The conjugate gradient method

Nicholas Hu · Last updated on 2025-03-14

The conjugate gradient method is an iterative method for solving the linear system Ax = b, where $A \in \mathbb{R}^{n \times n}$ is symmetric positive-definite.

Let $\langle x, y \rangle_A := \langle Ax, y \rangle$ be the inner product defined by A and $||x||_A := \sqrt{\langle x, x \rangle_A}$ be the induced norm. Given an initial guess $x^{(0)}$ for the solution x^* , the k^{th} iterate of the method is defined as

$$x^{(k)} = rgmin_{x \in x^{(0)} + \mathcal{K}_k(A, r^{(0)})} \|x^* - x\|_A\,,$$

where $\mathcal{K}_k(A, r^{(0)})$ is the Krylov subspace $\operatorname{span}\{A^j r^{(0)}\}_{j=0}^{k-1}$ and $r^{(0)} = b - Ax^{(0)}$. (In other words, the A-norm of the error is minimized over the k^{th} affine Krylov subspace generated by the initial residual and translated by the initial guess.)¹

Let us abbreviate $\mathcal{K}_k(A, r^{(0)})$ as \mathcal{K}_k and write $r^{(k)} = b - Ax^{(k)}$ for the residual of the k^{th} iterate. The iterate $x^{(k)}$ is therefore the A-orthogonal projection of x^* onto $x^{(0)} + \mathcal{K}_k$, defined by the Galerkin conditions $x^{(k)} - x^{(0)} \in \mathcal{K}_k$ and $x^* - x^{(k)} \perp_A \mathcal{K}_k$; we note that the orthogonality condition is equivalent to $r^{(k)} \perp \mathcal{K}_k$.

Now suppose that $\{p^{(j)}\}_{j < k}$ is a basis of \mathcal{K}_k and let $P_k = \begin{bmatrix} p^{(0)} & \cdots & p^{(k-1)} \end{bmatrix}$. Then $x^{(k)} = x^{(0)} + P_k y^{(k)}$, where

$$y^{(k)} = rgmin_{y \in \mathbb{R}^k} \|x^* - (x^{(0)} + P_k y)\|_A \, .$$

If $p^{(k)}$ is such that $\{p^{(j)}\}_{j < k+1}$ is a basis of \mathcal{K}_{k+1} , we can express the next iterate $x^{(k+1)}$ in an analogous manner – that is, $x^{(k+1)} = x^{(0)} + P_{k+1}y^{(k+1)}$, where $P_{k+1} = \begin{bmatrix} P_k & p^{(k)} \end{bmatrix}$. Writing $y^{(k+1)} = \begin{bmatrix} \tilde{y}^{(k)} \\ \alpha_k \end{bmatrix}$ for some $\tilde{y}^{(k)} \in \mathbb{R}^k$ and $\alpha_k \in \mathbb{R}$, we see that

$$egin{aligned} x^* - (x^{(0)} + P_{k+1}y^{(k+1)}) &= [x^{(k)} - (x^{(0)} + P_k ilde y^{(k)})] + [(x^* - x^{(k)}) - lpha_k p^{(k)}] \ &= P_k(y^{(k)} - ilde y^{(k)}) + [(x^* - x^{(k)}) - lpha_k p^{(k)}] \,. \end{aligned}$$

Thus, if we select $p^{(k)}$ to be A-orthogonal to $p^{(j)}$ for all j < k, then by the Pythagorean theorem,

$$\|x^* - (x^{(0)} + P_{k+1}y^{(k+1)})\|_A^2 = \|P_k(y^{(k)} - ilde y^{(k)})\|_A^2 + \|(x^* - x^{(k)}) - lpha_k p^{(k)}\|_A^2$$

so the solution to the least squares problem for $y^{(k+1)}$ is given recursively by $\tilde{y}^{(k)} = y^{(k)}$ and $\alpha_k p^{(k)} = \operatorname{proj}_{p^{(k)}}^A(x^* - x^{(k)})$. It follows that

$$egin{aligned} x^{(k+1)} &= x^{(0)} + P_k y^{(k)} + lpha_k p^{(k)} \ &= x^{(k)} + lpha_k p^{(k)}, \end{aligned}$$

where

$$\begin{aligned} \alpha_k &= \frac{\langle x^* - x^{(k)}, p^{(k)} \rangle_A}{\langle p^{(k)}, p^{(k)} \rangle_A} \\ &= \frac{\langle r^{(k)}, p^{(k)} \rangle}{\langle p^{(k)}, p^{(k)} \rangle_A}. \end{aligned}$$
(A)

This also implies that

$$r^{(k+1)} = r^{(k)} - \alpha_k A p^{(k)}.$$
 (R)

