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The conjugate gradient method is an iterative method for solving the linear system Ax = b, where
A € R™™ is symmetric positive-definite.

Let (x,y) 4 := (Az,y) be the inner product defined by A and ||z|| 4 := 1/ (z, ) 4 be the induced norm.

Given an initial guess 20 for the solution z*, the k™ iterate of the method is defined as

¢® = argmin  |jz* — 2|4,
zez(O+1C;(A,r0)

where KCi(A, 7)) is the Krylov subspace span{ A/ () f;é and 79 = b — Az (In other words, the A-
norm of the error is minimized over the k" affine Krylov subspace generated by the initial residual and

translated by the initial guess.) '

Let us abbreviate IC (A, 7,(0)) as ICj, and write 7®) = b — Az® for the residual of the kth iterate. The
iterate () is therefore the A-orthogonal projection of * onto 20 4 ICk, defined by the Galerkin
conditions z® — (0 ¢ Krandz* — z®) 1 4 Kk; we note that the orthogonality condition is equivalent
to r(k) 1 K.

Now suppose that {p(j)}j<k is a basis of Iy, and let P, = [p(o) . p(k—l)} .Then z®) = z(©) 4 ppy®),
where

y® = argmin ||z* — (2% + Pyy)|/4.
yeRk

pr(k) is such that {p(j)}j<k+1 is a basis of ICr 1, we can express the next iterate z* ) inan analogous

= (k)
manner - thatis, z**D = 2@ 4+ P y* ) where Pyq = [Pk p(k)].Writing y ) — {y } for

ar,
some g](k) € RF and a, € R, we see that

¥ — (2 + P y® ) = [2® — (2O 4 Pg®)] + [(z* — 2®)) — ap®]
= P(y® — g0 + [(2* — 2®) — ayp®)].

Thus, if we select p(k) to be A-orthogonal to p(j) for all j < k, then by the Pythagorean theorem,
lz* = (@@ + Peay™ )% = [P® — ") 1% + (2 —2W) — arp®%,

so the solution to the least squares problem for y(’”l) is given recursively by gj(k) = y(k) and
ozkp(k) — projﬁ(k) (x* — :z:(k)). It follows that

where
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This also implies that
pEH) — 20 _ oy Ap®). (R)

To generate A-orthogonal vectors p(j) such that {p(j)}j<k is a basis of ICf, for each k, we notice that

rEHD) |4 Ky = span{p(j)}j<k because r*+1) | KCp.q and AK), C Kjq. As a result, when 71 js A-
orthogonalized against p(k), the resulting vector will automatically be A-orthogonal to p(j) forallj < k+1,
suggesting that we define
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Wherep(o) = r(0 and
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Referring back to the residual equation (R), we can show by induction that the p(j) thus defined will also
constitute bases of successive Krylov subspaces. More precisely, suppose that the solution has not been

Br=— (B)

found by the beginning of the kM iteration, in the sense that 79 # 0 for all j < k. We claim then that
r1) € Ik and that {p(j)}j<k is an A-orthogonal basis of ICj.

Indeed, if 7(0) #£ 0, then (®) € K; = span{r®} and {p®} = {r®} is an A-orthogonal basis of K ;. Now
suppose that the claim holds up to the k™ iteration and that its hypothesis is satisfied at the beginning of
the (k + l)th iteration. Then

r(k) = 'r(k_l) — akflAp(k_l) € Ky + AK, C ’Ck+1 ’
SO
p® =r® g 1pED e Ky + Kj C Ko -

In addition, p*) # 0 because r*¥) | K}, and r(*) £ 0. Hence, by construction, {p(j)}j<k+1 isan A-
orthogonal set of nonzero vectors in /i1 and is moreover a basis thereof, since dim(ICkH) <k+1.

An immediate consequence is that {r(j)}j<k will be an orthogonal basis of Ky, for all such iterations: if (say)
i<j<kthenr® e C IC;, and we know that r@) 1 IC;. Furthermore, the iteration will break down
exactly when rk) ¢ ICi, or equivalently, rk) =, meaning that the solution was attained in the K
iteration.

We can also derive alternative formulas for the scalars a and 3, that reduce the number of inner products
in each iteration. First, using the fact that (%) | Ky = span{p(j)}j<k, we obtain



Hence

In summary,
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1. The choice of this minimization problem can be partially motivated as follows. In view of the fact that * = 2 + A1 and that A Lisa polynomial

in A of degree at mostn — 1, in the k™ iteration of the method, we seek an approximation to the solution of the form z(%) + pr 1(A)r(0), where p;,_q is
a polynomial of degree at most k — 1. This guarantees that the A-norm of the error decreases monotonically and that the solution is found in at most n

iterations (in exact arithmetic). Although the choice of the objective function is not canonical, it turns out that this choice leads to a particularly tractable

method. ]
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