
The Derivative

Def: Let U ✓ R be open. The derivative of f : U ! R at x 2 U is

f 0
(x) := lim

h!0

f(x+ h)� f(x)

h
(if the limit exists).

If f 0
(x) exists, we say that f is di↵erentiable at x; if f is di↵erentiable at

every x 2 U , we say that f is di↵erentiable on U .

Rmk: We will also consider functions defined on closed intervals [a, b] (a < b),
in which case the limits defining f 0

(a) and f 0
(b) only involve points on one side

of a or b.

Prop: If f is di↵erentiable at x, then it is continuous at x.

Pf:

f(x+ h)� f(x) =
f(x+ h)� f(x)

h
· h �!

h!0
f 0
(x) · 0 = 0.

Notation:

C(U) = C0
(U) is the set of all continuous functions on U.

Ck
(U) (k � 1) is the set of all di↵erentiable functions on U with derivative in Ck�1

(U).

Ex: C1
(U) ✓ C0

(U), C2
(U) ✓ C1

(U), etc. Ck
(U) ✓ Ck�1

(U).

For example:

f(x) = x2, f 0
(x) = 2x so f 2 C1

(U).

f 00
(x) = 2 so f 2 C2

(U).

In fact, f 2 Ck
(U) for all k � 0.

Prop: If f and g are di↵erentiable at x, then:

(a) if f(x) ⌘ c for some c 2 R, then f 0
(x) ⌘ 0.

(b) (f + g)0(x) = f 0
(x) + g0(x).

(c) (fg)0(x) = f 0
(x)g(x) + f(x)g0(x).

(d)

⇣
1
g

⌘0
(x) = � g0(x)

g(x)2 if g(x) 6= 0.

Proof:

(a) Trivial.

(b)

(f + g)(x+ h)� (f + g)(x)

h
=

f(x+ h)� f(x)

h
+
g(x+ h)� g(x)

h
�! f 0

(x)+g0(x).

1









































































































(c) The derivative of a function h(x) at a point x is defined as:

h0
(x) = lim

h!0

h(x+ h)� h(x)

h

We will use this definition to compute the derivative of the product f(x)g(x).

Let h(x) = f(x)g(x). The derivative of h(x) at x is:

h0
(x) = lim

�x!0

f(x+�x)g(x+�x)� f(x)g(x)

�x

h0
(x) = lim

�x!0

f(x+�x)g(x+�x)� f(x+�x)g(x) + f(x+�x)g(x)� f(x)g(x)

�x

Now the expression in the numerator is split into two parts:

h0
(x) = lim

�x!0

"
f(x+�x)

�
g(x+�x)� g(x)

�

�x
+

�
f(x+�x)� f(x)

�
g(x)

�x

#

First part:

lim
�x!0

f(x+�x)
⇥
g(x+�x)� g(x)

⇤

�x
= f(x) · g0(x)

As �x ! 0, f(x+�x) ! f(x) and the expression
g(x+�x)�g(x)

�x ! g0(x).

Second part:

lim
�x!0

⇥
f(x+�x)� f(x)

⇤
g(x)

�x
= f 0

(x) · g(x)

because
f(x+�x)�f(x)

�x ! f 0
(x), and g(x) is constant with respect to �x.

Now, we combine both parts:

h0
(x) = f 0

(x)g(x) + f(x)g0(x)

So, we can have:

(fg)0(x) = f 0
(x)g(x) + f(x)g0(x)

(d)

1
g(x+h) �

1
g(x)

h
=

g(x)� g(x+ h)

h
· 1

g(x+ h)g(x)
�! �g0(x) · 1

g(x)2

where g(x + h) ! g(x) because g is continuous at x. and for su�ciently

small h, because g(x) 6= 0, and g is continuous at x, so we can have

g(x+ h)g(x) 6= 0.
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Prop: (Chain rule) If g is di↵erentiable at x and f is di↵erentiable at g(x),
then:

(f � g)0(x) = f 0
(g(x))g0(x)

Pf:

(f � g)(x+ h)� (f � g)(x)
h

=

(
(f�g)(x+h)�(f�g)(x)

g(x+h)�g(x) · g(x+h)�g(x)
h , g(x+ h) 6= g(x)

0 = f 0
(g(x)) · g(x+h)�g(x)

h , g(x+ h) = g(x)

Let h0
:= g(x+ h)� g(x):

=

⇢
f(g(x)+h0)�f(g(x))

h0 , h0 6= 0

f 0
(g(x)), h0

= 0

·g(x+ h)� g(x)

h
�!
h!0

f 0
(g(x)) · g0(x)

because h0 ! 0 as h ! 0 since g is continuous at x.

Def: Let X ✓ R. A function f : X ! R is said to have a local maximum at

x if f(x) � f(y) for all y 2 B�(x) \ X for some � > 0. Similarly, we define a

local minimum.

Thm (Fermat): Let f : [a, b] ! R be a function. If f has a local maximum

or minimum and is di↵erentiable at x 2 (a, b), then f 0
(x) = 0.

Proof: Suppose f has a local maximum at x, and let � > 0 be as in the

definition above. Then for x� � < x0 < x, we have:

f(x)� f(x0
)

x� x0 � 0 so, takingx0 ! x, we get f 0
(x) � 0.

Similarly, for x < x0 < x+ �, we have:

f(x)� f(x0
)

x� x0  0 so, takingx0 ! x, we get f 0
(x)  0.

Thus f 0
(x) = 0. The proof for a local minimum is analogous.

Rmk: The converse is not true, e.g., f(x) = x3
at x = 0.

Thm (Rolle’s Theorem): Let f 2 C([a, b]). If f is di↵erentiable on (a, b) and
f(a) = f(b), then there exists x 2 (a, b) such that f 0

(x) = 0.
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Pf: By the extreme value theorem, f has a (global) maximum and minimum

on [a, b]. If f has a global extremum at x 2 (a, b), then f 0
(x) = 0 by Fermat’s

Theorem. Otherwise, its global extrema are at the endpoints, which means that

f is constant because f(a) = f(b), in which case f 0
(x) = 0 for any x 2 (a, b).

Thm (Mean Value Theorem): Let f 2 C([a, b]). If f is di↵erentiable on

(a, b), then there exists x 2 (a, b) such that:

f 0
(x) =

f(b)� f(a)

b� a

Pf: Let h(t) := f(t)�
h
f(a) + f(b)�f(a)

b�a (t� a)
i
. Then h(a) = h(b) = 0.

By Rolle’s Theorem, there exists x 2 (a, b) such that h0
(x) = 0, which

implies:

f 0
(x)� f(b)� f(a)

b� a
= 0

which is what we wanted to show.
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