The QR factorization

Nicholas Hu · Last updated on 2025-03-14

Let $A \in \mathbb{C}^{m \times n}$. The **QR factorization** is a factorization of A as QR, where $Q \in \mathbb{C}^{m \times m}$ is unitary and $R \in \mathbb{C}^{m \times n}$ is (rectangular) upper triangular. ¹ We will show below that such a factorization always exists by describing three different methods to compute it.

When A has full column rank, we have $a_j = \sum_{i \leq j} r_{ij}q_i$ for each j, so $\operatorname{span} \{a_j\}_{j \leq k} \subseteq \operatorname{span} \{q_j\}_{j \leq k}$ for each k. As these subspaces are both k-dimensional, they must be equal, which also implies that the diagonal entries of R are nonzero. Moreover, if \hat{Q} denotes the left $m \times n$ submatrix of Q and \hat{R} denotes the upper $n \times n$ submatrix of R, we have the **thin/reduced QR factorization** $A = \hat{Q}\hat{R}$.

The thin QR factorization of a full column rank matrix is nearly unique in the sense that if $A = \tilde{Q}\tilde{R}$ for some $\tilde{Q} \in \mathbb{C}^{m \times n}$ with orthonormal columns and some upper triangular $\tilde{R} \in \mathbb{C}^{n \times n}$, then $\tilde{Q} = \hat{Q}D$ and $\hat{R} = D\tilde{R}$ for some diagonal matrix D whose diagonal entries have unit modulus. This follows from the observation that $D := \hat{Q}^* \tilde{Q} = \hat{R}\tilde{R}^{-1} = \hat{R}^{-*}\tilde{R}^*$ must be both upper and lower triangular. Thus, if we specify a (complex) sign for each diagonal entry of \hat{R} , the factorization is unique.

Gram-Schmidt orthogonalization

Suppose that $(a_j)_{j\geq 1}$ is a sequence of vectors in a Hilbert space V. **Gram–Schmidt orthogonalization** defines an *orthogonal* sequence of vectors $(b_j)_{j\geq 1}$ in V such that

 $\mathcal{A}_k := \mathrm{span}\,\{a_j\}_{j\leq k} = \mathcal{B}_k := \mathrm{span}\,\{b_j\}_{j\leq k}$ for each k. To wit, let $\mathrm{proj}_b := \mathrm{proj}_{\mathrm{span}\,\{b\}}$ for $b\in H$; that is,

$$\mathrm{proj}_b\,a = egin{cases} rac{\langle a,b
angle}{\langle b,b
angle}b & \mathrm{if}\,b
eq 0,\ b & \mathrm{if}\,b=0. \end{cases}$$

We then inductively define

$$b_j := a_j - \sum_{i < j} \operatorname{proj}_{b_i} a_j.$$

Assuming that $\{b_j\}_{j < k}$ is orthogonal for a given k, we then have $\langle b_k, b_j \rangle = \langle a_k - \sum_{i < k} \operatorname{proj}_{b_i} a_k, b_j \rangle = \langle a_k - \operatorname{proj}_{b_j} a_k, b_j \rangle = 0$ for all j < k, which shows that $\{b_j\}_{j \le k}$ is orthogonal. Moreover, if $\mathcal{A}_{k-1} = \mathcal{B}_{k-1}$, then $b_k \in a_k - \mathcal{B}_{k-1} = a_k - \mathcal{A}_{k-1} \subseteq \mathcal{A}_k$ and $a_k \in b_k + \mathcal{B}_{k-1} \subseteq \mathcal{B}_k$, so $\mathcal{A}_k = \mathcal{B}_k$.

To compute a QR factorization of A, we can apply Gram–Schmidt orthogonalization to the columns of $A =: [a_1 \quad \cdots \quad a_n]$ as follows. For each $j \leq m$, we inductively define $b_j := a_j - \sum_{i < j} \operatorname{proj}_{q_i} a_j$ if $j \leq n$ and the right-hand expression is *nonzero*; otherwise, we select an arbitrary *nonzero* $b_j \in \mathcal{B}_{j-1}^{\perp}$. In either case, we then define $q_j := \frac{b_j}{\|b_j\|}$. We thereby obtain an orthonormal basis $\{q_j\}_{j \leq m}$ of \mathbb{C}^m such that $a_j = \sum_{i \leq \min\{j, m\}} r_{ij}q_i$ for some $r_{ij} \in \mathbb{C}$, as required.

Modified Gram-Schmidt orthogonalization

In Gram–Schmidt orthogonalization, we define $b_j = (I - \sum_{i < j} \operatorname{proj}_{b_i})a_j$. Since the b_i are orthogonal, this can equivalently be written as $b_j = (I - \operatorname{proj}_{b_{j-1}}) \cdots (I - \operatorname{proj}_{b_2})(I - \operatorname{proj}_{b_1})a_j$, so computationally speaking, the projection operator $I - \operatorname{proj}_{b_i}$ can be applied to all a_j with i < j (assuming there are finitely many of them) as soon as b_i is generated. The resulting algorithm is known as **modified Gram–Schmidt orthogonalization** and exhibits greater numerical stability than "classical" Gram–Schmidt orthogonalization.

