Review from Last Class:

Definition

Let E C R and suppose f : F — R is a function and p € E’. The
statement lim,_,, f(z) = ¢ means that for all £ > 0, there exists a § > 0
such that for all x € (Bs(p) \ {p}) N E, we have f(z) € B:(q), i.e.,
O<|z—p|<dzelE = |f(z)—¢q|l<e.

Proposition

lim,_,, f(z) = ¢ if and only if for every sequence (p,).~, C E \ {p}
converging to p, we have f(p,) — f(q).
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Proof:

First, suppose lim,_,, f(z) = ¢, and let (p,)p2; € E \ {p} be a sequence with
P, — p. Given any e > 0, there exists a § > 0 such that |f(z) — ¢| < e whenever
O<|z—p|<dandz € E.

Furthermore, there exists an N > 1 such that 0 < |p, —p| < 1 whenever n > N.
Thus, if n > N, we have 0 < |p, — p| < 4, so |f(pn) — q| < €, which shows that
f(pn) = q.

Converse (Exercise): Hint (Show that if lim,_,, f(z) # ¢, then there exists
a sequence (p,)r, € E\ {p} with p, — p such that f(p,) # q).

Proof: Suppose lim,_,, f(z) # gq. We will show that there exists a sequence
(pn)nz1 € B\ {p} such that p, — p and f(pn) / ¢

By the definition of a limit, if lim,_,, f(z) = ¢, then for every ¢ > 0, there
exists a & > 0 such that for all z € (E'\ {p}) N Bs(p), we have |f(z) — q| < e.

Since lim,_,, f(z) # g, there must exist some £y > 0 such that for every ¢ > 0,
there exists some = € (E \ {p}) N Bs(p) with |f(x) — ¢q| > 9. For each n € N,
let 6 = L.

By our assumption, for each n, there exists p, € (E \ {p}) N B1(p) such that
|f(Pn) — al = €0.

By construction, p, € B1(p), which means |p, — p| < % Thus, as n — 0o, we
have p,, — p. Since |f(pn) — q| > &0 for every n, the sequence (f(p,)) does not
converge to q.

If it did, there would exist an N € N such that for all n > N, |f(pn) —q| < %,
which contradicts the fact that |f(p,) — q| > €0 > 0. Therefore, we have con-
structed a sequence (p,,)°; C E \ {p} such that p, — p and f(p,) 4 ¢.



Thus, if lim,_,, f(z) # ¢, there exists a sequence (p,)52; C E \ {p} with
pn, — p such that f(p,) 4 q.

Example from Tuesday’s Lecture:
limz?> =4 (E=R)
r—2

If (2,)2; € R\ {2} and #,, — 2, then by the limit laws, 22 — 4. Limit laws
thereby transfer to functions. For example, if lim,_,, f(z) = ¢ and lim,_,, g(z) =
b, then

lm(f+g)@)=a+b (fig:E—>R peE).
Proof: Let (p,) C E\ {p} with p,, = p. Then f(p,) — a and g(p,) — b. So,
by the limit law, (f + g)(pn) = a + .

Continuous Functions:

Definition

Let E C R and suppose f : E — R is a function and p € E (not E’).

Then f is said to be continuous at p if for all € > 0, there exists a § > 0 such
that for all x € Bs(p) N E, we have:

f(x) € B(f(p))-
Note: Equivalently, if z € (Bs(p) \ {p}) N E, then

f(x) € B(f(p),

because we always have f(p) € B.(f(p)).

If f is continuous at every point of E, we say f is continuous on E.

Observe that if p € ENE’, f is continuous at p if and only if: lim,_,, f(x) = f(p).
p € E' means Bs(p) \ {p} N E # 0 for all 6 > 0.

