
The conjugate gradient method  
Nicholas Hu

The conjugate gradient method is an iterative method for solving the linear system , where 
 is symmetric positive-definite.

Let  be the inner product defined by  and  be the induced 

norm. Given an initial guess  for the solution , the th iterate of the method is selected such 
that

where  is the Krylov subspace  and . (In other words, 

the -norm of the error is minimized over the th affine Krylov subspace generated by the initial 

residual and translated by the initial guess.) 1

Let us abbreviate  as  and write  for the residual of the th iterate. 
The iterate  is therefore the -orthogonal projection of  onto , defined by the 
Galerkin conditions  and . In particular, the orthogonality 
condition implies that

where the latter holds since .

If  is a basis for  and , we have

If, in addition, the  are chosen to be -orthogonal, the matrix  (the Gram matrix of the 
 with respect to the -inner product) becomes a diagonal matrix , and a particularly simple 

recurrence can be found for the . Namely,

where

af://n0


This also implies that

In order to generate such a basis, we employ Gram–Schmidt orthogonalization (with respect to the -
inner product). However, instead of orthogonalizing the vectors , we will orthogonalize the 
successive residuals . We claim that the resulting vectors  will still constitute bases of the 

Krylov subspaces. 2

More precisely, suppose that the solution has not been found by the end of the th iteration, in the 
sense that  for all , and that  was generated by orthogonalizing  against  for 
each . We claim then that  is a basis for  (and hence that  is an -
orthogonal basis for ).

Indeed, if , then  is a basis for . Now suppose that the claim holds for 

the th iteration and that its hypotheses are satisfied after the th iteration. Then

and  since  and . Hence 
. On the other hand,

where , so all the subspaces (and dimensions) above must be equal.

An immediate consequence of this choice is that the residuals will be orthogonal: if (say) , then 
, and we know that .

It remains to derive a recurrence for the . In view of the fact that , 
we find that

where

This completes the mathematical derivation of the method. 

The formulas for the scalars  and  can be further simplified (computation-wise):



1. The choice of this minimization problem can be partially motivated as follows. In view of the fact that ​ and that ​ is a 

polynomial in ​ of degree at most ​, in the ​th iteration of the method, we seek an approximation to the solution of the form 
​, where ​ is a polynomial of degree at most ​. This guarantees that the ​-norm of the error decreases monotonically 

and that the solution is found in at most ​ iterations (in exact arithmetic). Although the choice of the objective function is not canonical, it turns 
out that this choice leads to a particularly tractable method.  ↩

2. The computation of the residual in each iteration furnishes a useful measure of progress towards the solution (namely, the norm of the 
residual) at the cost of one matrix-vector multiplication. At the same time, since , it is inductively plausible that the sets 

 would constitute bases of successive Krylov subspaces and that the  could be generated ‘online’ from the , so to speak. 
Importantly, no other matrix-vector multiplications would be needed in each iteration.  ↩

since  and  by definition. Moreover, 
 as , so

Finally,

In summary,
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