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Let A € R™ " be invertible and b € R™. An iterative method for solving Az = b generates a sequence of
iterates (m(k))zozl approximating the exact solution x*, given an initial guess 2. We can express this as
zktl) = ¢k+1(x(0), ooz A b) for some functions ¢; if these functions are eventually independent
of k, the method is said to be stationary.

We will consider stationary iterative methods of the form e* ) = Gz 1 f, called (first-degree) linear
stationary iterative methods. Such methods are typically derived from a splitting A = M — N, where
M is an invertible matrix that “approximates” A but is easier to solve linear systems with. Specifically, since
Mz* = Nz* +b,wetake G := M 'N =1 — M *Aand f = M ~'b so that the exact solution is a fixed
point of the iteration. Equivalently, we can view ) = gk 4 M_l(b — A:L‘(k)) as a correction of (%)
based on the residual 7(¥) := b — Az*). we also note that the error e®) := z* — z(¥) satisfies

e+ = Qe so the convergence of a splitting method depends on the properties of its iteration matrix
G.

Splitting methods

Let L, D, and U denote the strictly lower, diagonal, and strictly upper triangular parts of A. The splittings for
some basic linear stationary iterative methods are as follows.

Method M

Jacobi D

w-Jacobi (w # 0) %D

Gauss-Seidel L+ D
w-Gauss-Seidel/successive overrelaxation (SOR) (w # 0) L+ %D

Symmetric successive overrelaxation (SSOR) (w # 0, 2) ﬁ(L + %D)D‘l(U + %D)
Richardson (o # 0) %I

The parameter w is known as the relaxation/damping parameter and arises from taking

D) = (1 — w)z® + Wi+, where £*+1) denotes the result of applying the corresponding
nonparametrized (w = 1) method to z®)If w < 1, the method is said to be underrelaxed/underdamped;
if w > 1, itis said to be overrelaxed/overdamped.

The SSOR method arises from performing a “forward” w-Gauss-Seidel step with M = L + %D followed by
a “backward” w-Gauss-Seidel step with M = U + %D.
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Convergence theorems

Clearly, since e®) = G*¢(©), if ||G|| < 1 for some operator norm, then the method converges in the sense

that z®) — z* for all (. 1 More generally, we see that the method is convergent if and only if G* -0,

which in turn depends on the spectral radius p(G) of G, the maximum of the absolute values of its

eigenvalues when regarded as a complex matrix. 2

Namely, if (A, v) is an eigenpair of G with ||v]| = 1, then |A|F = |A\¥| = ||G*v|| < ||G*|| for the induced
operator norm, so p(G)* = p(G*) < ||G¥||. Thus, if G — 0, then p(G) < 1. In fact, the converse is also
true.

Let G € C™". Then G* — 0if and only if p(G) < 1 (such a matrix is called convergent).

Proof. It remains to show that G¥ — 0if p(G) < 1. Let UTU* be a Schur factorization of G and let D and
N denote the diagonal and strictly upper triangular parts of T'. Since the product of a diagonal matrix and a
strictly upper triangular matrix is strictly upper triangular, and the product of n (or more) strictly upper
triangular n x n matrices is zero, for all £ > n, we have

n—1 n—1
k s i k w .
IGH = D+ M) o< Y (]) IDIE N = 3 ( j)p<G>k NI, 0. m
=0 =0

Using this fact, we can also prove a well-known formula for the spectral radius. =

Gelfand’s formula

Let G € C™™ and || - || be an operator norm. Then p(G) = limy,_,||G*||'/*.
Proof. We previously saw that p(G) < ||G*||*/* for all k, so p(G) < liminfy,_,||G¥||/*. On the other
hand, if € > 0 is arbitrary and G := ,;(G—C§+e' then p(G) < 1, so by the preceding result, ||G¥|| < 1 for all

sufficiently large k, which is to say that ||G*|| < (p(G) + €)*. Hence we also have
lim sup | GH[ % < p(G) + . »

As [le® ]| < [|G¥|[||e@] ~ p(G)*||e® || for large k, the rate of convergence can often be estimated using
the spectral radius of the iteration matrix. More precisely, a direct computation shows that if G is

kD) ,
[" 2L . p(G), provided that e(® has a

diagonalizable and has a unique dominant eigenvalue, then e

nonzero component in the corresponding eigenspace.

General matrices

If the Jacobi method converges, then the w-Jacobi method converges for w € (0, 1].

Proof. For the w-Jacobi method, we have G = (1 — w)I + wGjy, where Gy denotes the iteration matrix for
the Jacobi method. Hence p(G) < (1 — w) + wp(Gy) < 1.n

If the w-Gauss-Seidel method converges, then w € (0, 2).

Proof. For the w-Gauss-Seidel method, we have G = (L + £ D)7 ((1 —1)D — U), so
det(G) = det(L D) det((+ — 1)D) = det((1 — w)I) = (1 — w)™. On the other hand, the
determinant of G is the product of its eigenvalues, so |1 — w|" < p(G)™ < 1.n

If the SSOR method converges, then w € (0, 2).
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Proof. For the SSOR method, we have G = GGy, where Gy and Gy, denote the iteration matrices for the

forward and backward w-Gauss-Seidel methods. Arguing as in the preceding proof, we obtain
11— w/* < p(G)" < 1.

