Projections and least squares problems

Nicholas Hu · Last updated on 2025-02-22

Projections

Let H be a Hilbert space and $Y\subseteq H.$ The **(orthogonal) projection operator** onto Y is defined for $x\in H$ by

$$\mathrm{proj}_Y(x) := rgmin_{y\in Y} rac{1}{2} \|y-x\|^2.$$

Hilbert projection theorem (first projection theorem)

If Y is nonempty, closed, and convex, then $\operatorname{proj}_Y(x)$ is a singleton (so $\operatorname{proj}_Y: H \to Y$ is well-defined).

Proof. Let $(y_n)_{n=1}^{\infty} \subseteq Y$ be such that $d_n := \frac{1}{2} \|y_n - x\|^2 \to d := \inf_{y \in Y} \frac{1}{2} \|y - x\|^2$. By the parallelogram identity,

$$\left\| rac{y_m+y_n}{2} - x
ight\|^2 + \left\| rac{y_m-y_n}{2}
ight\|^2 = 2 \left\| rac{y_m-x}{2}
ight\|^2 + 2 \left\| rac{y_n-x}{2}
ight\|^2 = d_m + d_n$$

where $\|\frac{y_m+y_n}{2} - x\|^2 \ge 2d$ by convexity. Taking $m, n \to \infty$ shows that (y_n) is Cauchy and therefore convergent to some $y \in Y$ with $\frac{1}{2} \|y - x\|^2 = d$. Moreover, if $y' \in Y$ is another minimizer, replacing y_m, y_n by y, y' above shows that y = y'.

Recall that the **polar cone** of Y is $Y^{\circ} := \{x \in H : \forall y \in Y (\Re(\langle x, y \rangle) \leq 0)\}$ and that the **orthogonal complement** of Y is $Y^{\perp} := \{x \in H : \forall y \in Y (\langle x, y \rangle = 0)\}$; clearly, if Y is a *subspace* of H, then $Y^{\circ} = Y^{\perp}$.

Characterization of projections (second projection theorem)

If Y is nonempty, closed, and convex, then $y = \operatorname{proj}_Y(x)$ if and only if $y \in Y$ and $x - y \in (Y - y)^\circ$.

Proof. If $y = \operatorname{proj}_{Y}(x)$ and $y' \in Y$, then for all $\lambda \in [0,1]$, we have

$$\|y-x\|^2 \leq \|(1-\lambda)y+\lambda y'-x\|^2 = \|y-x\|^2 + 2\lambda \mathfrak{R}(\langle y-x,y'-y
angle) + \lambda^2 \|y'-y\|^2,$$

so $\Re(\langle y - x, y' - y \rangle) \ge 0$. Conversely, if $y, y' \in Y$ and $x - y \in (Y - y)^{\circ}$, then setting $\lambda = 1$ in the inequality above shows that $y = \operatorname{proj}_{Y}(x)$.

Firm nonexpansiveness of the projection operator

If \boldsymbol{Y} is nonempty, closed, and convex, then

$$\|\mathrm{proj}_Y(x) - \mathrm{proj}_Y(x')\|^2 + \|(I - \mathrm{proj}_Y)(x) + (I - \mathrm{proj}_Y)(x')\|^2 \le \|x - x'\|^2$$

Proof. Let $y = \operatorname{proj}_Y(x)$ and $y' = \operatorname{proj}_Y(x')$, and add the inequalities $\Re(\langle x' - y', y - y' \rangle) \leq 0$ and $\Re(\langle x - y, y' - y \rangle) \leq 0$.

In particular, this implies that the projection operator is nonexpansive: $\|\operatorname{proj}_Y(x) - \operatorname{proj}_Y(x')\| \le \|x - x'\|.$

If Y is a *closed subspace* of H, it follows from the above that $y = \operatorname{proj}_Y(x)$ if and only if $y \in Y$ and $x - y \in Y^{\perp}$, and that $\operatorname{proj}_Y : H \to Y$ is a *linear* operator with $\|\operatorname{proj}_Y\| \leq 1$, $\operatorname{im}(\operatorname{proj}_Y) = Y$, and $\operatorname{ker}(\operatorname{proj}_Y) = Y^{\perp}$. In addition, $\operatorname{proj}_{Y^{\perp}} = I - \operatorname{proj}_Y$.

Least squares problems

Let H_1 and H_2 be Hilbert spaces and suppose that $A: H_1 \to H_2$ is a continuous linear operator with closed image.¹ The (linear) least squares problem is that of finding an $x \in H_1$ that minimizes $\frac{1}{2} \|b - Ax\|^2$ for a given $b \in H_2$, or equivalently, that satisfies $Ax = \operatorname{proj}_{\operatorname{im}(A)} b$. Using the fact that $\operatorname{im}(A)^{\perp} = \ker(A^*)$, we can also write this as the normal equation $A^*Ax = A^*b$.

The pseudoinverse

To solve the least squares problem, we observe that $A \upharpoonright_{\ker(A)^{\perp}} : \ker(A)^{\perp} \to \operatorname{im}(A)$ is bijective since Ax = Ax' implies that $x - x' \in \ker(A)$ and y = Ax implies that $y = A(x - \operatorname{proj}_{\ker(A)} x)$. Thus, the **pseudoinverse** $A^+ : H_2 \to H_1$ of A, defined as

$$A^+:=A\restriction^{-1}_{\ker(A)^\perp}\circ\operatorname{proj}_{\operatorname{im}(A)},$$

is a well-defined continuous linear operator, and by construction $x^* := A^+ b$ is a solution to the least squares problem.

This solution need not be unique; however, it is the unique solution of *minimal norm* because $x - x^* \in \ker(A)$ for any solution x, so $\|x\|^2 = \|x - x^*\|^2 + \|x^*\|^2 \ge \|x^*\|^2$ with equality if and only if $x = x^*$.

It is straightforward to verify that:

- $A^+ = A^{-1}$ if A is bijective
- $\operatorname{im}(A^+) = \operatorname{ker}(A)^{\perp}$, $\operatorname{ker}(A^+) = \operatorname{im}(A)^{\perp}$
- $AA^+ = \operatorname{proj}_{\operatorname{im}(A)}, A^+A = \operatorname{proj}_{\operatorname{im}(A^+)}$ (and in fact, these characterize the pseudoinverse)
- $(A^+)^+ = A$
- $(A^*)^+ = (A^+)^*$
- $A^+ = (A^*A)^+A^* = A^*(AA^*)^+$

In the finite-dimensional case, if $A \in \mathbb{C}^{m \times n}$ has full column rank, then $A^+ = (A^*A)^{-1}A^*$ by the identities above; similarly, if it has full row rank, then $A^+ = A^*(AA^*)^{-1}$. More generally, if $\hat{U}\hat{\Sigma}\hat{V}^*$ is a compact SVD of A (that is, $\hat{\Sigma}$ is $r \times r$, where $r = \operatorname{rank}(A)$), then $A^+ = \hat{V}\hat{\Sigma}^{-1}\hat{U}^*$.

^{1.} Note that this implies that A^* also has closed image, so $\operatorname{im}(A)^{\perp} = \operatorname{ker}(A^*)$ and $\operatorname{ker}(A)^{\perp} = \overline{\operatorname{im}(A^*)} = \operatorname{im}(A^*)$.