But what if p € E'\ E’? (These are called isolated points of E.)
Note: If p ¢ E’, it means that there exists a 6 > 0 such that (Bs(p) \{p})NE =

(). In other words, no point in E lies arbitrarily close to p except for p itself. If
f is continuous at every point of E, we say f is continuous on E.



f is always continuous at p because there exists a § > 0 such that:
Bs(p) N E = {p}
and we always have f(p) € B:(f(p)).

Proposition

f is continuous at p € E if and only if for every sequence (p,)3%, C E
with p, — p, we have f(p,) — f(p).
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Theorem

f is continuous on R if and only if

fUF)={x €R: f(x) € F} is closed for all closed sets F C R.

Remark: Equivalently, f~1(G) is open for all open sets G C R because f~1(G)
is open if f71(G¢) = (f~1(G)) is closed. (Note: check this.)

f is continuous on R if and only if f~!(F) is closed for all closed sets
FCR.

Proof:
1. Forward Direction: Suppose f is continuous on R. We want to show that
f7Y(F) is closed for all closed sets F' C R.

Let ' C R be a closed set. To show that f~!(F) is closed, we need to prove
that if (z,,) is a sequence in f~!(F) that converges to some point z € R, then

z e fHF).

Suppose (z,,) € f~1(F) and z,, — x. This means that for each n, x,, € f~1(F),
so f(xz,) € F.

Using the continuity of f: Since f is continuous on R and x,, — x, we have:

flazn) = f(z).

Using the closedness of F: Since F is closed and f(z,) € F for all n, the
limit of the sequence (f(z,)) must also lie in F'. Therefore:

f(z) e F.

Since f(z) € F, we have z € f~}(F). Thus, every limit point of f=1(F) is
contained in f~1(F), proving that f~!(F) is closed.



2. Reverse Direction: Suppose f~!(F) is closed for every closed set F' C R.
We want to show that f is continuous on R.

To prove that f is continuous, we need to show that for every xy € R and
every € > 0, there exists a 6 > 0 such that if [t —x¢| < 4, then | f(x)— f(zo)] < €.

Consider an arbitrary zo € R and any € > 0. The set B.(f(x0)), which is
the open ball centered at f(xq) with radius €, is an open set in R.

The preimage f~(B.(f(z0))) is an open set in R because we assumed that the
preimage of every open set under f is open.

Since w9 € f~1(B(f(x0))), there exists some § > 0 such that the ball Bs(zg) C
F7HB:(f(x0)))-

This means that for all z € Bs(xg), we have f(z) € B:(f(x0)), which is precisely
the definition of continuity at xg.

Since xy was arbitrary, f is continuous on R.

Summary of Key Steps:

- The closedness of F is used to argue that if f(z,) € F for all n and F

is closed, then lim f(z,) = f(z) must also lie in F.
- The continuity of f is used to ensure that f(z,) — f(z) whenever z,, — x.

Equivalence of Continuity and Openness/Closeness

A function f: E — R is continuous on E if and only if:
e For every closed set ' C R, f~1(F) is closed.

e Equivalently, for every open set G C R, f~(G) is open.

Theorem: Compactness of Continuous Functions

Let K C R be compact. If f : K — R is continuous, then f(K) =
{f(z): 2 € K} is compact.

Proof

Suppose {y,} C f(K). For each n, there exists x,, € K such that y, = f(x,).
Since K is compact, the sequence {x,} has a convergent subsequence {z,, } —
x € K. Hence, y,, = f(zn,) — f(x) € f(K). Since f is continuous, this shows
f(K) is compact.



Remark: We say that f: E — R is bounded if f(F) is bounded.

Theorem: Extreme Value Theorem

Let K C R be nonempty and compact. If f : K — R is continuous, then
f is bounded and attains a maximum and minimum on K (i.e., there
exist p,q € K such that

f(p) < f(z) < f(q) forallxe K.
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Proof: From the preceding theorem, we know f(K) is compact. By the Heine-
Borel theorem, f(K) is closed and bounded. Since f(K) is nonempty and
bounded,

m =inf f(K) and M =supf(K) exist (Dedekind completeness of R).

