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The conjugate gradient method is an iterative method for solving the linear system Ax = b, where
A € R™™is symmetric positive-definite.

Let (x,y) 4 = (Az,y) be the inner product defined by A and ||z|| 4 = +/(z, x) 4 be the induced

norm. Given an initial guess 2O for the solution z*, the k" iterate of the method is selected such
that

¢® = argmin |lz* — 2|4,
2z O+ (A,r0)
where (A4, 7)) is the Krylov subspace span{ A7r(¥) ;‘.’;é and 7 = b — Az (In other words,
the A-norm of the error is minimized over the k" affine Krylov subspace generated by the initial

residual and translated by the initial guess.)

Let us abbreviate K,(A4,7()) as Ky and write 7*) = b — Az ™) for the residual of the &t iterate.
The iterate ¥ is therefore the A-orthogonal projection of z* onto 20 4 ICk, defined by the
Galerkin conditions z®) — (0 € [}, and z* — 2®) L 4 Cj. In particular, the orthogonality
condition implies that

r® 1Ky,
r® 14 Kia,
where the latter holds since AKC;,_1 C ICy.
If {p\)} ;<1 is a basis for Ky and P}, = [p©@ ... p-1], we have
e® =20 1 p(PAP) P (O,

If, in addition, the p(j) are chosen to be A-orthogonal, the matrix PkTAPk (the Gram matrix of the
p(j) with respect to the A-inner product) becomes a diagonal matrix Dy, and a particularly simple
recurrence can be found for the z(®. Namely,
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This also implies that
PR — (k) akAp(k). (R)

In order to generate such a basis, we employ Gram-Schmidt orthogonalization (with respect to the A-
inner product). However, instead of orthogonalizing the vectors Air(©), we will orthogonalize the
successive residuals 7). We claim that the resulting vectors p(j) will still constitute bases of the

Krylov subspaces. 2

More precisely, suppose that the solution has not been found by the end of the k" iteration, in the
sense that () = O0forall j < k, and that p(j) was generated by orthogonalizing r) against p(i) for
eachi < j < k. We claim then that {r())} ;- is a basis for K111 (and hence that {p()} ;< is an A-
orthogonal basis for Cg1).

Indeed, if 7(*) 2 0, then {r(©} is a basis for K; = span{r(®)}. Now suppose that the claim holds for
the k" iteration and that its hypotheses are satisfied after the (k + 1)t iteration. Then
span{r"} .1 = span{r¥},c; + span{r+1}
= K11 + span{r*t1}
and (1) ¢ 1Cp 1y since 7B+ | [0y 1 and #(FF1) £ 0. Hence

dim(span{r(} ;<4 1) > dim(KCx 1) + 1. On the other hand,

K1+ span{r(k+1)} =Kpi1+ span{r(k) — akAp(k)}
C Kiy1 + (Kps1 + AKy11)
g ’Ck+2’

where dim (KCp2) < dim(KCr41) + 1, so all the subspaces (and dimensions) above must be equal.

An immediate consequence of this choice is that the residuals will be orthogonal: if (say) ¢ < j, then
r(@ € KC;y1 C KCj, and we know that 79 L KC;.

It remains to derive a recurrence for the p{%). In view of the fact that #(*+1) | 4 IC, = span{p)} 4,
we find that

plktt) = k) _ Z (proj;l(j)r(k+1))p(j)
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= (1) — (projh,r(#+1)p®
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where
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This completes the mathematical derivation of the method.

The formulas for the scalars aj and By can be further simplified (computation-wise):
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sincez® — z(® € €}, and p® | 4 span{p},; = Ky by definition. Moreover,
<fp(k),p(k)> = <r(k),fr(k) + /Bk—lp(k_l)> = <r(k),r(k)> as r(k) 1 ’Ck' o)
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Finally,
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In summary,
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1. The choice of this minimization problem can be partially motivated as follows. In view of the fact that * = z© + A1 and that A Visa
polynomial in A of degree at most m — 1, in the k™ iteration of the method, we seek an approximation to the solution of the form

20 4+ pk,l(A)r(o), where py_1 is a polynomial of degree at most k — 1. This guarantees that the A-norm of the error decreases monotonically
and that the solution is found in at most n iterations (in exact arithmetic). Although the choice of the objective function is not canonical, it turns
out that this choice leads to a particularly tractable method. €

2. The computation of the residual in each iteration furnishes a useful measure of progress towards the solution (namely, the norm of the
residual) at the cost of one matrix-vector multiplication. At the same time, since P = p(k) akAp("’), it is inductively plausible that the sets
{r(j)}]-<k would constitute bases of successive Krylov subspaces and that the p(j) could be generated ‘online’ from the r, soto speak.
Importantly, no other matrix-vector multiplications would be needed in each iteration. €
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