Symmetric positive definite matrices

If A is symmetric positive definite (SPD), then A is invertible and all the splitting methods above are
applicable since its diagonal entries must be positive. Recall also that symmetric matrices are partially
ordered by the Loewner order < in which A < Biif and only if B — A is SPD, and that an SPD matrix A
defines an inner product (z,y) 4 := (Az,y)s.

If AisSPDand A < M + M ', then ||G||4 < 1.

Proof. Let  be a vector with |||/ 4 = 1 such that ||G|| 4 = ||Gz|| 4 (which exists by the extreme value
theorem) and let y := M ~!Ax. Then

IGI1% = llz — vl
=1- <:z:,y>A — (y,«’/U)A + <?/,3/>A
=1—((M+M"—Ay,y)<1. B

Convergence for SPD matrices
Let A be SPD.
o IfA< %D, then the w-Jacobi method converges.
e Ifw € (0,2), then the w-Gauss-Seidel method converges.

e Ifw € (0,2), then the SSOR method converges.

e Ifa € (0, pi)) then the Richardson method converges.

(A
Moreover, if the eigenvalues of Aare Ay > -+ > A, > 0, then p(G) is minimized when
a=a" = /\ﬁ)\n , inwhich case [[e® D[, < (1 — Kil) le®)||5, where & is the 2-norm

condition number of A.

Proof. The convergence statements follow immediately from the preceding result.
For the Richardson method, p(G(&)) = max; |1 — a);| = max {1 — aX,,aX; — 1},s0

p(G(a)) =1—aX, > p(G(a*)) whena < a* and p(G(a)) = a1 — 1 > p(G(a*)) when a > a*.

Finally, since G and A are normal, we have ||G(a*)||2 = p(G(a*)) =1 — 2. »

Diagonally dominant matrices

» Ais weakly diagonally dominant (WDD) if every row ¢ is WDD: |a;;| > >~ aij-

e Ais strictly diagonally dominant (SDD) if every row i is SDD: || > >~ ;la;|-

e The directed graph of Ais G4 = (V,E)withV = {1,...,n}and (4,j) € Eifandonlyifa;; # 0.
o Aisirreducible if G 4 is strongly connected.

e Aisirreducibly diagonally dominant (IDD) if it is irreducible, WDD, and some row is SDD.

e Ais weakly chained diagonally dominant (WCDD) if it is WDD and for every row %, there exists an
SDD row j with a path from 4 to jin G 4. (Thus, SDD and IDD matrices are both WCDD.)

If A is WCDD, then A is invertible.
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Proof. Suppose for the sake of contradiction that there exists an x € ker(A) with ||z||oc = 1, and let i1 be
such that [z;,| = 1. Let (z;,, ..., ®;,) be a path in G4 such that row iy, is SDD. Since - ; a;,;z; = 0, we
have

@iir] = | =i, @i | < laigllzs] < lail,
J#i J7#i
so row 41 is not SDD. However, since it is WDD, equality must hold throughout, which implies that |z;,| = 1

because a;,;, # 0. Iterating this argument, we ultimately deduce that row ¢, is not SDD, which is a
contradiction. u

As a result, if A is WCDD, then all the splitting methods above are applicable since its diagonal entries must
be nonzero (otherwise, it would have a zero row and fail to be invertible).

We also note that this immediately implies the Levy-Desplanques theorem: if A is SDD, then A is
invertible. This, in turn, is equivalent to the Gershgorin circle theorem: if ) is an eigenvalue of A, then

A —ai| <30, 4lai| =: rifor some i (in other words, X € B, (a;;) for some @). Similarly, if A is IDD, then
Ais invertible; or equivalently, if A is irreducible and A is an eigenvalue of A such that |\ — a;;| > r; for
every i, then | A — a;;| = r; for everyi.

Convergence for WCDD matrices
If A is WCDD, then the w-Jacobi and w-Gauss-Seidel methods converge for w € (0, 1].

Proof. If |A| > 1, then |21 4+ 1| > |A|, so (A — 1)M + A has the same WDD/SDD rows and directed
graph as A. Hence \I — G = M ' ((A — 1)M + A) is invertible for such A, so p(G) < 1.n

1. In other words, if || G|| < 1, then G* — 0 strongly (because G¥ — 0 in norm). ]
2. In other words, G*¥ — 0 strongly if and only if G¥ — 0 in norm (because G is an operator on a finite-dimensional space). [2]

3. This formula remains true if G is a continuous linear operator on a Banach space X. Consequently, in this setting, we still have that G¥ — 0 in norm if
and only if p(G) < 1. These are in turn equivalent to the invertibility of I — G and the convergence of the fixed-point iteration of  +— Gz + f for all
feXto(I-G)'NHE



	Linear stationary iterative methods
	Splitting methods
	Convergence theorems
	General matrices
	Symmetric positive definite matrices
	Diagonally dominant matrices