To generate A-orthogonal vectors $p^{(j)}$ such that $\{p^{(j)}\}_{j < k}$ is a basis of \mathcal{K}_k for each k, we notice that $r^{(k+1)} \perp_A \mathcal{K}_k = \operatorname{span}\{p^{(j)}\}_{j < k}$ because $r^{(k+1)} \perp \mathcal{K}_{k+1}$ and $A\mathcal{K}_k \subseteq \mathcal{K}_{k+1}$. As a result, when $r^{(k+1)}$ is A-orthogonalized against $p^{(k)}$, the resulting vector will automatically be A-orthogonal to $p^{(j)}$ for all j < k+1, suggesting that we define

$$egin{aligned} p^{(k+1)} &= r^{(k+1)} - \operatorname{proj}_{p^{(k)}}^A r^{(k+1)} \ &= r^{(k+1)} + eta_k p^{(k)}, \end{aligned}$$

where $p^{\left(0
ight)}=r^{\left(0
ight)}$ and

$$eta_k = -rac{\langle r^{(k+1)}, p^{(k)}
angle_A}{\langle p^{(k)}, p^{(k)}
angle_A} \,.$$
 (B)

Referring back to the residual equation (**R**), we can show by induction that the $p^{(j)}$ thus defined will also constitute bases of successive Krylov subspaces. More precisely, suppose that the solution has not been found by the beginning of the k^{th} iteration, in the sense that $r^{(j)} \neq 0$ for all j < k. We claim then that $r^{(k-1)} \in \mathcal{K}_k$ and that $\{p^{(j)}\}_{j < k}$ is an A-orthogonal basis of \mathcal{K}_k .

Indeed, if $r^{(0)} \neq 0$, then $r^{(0)} \in \mathcal{K}_1 = \operatorname{span}\{r^{(0)}\}$ and $\{p^{(0)}\} = \{r^{(0)}\}$ is an A-orthogonal basis of \mathcal{K}_1 . Now suppose that the claim holds up to the k^{th} iteration and that its hypothesis is satisfied at the beginning of the $(k+1)^{\text{th}}$ iteration. Then

$$r^{(k)} = r^{(k-1)} - lpha_{k-1}Ap^{(k-1)} \in \mathcal{K}_k + A\mathcal{K}_k \subseteq \mathcal{K}_{k+1}$$
 ,

SO

 $p^{(k)}=r^{(k)}+eta_{k-1}p^{(k-1)}\in\mathcal{K}_{k+1}+\mathcal{K}_k\subseteq\mathcal{K}_{k+1}\,.$

In addition, $p^{(k)} \neq 0$ because $r^{(k)} \perp \mathcal{K}_k$ and $r^{(k)} \neq 0$. Hence, by construction, $\{p^{(j)}\}_{j < k+1}$ is an A-orthogonal set of nonzero vectors in \mathcal{K}_{k+1} and is moreover a basis thereof, since $\dim(\mathcal{K}_{k+1}) \leq k+1$.

An immediate consequence is that $\{r^{(j)}\}_{j < k}$ will be an orthogonal basis of \mathcal{K}_k for all such iterations: if (say) i < j < k, then $r^{(i)} \in \mathcal{K}_{i+1} \subseteq \mathcal{K}_j$, and we know that $r^{(j)} \perp \mathcal{K}_j$. Furthermore, the iteration will break down exactly when $r^{(k)} \in \mathcal{K}_k$, or equivalently, $r^{(k)} = 0$, meaning that the solution was attained in the k^{th} iteration.

We can also derive alternative formulas for the scalars α_k and β_k that reduce the number of inner products in each iteration. First, using the fact that $r^{(k)} \perp \mathcal{K}_k = \operatorname{span}\{p^{(j)}\}_{j \le k}$, we obtain

$$\begin{aligned}
\alpha_{k} &= \frac{\langle r^{(k)}, p^{(k)} \rangle_{A}}{\langle p^{(k)}, p^{(k)} \rangle_{A}} \\
&= \frac{\langle r^{(k)}, r^{(k)} + \beta_{k-1} p^{(k-1)} \rangle}{\langle p^{(k)}, p^{(k)} \rangle_{A}} \\
&= \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle p^{(k)}, p^{(k)} \rangle_{A}}.
\end{aligned} \tag{A}$$

Hence

$$\beta_{k} = -\frac{\langle r^{(k+1)}, p^{(k)} \rangle_{A}}{\langle p^{(k)}, p^{(k)} \rangle_{A}}
= -\alpha_{k} \frac{\langle r^{(k+1)}, p^{(k)} \rangle_{A}}{\langle r^{(k)}, r^{(k)} \rangle}
= \frac{\langle r^{(k+1)}, r^{(k+1)} - r^{(k)} \rangle}{\langle r^{(k)}, r^{(k)} \rangle}
= \frac{\langle r^{(k+1)}, r^{(k+1)} \rangle}{\langle r^{(k)}, r^{(k)} \rangle}.$$
(B)

In summary,

1. The choice of this minimization problem can be partially motivated as follows. In view of the fact that $x^* = x^{(0)} + A^{-1}r^{(0)}$ and that A^{-1} is a polynomial in A of degree at most n - 1, in the k^{th} iteration of the method, we seek an approximation to the solution of the form $x^{(0)} + p_{k-1}(A)r^{(0)}$, where p_{k-1} is a polynomial of degree at most k - 1. This guarantees that the A-norm of the error decreases monotonically and that the solution is found in at most n iterations (in exact arithmetic). Although the choice of the objective function is not canonical, it turns out that this choice leads to a particularly tractable method.