Number systems

Integers

The **integers** are a set \mathbb{Z} with an operation $+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, called **addition**, and an operation $\cdot : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, called **multiplication**, that satisfy the following properties.

For all $a, b, c \in \mathbb{Z}$,

- (A1) (a+b) + c = a + (b+c) [associativity of addition],
- (A2) a + b = b + a [commutativity of addition],
- (A3) there exists an element $0 \in \mathbb{Z}$ such that a + 0 = a [existence of an additive identity],
- (A4) there exists an element $-a \in \mathbb{Z}$ such that a + (-a) = 0 [existence of additive inverses],
- (M1) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ [associativity of multiplication],
- (M2) $a \cdot b = b \cdot a$ [commutativity of multiplication],
- (M3) there exists an element $1 \in \mathbb{Z} \setminus \{0\}$ such that $a \cdot 1 = a$ [existence of a multiplicative identity],
- (D) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ [distributivity of multiplication over addition],
- (Z) if $a \cdot b = 0$, then a = 0 or b = 0 [no nonzero zero divisors].

The **natural numbers** are a set $\mathbb{N} \subseteq \mathbb{Z}$ that satisfy the following properties.

- (N1) $\mathbb{N} + \mathbb{N} \subseteq \mathbb{N}$ [closure under addition],
- (N2) $\mathbb{N} \cdot \mathbb{N} \subseteq \mathbb{N}$ [closure under multiplication],
- (N3) $\mathbb{N} \cap -\mathbb{N} = \{0\}$ [intersection with its negative is $\{0\}$],
- (N4) $\mathbb{N} \cup -\mathbb{N} = \mathbb{Z}$ [union with its negative is \mathbb{Z}].

 $(\text{Here } \mathbb{N} + \mathbb{N} := \{a + b : a \in \mathbb{N} \land b \in \mathbb{N}\}, \ \mathbb{N} \cdot \mathbb{N} := \{a \cdot b : a \in \mathbb{N} \land b \in \mathbb{N}\}, \text{ and } -\mathbb{N} := \{-a : a \in \mathbb{N}\}.$

Order

If we define the relation \leq on \mathbb{Z} as $\{(a, b) \in \mathbb{Z} \times \mathbb{Z} : b - a \in \mathbb{N}\}$ (that is, $a \leq b$ if and only if $b - a \in \mathbb{N}$), then \leq is a **total order** on \mathbb{Z} . That is, for all $a, b, c \in \mathbb{Z}$,

- $a \leq a$ [the relation is **reflexive**],
- if $a \leq b$ and $b \leq a$, then a = b [the relation is **antisymmetric**],
- if $a \leq b$ and $b \leq c$, then $a \leq c$ [the relation is **transitive**],

 $^{{\}rm I\!AT}_{\!E\!}\!X$ template courtesy of the UC Berkeley EECS department.

• $a \leq b$ or $b \leq a$ [the relation is strongly connected].

In addition,

- if $a \leq b$, then $a + c \leq b + c$,
- if $0 \le a$ and $0 \le b$, then $0 \le a \cdot b$.

Finally, we have the following property:

(W) if $S \subseteq \mathbb{N}$ and $S \neq \emptyset$, then there exists an $\ell \in S$ such that $\ell \leq s$ for all $s \in S$ [the relation is a **well-order** on \mathbb{N}].

Absolute value

The **absolute value** on \mathbb{Z} is the function $|\cdot|: \mathbb{Z} \to \mathbb{Z}$ given by

$$|a| := \begin{cases} a & \text{if } a \ge 0, \\ -a & \text{otherwise.} \end{cases}$$

It has the following properties for all $a, b \in \mathbb{Z}$.

- $|a| \ge 0$ [nonnegativity],
- if |a| = 0, then a = 0 [**positive definiteness**],
- $|a \cdot b| = |a| \cdot |b|$ [multiplicativity],
- $|a+b| \le |a|+|b|$ [subadditivity/triangle inequality].

Rational numbers

Let ~ be the relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ such that $(a, b) \sim (c, d)$ if and only if $a \cdot d = b \cdot c$. The **rational numbers** are the set \mathbb{Q} of equivalence classes of this relation.

