Projections and least squares problems
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Projections

Let H be a Hilbert space and Y C H. The (orthogonal) projection operator onto Y is defined for x € H
by
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Hilbert projection theorem (first projection theorem)

If Y is nonempty, closed, and convex, then projy-(z) is a singleton (so projy : H — Y is well-
defined).

Proof. Let (yn)°°, C Y besuchthatd, := 3|y, — z||* = d := infycy £ ||y — z||%. By the parallelogram
identity,
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where || £22¥2 — 2|2 > 2d by convexity. Taking m, n — 0o shows that (y,) is Cauchy and therefore
convergent to some y € Y with %Hy — ac||2 = d. Moreover, if y' € Y is another minimizer, replacing
Ym, Yn by ¥,y above shows thaty = 7/ u

Recall that the polar cone of YisY° := {z € H : Vy € Y (R((z,y)) < 0)} and that the orthogonal
complement of YisY' := {z € H:VycY ({x,y) = 0)}; clearly, if Y is a subspace of H, then
Ye=Y"

Characterization of projections (second projection theorem)
If Y is nonempty, closed, and convex, then y = projy(z) ifandonlyify € Y andz —y € (Y — y)°.
Proof. If y = projy(z) and y’ € Y, then for all A € [0, 1], we have
ly = 2* < (1= Ny + M —]|* = lly — z[* + 228y — 2,9/ — ) + X*|ly’ — 9],

soR((y — z,y' —y)) > 0. Conversely, ify,y’ € Yandz —y € (Y — y)°, then setting A = 1 in the
inequality above shows that y = projy (). s

Firm nonexpansiveness of the projection operator
If Y is nonempty, closed, and convex, then
Iprojy (z) — projy («')[|* + [|(I — projy)(z) + (I — projy)(2")|* < [« — 2'|*.

Proof. Let y = projy(z) and y' = projy (z'), and add the inequalities R({(z' — ¢/, y — 3/)) < 0 and
Rz —yy —y) <0
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In particular, this implies that the projection operator is nonexpansive:
[projy (z) — projy («') | < [l — 2'||.

IfY is a closed subspace of H, it follows from the above that y = projy-(z) ifand only if y € Y and
x —y € Y1, and that projy : H — Y is a linear operator with ||projy || < 1, im(projy) =Y, and
ker(projy) = Y*. In addition, projy. = I — projy.

Least squares problems

Let H; and H be Hilbert spaces and suppose that A : H; — H> is a continuous linear operator with

closed image. ! The (linear) least squares problem is that of finding an € H; that minimizes
2||b — Az||? for a given b € Hy, or equivalently, that satisfies Az = PrOjim(4) b. Using the fact that
im(A)+ = ker(A*), we can also write this as the normal equation A*Az = A*b.

The pseudoinverse

To solve the least squares problem, we observe that A [ie(4):: ker(A)+ — im(A) is bijective since
Az = Az’ implies that z — 2’ € ker(A) and y = Az implies that y = A(z — Projiey(4) ). Thus, the
pseudoinverse A" : Hy — H; of A, defined as

AT = A [_elr(A)L oprojim(A),

is a well-defined continuous linear operator, and by construction z* := AT b is a solution to the least
squares problem.

This solution need not be unique; however, it is the unique solution of minimal norm because
x — z* € ker(A) for any solution z, so ||z||2 = ||z — z*||* + ||=*||? > ||z*||* with equality if and only if
x=zx".

It is straightforward to verify that:
o At = A~1if Ais bijective
e im(A") = ker(A)*, ker(AT) = im(A4)*
o AAT = PTOjim 4, ATA = Projim(4+) (and in fact, these characterize the pseudoinverse)
° (A+)+ — A
o (AT =(4")
o AT =(A*A)TA* = A*(AA")T
In the finite-dimensional case, if A € C™*™ has full column rank, then A™ = (A*A)~1 A* by the identities

above; similarly, if it has full row rank, then A" = A*(AA*)_l. More generally, if UsV*isa compact SVD
of A (thatis, ¥ is7™ X 7, where 7 = rank(A)), then A" = Ve-lU*,

1. Note that this implies that A* also has closed image, so im(A)* = ker(A4*) andker(A4)" = im(A*) = im(4*). &
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