5 Differentiation PR 4 due (T, R)
Sep 02 - * The derivative Quiz 5 (W)
Sep 08 * Mean value theorem HW 4 due (F)
* Taylor’s theorem
[Ros13, ss. 28-29, 31;(Rud76, pp. 103-108, 110-111]
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09.03 OH 13:30, MS 6147. Practice/past exams and midterm grades to be released today.

The Derivative
Def: Let U C R be open. The derivative of f : U - R at x € U is

) i T~ @)

lim o (if the limit exists).

If f/(x) exists, we say that f is differentiable at z; if f is differentiable at
every x € U, we say that f is differentiable on U.

Rmk: We will also consider functions defined on closed intervals [a,b] (a < b),
in which case the limits defining f’(a) and f’(b) only involve points on one side
of a or b.

Prop: If f is differentiable at x, then it is continuous at x.

Pf:

fa+m) - f@) = L I@ oo

Notation:
C(U) = C°(U) is the set of all continuous functions on U.
C*(U) (k > 1) is the set of all differentiable functions on U with derivative in C*~1(U).
Ex: CL(U) Cc C°(U), C*(U)cC CHU), etc. CHU)CCFLU).
For example:
f(x)=2% f(x)=22 so feCYU).

f'(x)=2 so feC*U).
In fact, f € C*(U) for all k > 0.
Prop: If f and g are differentiable at x, then:

(a) if f(x) = ¢ for some ¢ € R, then f'(z) =0.
(b) (f +9)(z) = f'(z) + ' (x).
(c) (fg)'(x) = f(x)g(x) + f(x)g'(z).
(@ (1) @) = - 28] it g(w) £ 0.
Proof:

(a) Trivial.
(b)

(f+9)@+h) = (f+g9)(x) flz+h)—f(x) glz+h)—g) ) ,
Y = 3 + 3 — f(z)+g'(v).




(¢) The derivative of a function h(x) at a point z is defined as:
. h(z+h)—h(x)
() = lim
i) = f h

We will use this definition to compute the derivative of the product f(z)g(x).
Let h(z) = f(z)g(x). The derivative of h(z) at x is:

B(z) = lim flz+ Az)g(z + Az) — f(z + Az)g(z) + f(z + Az)g(z) — f(x)g(z)

Az—0 Az

Now the expression in the numerator is split into two parts:

fz+ Az)(g(z + Az) — g(2)) N (f(z+ Ax) — f(=))g(x)

W(z) = Algicrgo Ax Az
First part:
+A + Ax) — ,
i, LSO SN0 ).

As Az — 0, f(z + Azx) — f(x) and the expression W = g'(z).
Second part:

i @+ 22) = f(@)]g(a)

Az—0 Az

= f'(z) - g(x)

W — f'(z), and g(z) is constant with respect to Ax.

Now, we combine both parts:

W(z) = f'(z)g(x) + f(2)g'(z)

because

So, we can have:

(f9)'(z) = f'(x)g(z) + f(x)g (x)

aeth) g _ 9(@) —glz+h) 1 ()
Pk s@rhe@ 7Y g

where g(z + h) — g(x) because g is continuous at . and for sufficiently
small h, because g(x) # 0, and g is continuous at x, so we can have

g(z +h)g(x) # 0.




Prop: (Chain rule) If ¢ is differentiable at x and f is differentiable at g(x),

then:
(fog)(z)=f'(g9(x)g'(x)
Pf:

Uogxw++w—<fomcw::{<ﬂ2gig—gx“ﬂ-g“+2—“@, glw + 1) # g(a)
h

0= f/(g(x)) - Lethl=o@) g(z +h) = g(z)

Let A’ :=g(xz + h) — g(x):

_{ .f(y(w)+hh2—f(g(x)), W #0

(o(a), W =0
SEEDZID o)) - f

because h' — 0 as h — 0 since g is continuous at x.

Def: Let X C R. A function f: X — R is said to have a local maximum at
x if f(z) > f(y) for all y € Bs(x) N X for some § > 0. Similarly, we define a
local minimum.

Thm (Fermat): Let f : [a,b] — R be a function. If f has a local maximum
or minimum and is differentiable at = € (a,b), then f/(z) = 0.

Proof: Suppose f has a local maximum at z, and let § > 0 be as in the
definition above. Then for x — § < 2’ < x, we have:

f(x) = f(@)

= >0 so, takingz’ — x, we get f'(z) > 0.
r—x

Similarly, for x < 2’ < x + ¢, we have:

flx) — f(@)

= <0 so, takingz’ — x, we get f'(z) <0.
"

Thus f/(z) = 0. The proof for a local minimum is analogous.

Rmk: The converse is not true, e.g., f(z) = 23 at x = 0.

Thm (Rolle’s Theorem): Let f € C([a,b]). If f is differentiable on (a,b) and
f(a) = f(b), then there exists x € (a,b) such that f'(z) = 0.
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Pf: By the extreme value theorem, f has a (global) maximum and minimum
on [a,b]. If f has a global extremum at = € (a,b), then f'(z) = 0 by Fermat’s
Theorem. Otherwise, its global extrema are at the endpoints, which means that
f is constant because f(a) = f(b), in which case f'(x) =0 for any = € (a,b).

Thm (Mean Value Theorem): Let f € C([a,b]). If f is differentiable on
(a,b), then there exists x € (a,b) such that:

ch, {-cb)ﬁ
) f(b) — f(a)
(o Fro))
Pf: Let h(t) := f(t) — [f(a) + LO=S@) a)]. Then h(a) = h(b) = 0.

By Rolle’s Theorem, there exists € (a,b) such that h'(z) = 0, which

implies:
f(b) - f(a)

b—a =0

fi(z) =

which is what we wanted to show.



