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The conjugate gradient method is an iterative method for solving the linear system , where 
 is symmetric positive-definite.

Let  be the inner product defined by  and  be the induced 

norm. Given an initial guess  for the solution , the th iterate of the method is selected such 
that

where  is the Krylov subspace  and . (In other words, 

the -norm of the error is minimized over the th affine Krylov subspace generated by the initial 

residual and translated by the initial guess.) 1

Let us abbreviate  as  and write  for the residual of the th iterate. 
The iterate  is therefore the -orthogonal projection of  onto , defined by the 
Galerkin conditions  and . In particular, the orthogonality 
condition implies that

where the latter holds since .

If  is a basis for  and , we have

If, in addition, the  are chosen to be -orthogonal, the matrix  (the Gram matrix of the 
 with respect to the -inner product) becomes a diagonal matrix , and a particularly simple 

recurrence can be found for the . Namely,

where
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This also implies that

In order to generate such a basis, we employ Gram–Schmidt orthogonalization (with respect to the -
inner product). However, instead of orthogonalizing the vectors , we will orthogonalize the 
successive residuals . We claim that the resulting vectors  will still constitute bases of the 

Krylov subspaces. 2

More precisely, suppose that the solution has not been found by the end of the th iteration, in the 
sense that  for all , and that  was generated by orthogonalizing  against  for 
each . We claim then that  is a basis for  (and hence that  is an -
orthogonal basis for ).

Indeed, if , then  is a basis for . Now suppose that the claim holds for 

the th iteration and that its hypotheses are satisfied after the th iteration. Then

and  since  and . Hence 
. On the other hand,

where , so all the subspaces (and dimensions) above must be equal.

An immediate consequence of this choice is that the residuals will be orthogonal: if (say) , then 
, and we know that .

It remains to derive a recurrence for the . In view of the fact that , 
we find that

where

This completes the mathematical derivation of the method. 

The formulas for the scalars  and  can be further simplified (computation-wise):



1. The choice of this minimization problem can be partially motivated as follows. In view of the fact that   and that   is a 

polynomial in   of degree at most  , in the  th iteration of the method, we seek an approximation to the solution of the form 
 , where   is a polynomial of degree at most  . This guarantees that the  -norm of the error decreases monotonically 

and that the solution is found in at most   iterations (in exact arithmetic). Although the choice of the objective function is not canonical, it turns 
out that this choice leads to a particularly tractable method.  ↩

2. The computation of the residual in each iteration furnishes a useful measure of progress towards the solution (namely, the norm of the 
residual) at the cost of one matrix-vector multiplication. At the same time, since , it is inductively plausible that the sets 

 would constitute bases of successive Krylov subspaces and that the  could be generated ‘online’ from the , so to speak. 
Importantly, no other matrix-vector multiplications would be needed in each iteration.  ↩

since  and  by definition. Moreover, 
 as , so

Finally,

In summary,
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