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Let  be invertible and . A Krylov subspace method for solving  is a projection 
method in which the search subspaces are Krylov subspaces – subspaces of the form 

 for some  and .

Krylov subspaces  
In this section, we regard  as a linear operator on a nontrivial finite-dimensional vector space . Recall 
that the minimal polynomial of  is the monic polynomial  of minimal degree such that  
and that the minimal polynomial of  with respect to  (also known as the -annihilator of ) is the 
monic polynomial  of minimal degree such that . In particular, any polynomial  with 

 must be a multiple of , and similarly for .

.

Proof. If , this is trivial, so suppose that for some  it is true whenever . Let 
 and . Then  is linearly independent and annihilated by . 

Hence  is an -invariant subspace of  with , and 
. ∎

Now suppose that  and let .

 is a basis of . In particular, .

Proof. If , then  for some polynomial  with . Dividing  by , we 
obtain  for some polynomials  and  with , so  and hence 

 spans . Moreover, if , the  must be zero by the 

minimality of . ∎

The -cyclic subspace generated by  is  and is the smallest -invariant 

subspace of  containing . Clearly, , so the cyclic subspace is also the largest Krylov 
subspace generated by .

The following are equivalent:

 is -invariant

Moreover, if , these are equivalent to .

Proof. The equivalence of the first three statements follows from the discussion above, and from the general 
theory of projection methods, we know that  if  is -invariant. On the 
other hand, if , then  for some polynomial  with 

, so  is a polynomial such that . Hence . ∎
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The Arnoldi iteration  
To construct Krylov subspace methods, it is useful to generate well-conditioned bases of such subspaces. 
The Arnoldi iteration produces orthonormal bases of successive Krylov subspaces  ( ) using 

(modified) Gram–Schmidt orthogonalization 1 :

Indeed, if  is an orthonormal basis of  (which it is for ), then initially 
. Subsequently,  is orthogonalized against  and normalized to 

form  (provided that ), which implies that  is an orthonormal set of vectors in 
 and hence a basis thereof.

Thus, if , the Arnoldi iteration will break down in the th iteration (in the sense that 

). For if it did not break down by the th iteration, we would have 

; and if it breaks down (for the first time) in the th iteration, then , which is to say 
that  for some polynomial  with , so .

After completing the Arnoldi iteration, we obtain  for , which we can express in 
matrix form as

We can also view this as a reduction of  to upper Hessenberg form: , where  denotes 
the upper  submatrix of .

GMRES  
The generalized minimal residual (GMRES) method for solving  is an iterative residual projection 

method whose th iterate  lies in , where . Thus, if we apply the 
Arnoldi iteration to , we can write  with  as above and  minimizing 

, where  and 

 (since  has orthonormal columns).
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These least squares problems can be solved by incrementally triangularizing the upper Hessenberg matrices 

. More precisely, if  is an orthogonal matrix such that  is upper 

triangular, then

Hence this matrix can in turn be triangularized using a single Givens rotation  (and  itself can be 
chosen to be a Givens rotation):

Furthermore, if , then  is minimized when 

 and , and we have

We note that GMRES breaks down precisely when the underlying Arnoldi iteration does, which in view of the 
discussion above is equivalent to the approximate solution being exact.

Convergence  

By definition, the residuals in GMRES satisfy

where  denotes the vector space of polynomials with degree at most . This immediately yields the 
following estimate for diagonalizable matrices.

Let  denote the spectrum of . If  for some diagonal matrix , then

The Lanczos iteration  
When  is symmetric, the Arnoldi iteration reduces to what is known as the Lanczos iteration. Since 

, the upper Hessenberg matrix  must also be symmetric and therefore symmetric 
tridiagonal. For this reason, we denote it by  and define  and . With this 
notation, the algorithm is as follows.
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1. In the algorithm below, standard Gram–Schmidt orthogonalization would set  after computing the  instead of updating it inside 

the loop. It is also possible to use Householder reflections. ↩

CG  
The conjugate gradient (CG) method for solving  when  is symmetric positive definite is an iterative 

error projection method whose th iterate  lies in , where . Although 
it is possible to derive CG from the Lanczos iteration just as GMRES was derived from the Arnoldi iteration, a 
simpler and more direct derivation is given in the notes on the conjugate gradient method.

Convergence  

By definition, the errors in CG satisfy

where  denotes the vector space of polynomials with degree at most . Using the fact that  
for some orthogonal matrix  and some diagonal matrix , and that , we 
obtain an estimate analogous to the one for GMRES.

Let  denote the spectrum of . Then

Now suppose that the eigenvalues of  are  with . We know from 
approximation theory that the polynomial  with  that minimizes  is 

, where  is the th Chebyshev polynomial and  maps 

 affinely to . Since  on  and , where , upon 
evaluating  at  we obtain
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