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Let . The QR factorization is a factorization of  as , where  is unitary and 

 is (rectangular) upper triangular. 1  We will show below that such a factorization always exists by 

describing three different methods to compute it.

When  has full column rank, we have  for each , so  for 

each . As these subspaces are both -dimensional, they must be equal, which also implies that the 

diagonal entries of  are nonzero. Moreover, if  denotes the left  submatrix of  and  denotes 

the upper  submatrix of , we have the thin/reduced QR factorization .

The thin QR factorization of a full column rank matrix is nearly unique in the sense that if  for some 

 with orthonormal columns and some upper triangular , then  and  
for some diagonal matrix  whose diagonal entries have unit modulus. This follows from the observation 

that  must be both upper and lower triangular. Thus, if we specify a 

(complex) sign for each diagonal entry of , the factorization is unique.

Gram–Schmidt orthogonalization  
Suppose that  is a sequence of vectors in a Hilbert space . Gram–Schmidt orthogonalization 
defines an orthogonal sequence of vectors  in  such that 

 for each . To wit, let  for ; that is,

We then inductively define

Assuming that  is orthogonal for a given , we then have 
 for all , which shows that  is 

orthogonal. Moreover, if , then  and 
, so .

To compute a QR factorization of , we can apply Gram–Schmidt orthogonalization to the columns of 
 as follows. For each , we inductively define  if  

and the right-hand expression is nonzero; otherwise, we select an arbitrary nonzero . In either case, 

we then define . We thereby obtain an orthonormal basis  of  such that 

 for some , as required.

af://n0
af://n9


Modified Gram–Schmidt orthogonalization  

In Gram–Schmidt orthogonalization, we define . Since the  are orthogonal, this 

can equivalently be written as , so computationally 

speaking, the projection operator  can be applied to all  with  (assuming there are finitely 
many of them) as soon as  is generated. The resulting algorithm is known as modified Gram–Schmidt 
orthogonalization and exhibits greater numerical stability than “classical” Gram–Schmidt orthogonalization.

Householder reflections  
Suppose that  is a nonzero vector in a Hilbert space . The reflection operator across the hyperplane 

 is defined for  by

Since  is idempotent and self-adjoint,  is involutory and self-adjoint and therefore unitary.

A Householder reflection is a reflection operator  that zeroes out all components of some 
vector  except for its first component ; we assume that the other components are not already all zeroes. 
In other words,  for some , where  and .

As  is unitary and self-adjoint, we must have  and , which implies that 
 (unless , in which case the only constraint is ). Since  if 

and only if , using the Householder vector  guarantees that  

satisfies . A conventional choice of  in this context is  so as to maximize 
 for the sake of numerical stability.

To compute a QR factorization of , we can apply Householder reflections successively to introduce zeroes 
below the diagonal in each column of . More precisely, we can find a Householder reflection  
such that

where , , and  (allowing  if the subdiagonal entries in the first 
column of  are already zero). Now supposing inductively that  has a QR factorization , we obtain 
the factorization

Givens rotations  

Given , consider the problem of finding a  and an  such that . We 

have
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1. If , a QR factorization is defined analogously; i.e., with  orthogonal. ↩

and , . Since  is unitary, we must have  for some  with 
, and assuming that  (which is to say that  and  are not both zero), we obtain

A conventional choice in this context is , along with  (and ) in the case .

Thus, if  and  are the th and th components of some , where , the Givens rotation

is a unitary matrix such that the th component of  is zero. (In the real-valued setting,  is indeed a 

rotation in the -  plane.) Such rotations can evidently be applied to compute a QR factorization of  by 
introducing zeroes below the diagonal of  one at a time.
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