Householder reflections

Suppose that v is a nonzero vector in a Hilbert space V. The **reflection operator** across the hyperplane $\{v\}^{\perp}$ is defined for $x \in H$ by

$$\operatorname{refl}_v x := (I-2\operatorname{proj}_v)\, x = x - rac{2\langle x,v
angle}{\langle v,v
angle} v.$$

Since proj_v is idempotent and self-adjoint, refl_v is involutory and self-adjoint and therefore unitary.

A **Householder reflection** is a reflection operator $H : \mathbb{C}^d \to \mathbb{C}^d$ that zeroes out all components of some vector x except for its first component x_1 ; we assume that the other components are not already all zeroes. In other words, $Hx = \alpha e_1$ for some $\alpha \in \mathbb{C}$, where $e_1 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^\top$ and $x \notin \text{span} \{e_1\}$.

As H is unitary and self-adjoint, we must have $|\alpha| = ||x||$ and $\langle Hx, x \rangle = \alpha \overline{x_1} \in \mathbb{R}$, which implies that $\alpha = \pm \operatorname{sign}(x_1) ||x||$ (unless $x_1 = 0$, in which case the only constraint is $|\alpha| = ||x||$). Since $\operatorname{refl}_w x = \alpha e_1$ if and only if $\frac{2\langle x, w \rangle}{\langle w, w \rangle} w = x - \alpha e_1$, using the **Householder vector** $v := x - \alpha e_1$ guarantees that $H := \operatorname{refl}_v$ satisfies $Hx = \alpha e_1$. A conventional choice of α in this context is $\alpha = -\operatorname{sign}(x_1) ||x||$ so as to maximize $||v||^2 = 2(||x||^2 \mp |x_1|||x||)$ for the sake of numerical stability.

To compute a QR factorization of A, we can apply Householder reflections successively to introduce zeroes below the diagonal in each column of A. More precisely, we can find a Householder reflection $H \in \mathbb{C}^{m \times m}$ such that

$$HA = egin{bmatrix} lpha & b^{ op} \ & A' \end{bmatrix},$$

where $\alpha \in \mathbb{C}$, $b \in \mathbb{C}^{n-1}$, and $A' \in \mathbb{C}^{(m-1) \times (n-1)}$ (allowing H = I if the subdiagonal entries in the first column of A are already zero). Now supposing inductively that A' has a QR factorization Q'R', we obtain the factorization

$$A = \underbrace{H^* \begin{bmatrix} 1 & & \ Q' \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} lpha & b^{ op} \ R' \end{bmatrix}}_{R}$$

Givens rotations

Given $a, b \in \mathbb{C}$, consider the problem of finding a $U \in SU(2)$ and an $r \in \mathbb{C}$ such that $U \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$. We have

$$U = egin{bmatrix} c & s \ -\overline{s} & \overline{c} \end{bmatrix}\!, \quad ext{where} \ ert c ert^2 + ert s ert^2 = 1$$

and ac + bs = r, $b\overline{c} - a\overline{s} = 0$. Since U is unitary, we must have $r = \omega \sqrt{|a|^2 + |b|^2}$ for some $\omega \in \mathbb{C}$ with $|\omega| = 1$, and assuming that $r \neq 0$ (which is to say that a and b are not both zero), we obtain

$$c = rac{\overline{a}}{\overline{r}} = rac{\omega \overline{a}}{\sqrt{|a|^2 + |b|^2}}, \quad s = rac{\overline{b}}{\overline{r}} = rac{\omega \overline{b}}{\sqrt{|a|^2 + |b|^2}}$$

A conventional choice in this context is $\omega = \operatorname{sign}(a)$, along with U = I (and r = 0) in the case a = b = 0. Thus, if a and b are the i^{th} and j^{th} components of some $x \in \mathbb{C}^m$, where i < j, the **Givens rotation**

$$G:=egin{bmatrix} I_{i-1} & & & & \ & c & & s & \ & & I_{(j-1)-i} & & \ & -\overline{s} & & \overline{c} & \ & & & I_{m-j} \end{bmatrix}$$

is a unitary matrix such that the j^{th} component of Gx is zero. (In the real-valued setting, G is indeed a rotation in the x_i - x_j plane.) Such rotations can evidently be applied to compute a QR factorization of A by introducing zeroes below the diagonal of A one at a time.

^{1.} If $A \in \mathbb{R}^{m imes n}$, a QR factorization is defined analogously; i.e., with Q orthogonal. \fbox