The operations $+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ and $\cdot: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ given by

$$\begin{split} & [(a,b)] + [(c,d)] := [(a \cdot d + b \cdot c, b \cdot d)], \\ & [(a,b)] \cdot [(c,d)] := [(a \cdot c, b \cdot d)], \end{split}$$

are well-defined and obey axioms (A1)–(A4), (M1)–(M3), and (D) (with \mathbb{Q} in place of \mathbb{Z}). Moreover, we have

(M4) for all $q \in \mathbb{Q} \setminus \{0\}$, there exists an element $r \in \mathbb{Q}$ such that $q \cdot r = 1$ [existence of multiplicative inverses].

Absolute value and order

The **absolute value** on \mathbb{Q} is the function $|\cdot|: \mathbb{Q} \to \mathbb{Q}$ given by

$$|[(a,b)]| := [(|a|,|b|)]$$

It is also well-defined, and the **nonnegative rational numbers** defined as $\mathbb{Q}_{\geq 0} := \{q \in \mathbb{Q} : |q| = q\}$ satisfy axioms (N1)–(N4) (with $\mathbb{Q}_{\geq 0}$ and \mathbb{Q} in place of \mathbb{N} and \mathbb{Z}). The order relation \leq on \mathbb{Q} is then defined as $\{(q, r) \in \mathbb{Q} \times \mathbb{Q} : r - q \in \mathbb{Q}_{\geq 0}\}$.

 $\iota(a) := [(a, 1)]$

Inclusion of integers

The map $\iota : \mathbb{Z} \to \mathbb{Q}$ given by

satisfies

- $\iota(a+b) = \iota(a) + \iota(b),$
- $\iota(a \cdot b) = \iota(a) \cdot \iota(b),$
- $a \leq b$ if and only if $\iota(a) \leq \iota(b)$,
- $\iota(|a|) = |\iota(a)|,$

for all $a, b \in \mathbb{Z}$. Thus, by identifying \mathbb{Z} with $\iota(\mathbb{Z})$, we may regard \mathbb{Z} as a subset of \mathbb{Q} .

Real numbers

Let ~ be the relation on Cauchy sequences in \mathbb{Q} such that $(q_n) \sim (r_n)$ if and only if $q_n - r_n \to 0$. The **real numbers** are the set \mathbb{R} of equivalence classes of this relation.

The operations $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by

$$[(q_n)] + [(r_n)] := [(q_n + r_n)],$$

$$[(q_n)] \cdot [(r_n)] := [(q_n \cdot r_n)],$$

are well-defined and obey axioms (A1)–(A4), (M1)–(M4), and (D) (with \mathbb{R} in place of \mathbb{Z} or \mathbb{Q}).

Absolute value and order

The **absolute value** on \mathbb{R} is the function $|\cdot| : \mathbb{R} \to \mathbb{R}$ given by

$$|[(q_n)]| := [(|q_n|)].$$

It is also well-defined, and the **nonnegative real numbers** defined as $\mathbb{R}_{\geq 0} := \{x \in \mathbb{R} : |x| = x\}$ satisfy axioms (N1)–(N4) (with $\mathbb{R}_{\geq 0}$ and \mathbb{R} in place of \mathbb{N} and \mathbb{Z}). The order relation \leq on \mathbb{R} is then defined as $\{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \in \mathbb{R}_{\geq 0}\}$.

Inclusion of rational numbers

The map $\iota : \mathbb{Q} \to \mathbb{R}$ given by

$$\iota(q) := [(q)_{n=1}^{\infty}]$$

satisfies

• $\iota(q+r) = \iota(q) + \iota(r),$

- $\iota(q \cdot r) = \iota(q) \cdot \iota(r),$
- $q \leq r$ if and only if $\iota(q) \leq \iota(r)$,
- $\iota(|q|) = |\iota(q)|,$

for all $q, r \in \mathbb{Q}$. Thus, by identifying \mathbb{Q} with $\iota(\mathbb{Q})$, we may regard \mathbb{Q} as a subset of \mathbb{R} .