ay]asfollows. Foreach j < m, we inductively define b; := a; — >, ,proj, a;if j <n
and the right-hand expression is nonzero; otherwise, we select an arbitrary nonzero b € B]-L_l. In either case,
we then define g; := HZ_ZH We thereby obtain an orthonormal basis {g; } j<» of C™ such that

aj = D i<min{j,m} 7% for somer;; € C, as required.
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Modified Gram-Schmidt orthogonalization

In Gram-Schmidt orthogonalization, we define b; = (I — ZK]. projbi)aj. Since the b; are orthogonal, this
can equivalently be written as b; = (I — projbjfl) -+ (I — projy,)(I — projy, )a;, so computationally
speaking, the projection operator I — proj,. can be applied to all a; with ¢ < j (assuming there are finitely
many of them) as soon as b; is generated. The resulting algorithm is known as modified Gram-Schmidt
orthogonalization and exhibits greater numerical stability than “classical” Gram-Schmidt orthogonalization.

Householder reflections

Suppose that v is a nonzero vector in a Hilbert space V. The reflection operator across the hyperplane
{v}+ is defined for z € H by

2(z,v) ;
(v,v)

Since proj,, is idempotent and self-adjoint, refl, is involutory and self-adjoint and therefore unitary.

refl, z := (I — 2proj,)z =z —

A Householder reflection is a reflection operator H : C? — C? that zeroes out all components of some
vector x except for its first component z1; we assume that the other components are not already all zeroes.

In other words, Hz = ae; for some a € C,wheree; :==[1 0 --- 0]' andz ¢ span {e1}-

As H is unitary and self-adjoint, we must have |a| = ||z|| and (Hz, z) = az € R, which implies that

a = +sign(zy)||z|| (unless 1 = 0, in which case the only constraint is |a| = ||z||). Since refl,, z = aey if
and only if %w = x — aey, using the Householder vector v := = — ae; guarantees that H := refl,
satisfies Hx = aey. A conventional choice of ¢ in this context is @ = — sign(z1)||x|| so as to maximize

|v||? = 2(||z]|? F |z1]||z||) for the sake of numerical stability.

To compute a QR factorization of A, we can apply Householder reflections successively to introduce zeroes
below the diagonal in each column of A. More precisely, we can find a Householder reflection H € C™*™
such that
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wherea € C, b e C* !, and A’ € C(m=D*("=1) allowing H = I if the subdiagonal entries in the first
column of A are already zero). Now supposing inductively that A’ has a QR factorization Q' R’, we obtain
the factorization

Givens rotations

a T
Given a,b € C, consider the problem of findinga U € SU(2) and anr € C such that U {b] = [ ].We

have

U= [ < f], where |c|? + |s|> =1
c
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and ac + bs = r, bc — as = 0. Since U is unitary, we must have r = w+/|a|? + |b|? for some w € C with
|w| = 1, and assuming that » # 0 (which is to say that a and b are not both zero), we obtain

wa wb
= —— S =
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A conventional choice in this context is w = sign(a), along with U = I (and r = 0) in the case a = b = 0.
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Thus, if @ and b are the i and 5 components of some € C™, where i < j, the Givens rotation
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is a unitary matrix such that the jth component of Gz is zero. (In the real-valued setting, (G is indeed a
rotation in the x;-x; plane.) Such rotations can evidently be applied to compute a QR factorization of A by
introducing zeroes below the diagonal of A one at a time.

1.1f A € R™*", a QR factorization is defined analogously; i.e., with @ orthogonal. [£]
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