
Method

Jacobi

-Jacobi ( )

Gauss–Seidel

-Gauss–Seidel/successive overrelaxation (SOR) ( )

Symmetric successive overrelaxation (SSOR) ( )

Richardson ( )

Linear stationary iterative methods  
Nicholas Hu · Last updated on 2025-03-22

Let  be invertible and . An iterative method for solving  generates a sequence of 
iterates  approximating the exact solution , given an initial guess . We can express this as 

 for some functions ; if these functions are eventually independent 
of , the method is said to be stationary.

We will consider stationary iterative methods of the form , called (first-degree) linear 
stationary iterative methods. Such methods are typically derived from a splitting , where 

 is an invertible matrix that “approximates”  but is easier to solve linear systems with. Specifically, since 
, we take  and  so that the exact solution is a fixed 

point of the iteration. Equivalently, we can view  as a correction of  
based on the residual . We also note that the error  satisfies 

, so the convergence of a splitting method depends on the properties of its iteration matrix 
.

Splitting methods  
Let , , and  denote the strictly lower, diagonal, and strictly upper triangular parts of . The splittings for 
some basic linear stationary iterative methods are as follows.

The parameter  is known as the relaxation/damping parameter and arises from taking 
, where  denotes the result of applying the corresponding 

nonparametrized ( ) method to . If , the method is said to be underrelaxed/underdamped; 
if , it is said to be overrelaxed/overdamped.

The SSOR method arises from performing a “forward” -Gauss–Seidel step with  followed by 
a “backward” -Gauss–Seidel step with .
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Convergence theorems  
Clearly, since , if  for some operator norm, then the method converges in the sense 

that  for all . 1  More generally, we see that the method is convergent if and only if , 
which in turn depends on the spectral radius  of ​, the maximum of the absolute values of its 

eigenvalues when regarded as a complex matrix. 2

Namely, if  is an eigenpair of  with , then  for the induced 
operator norm, so . Thus, if , then . In fact, the converse is also 
true.

Let . Then  if and only if  (such a matrix is called convergent).

Proof. It remains to show that  if . Let  be a Schur factorization of  and let  and 
 denote the diagonal and strictly upper triangular parts of . Since the product of a diagonal matrix and a 

strictly upper triangular matrix is strictly upper triangular, and the product of  (or more) strictly upper 
triangular  matrices is zero, for all , we have

Using this fact, we can also prove a well-known formula for the spectral radius. 3

Gelfand’s formula

Let  and  be an operator norm. Then .

Proof. We previously saw that  for all , so . On the other 

hand, if  is arbitrary and , then , so by the preceding result,  for all 

sufficiently large , which is to say that . Hence we also have 
. ∎

As  for large , the rate of convergence can often be estimated using 
the spectral radius of the iteration matrix. More precisely, a direct computation shows that if  is 

diagonalizable and has a unique dominant eigenvalue, then , provided that  has a 

nonzero component in the corresponding eigenspace.

General matrices  

If the Jacobi method converges, then the -Jacobi method converges for .

Proof. For the -Jacobi method, we have , where  denotes the iteration matrix for 
the Jacobi method. Hence . ∎

If the -Gauss–Seidel method converges, then .

Proof. For the -Gauss–Seidel method, we have , so 
. On the other hand, the 

determinant of  is the product of its eigenvalues, so . ∎

If the SSOR method converges, then .
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Proof. For the SSOR method, we have , where  and  denote the iteration matrices for the 
forward and backward -Gauss–Seidel methods. Arguing as in the preceding proof, we obtain 

.

Symmetric positive definite matrices  

If  is symmetric positive definite (SPD), then  is invertible and all the splitting methods above are 
applicable since its diagonal entries must be positive. Recall also that symmetric matrices are partially 
ordered by the Loewner order  in which  if and only if  is SPD, and that an SPD matrix  
defines an inner product .

If  is SPD and , then .

Proof. Let  be a vector with  such that  (which exists by the extreme value 
theorem) and let . Then

Convergence for SPD matrices

Let  be SPD.

If , then the -Jacobi method converges.

If , then the -Gauss–Seidel method converges.

If , then the SSOR method converges.

If , then the Richardson method converges.

Moreover, if the eigenvalues of  are , then  is minimized when 
, in which case , where  is the 2-norm 

condition number of .

Proof. The convergence statements follow immediately from the preceding result.
For the Richardson method, , so 

 when  and  when . 
Finally, since  and  are normal, we have . ∎

Diagonally dominant matrices  

 is weakly diagonally dominant (WDD) if every row  is WDD: .

 is strictly diagonally dominant (SDD) if every row  is SDD: .

The directed graph of  is  with  and  if and only if .

 is irreducible if  is strongly connected.

 is irreducibly diagonally dominant (IDD) if it is irreducible, WDD, and some row is SDD.

 is weakly chained diagonally dominant (WCDD) if it is WDD and for every row , there exists an 
SDD row  with a path from  to  in . (Thus, SDD and IDD matrices are both WCDD.)

If  is WCDD, then  is invertible.
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1. In other words, if , then  strongly (because  in norm). ↩

2. In other words,  strongly if and only if  in norm (because  is an operator on a finite-dimensional space). ↩

3. This formula remains true if  is a continuous linear operator on a Banach space . Consequently, in this setting, we still have that  in norm if 
and only if . These are in turn equivalent to the invertibility of  and the convergence of the fixed-point iteration of  for all 

 (to ). ↩

Proof. Suppose for the sake of contradiction that there exists an  with , and let  be 
such that . Let  be a path in  such that row  is SDD. Since , we 

have

so row  is not SDD. However, since it is WDD, equality must hold throughout, which implies that  
because . Iterating this argument, we ultimately deduce that row  is not SDD, which is a 
contradiction. ∎

As a result, if  is WCDD, then all the splitting methods above are applicable since its diagonal entries must 
be nonzero (otherwise, it would have a zero row and fail to be invertible).

We also note that this immediately implies the Levy–Desplanques theorem: if  is SDD, then  is 
invertible. This, in turn, is equivalent to the Gershgorin circle theorem: if  is an eigenvalue of , then 

 for some  (in other words,  for some ). Similarly, if  is IDD, then 

 is invertible; or equivalently, if  is irreducible and  is an eigenvalue of  such that  for 
every , then  for every .

Convergence for WCDD matrices

If  is WCDD, then the -Jacobi and -Gauss–Seidel methods converge for .

Proof. If , then , so  has the same WDD/SDD rows and directed 
graph as . Hence  is invertible for such , so . ∎
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