Now there exists a sequence (y,)52; C f(K) such that y, = M (from MT Q3).
Since f(K) is closed, we must have M € f(K).
In other words, there exists a ¢ € K such that

f(qg) = M =sup{f(z):z € K},

meaning f(g) is a maximum.
The proof of the existence of a minimum is similar.

Theorems and Properties of Continuous Functions

Theorem: Operations on Continuous Functions

Let f and g be real-valued functions that are continuous at xzg € R.
Then:

1. f 4+ g is continuous at .
2. fg is continuous at xg.

3. g is continuous at xq if g(zg) # 0.

Proof:
1. Sum of Continuous Functions:
Let f and g be continuous at xg. To show f + g is continuous at x(, take any
sequence (x,) — o.
- Since f and g are continuous at zg:
lim f(zn) = f(zo), lim g(xn) = g(zo).
n—oo

n—roo

- Then:

lim (f(zn) +g(2n)) = lim f(zn)+ lim g(zn) = f(zo) + 9(x0) = (f + 9) (o).

n—oo



Thus, f + g is continuous at zg.

2. Product of Continuous Functions:

Let f and g be continuous at . Consider the sequence (x,) — xg.
- Since f and g are continuous:

lim f(z,) = fao), lim g(an) = gla0):

- Then:
Jim (f(zn)g(2n)) = lim f(zn) - lim g(zn) = f(20) - g(z0) = (fg)(w0)-

Hence, fg is continuous at z.

3. Quotient of Continuous Functions:

Assume g(z¢) # 0 and f and g are continuous at zg. Consider (z,) — xo.
- Then:

lim g(a,) = glao) # 0.

n— oo

- Thus, for sufficiently large n, g(z,) # 0 and:
f(wn) o limy, o0 f(zn) _ f(zo) _ <£) (20).

n—00 g(xn) B lim;, oo g(xn) g(xO)

Therefore, £ is continuous at xg.

Theorem: Composition of Continuous Functions

If f is continuous at z¢ and g is continuous at f(z), then the composite
function g o f is continuous at z.

Explanation of dom(f) and dom(g):
The terms dom(f) and dom(g) refer to the domains of the functions f and g,
respectively:

dom(f) is the set of all = € R for which the function f(z) is defined.

dom(g) is the set of all y € R for which the function ¢(y) is defined.

Proof:

We are given that zo € dom(f) and f(xg) € dom(g). Let (z,) be a se-
quence in dom(f) such that lim, ,- z, = xg. Since f is continuous at z,
we have lim,,_, f(z,) = f(x0). Since g is continuous at f(zg), we also have
limy, 00 g(f(zn)) = g(f(z0)). Therefore, g o f is continuous at zg.

In the proof, the domains are crucial because, for the composition g o f to
be defined and continuous at a point z¢ € R, we require: 1. ¢ € dom(f), so
f(zo) is defined. 2. f(xg) € dom(g), so g(f(xo)) is defined.



Examples Illustrating Continuity and Discontinuity

Let f(x) = 202 + 1. Prove that f is continuous on R using both defini-
tions:

e Using the sequential definition.

e Using the e-§ definition.

Solution:
1. Using the Sequential Definition:
Let (z,,) be a sequence such that lim,,_, . &, = Zg.
lim f(z,)= lim (222 +1) =2 lim 22 + 1 =223 + 1 = f(20).
n—oo n—oo n—oo
Thus, lim, o f(z,) = f(x0), proving that f is continuous at every z € R.
2. Using the e-§ Definition:

To show that f(z) = 222 + 1 is continuous at any x¢ € R, we need to find § > 0
such that for all z with |z — x| < d, we have |f(z) — f(zo)| < e.

|[f(@) = f(zo)| = |22 +1 — (225 + 1)| = 227 — 22| = 2| — xo||z + |-
Choose § = min (1, m) Then, if |z — z¢| < §, we have:

|f(x) = f(zo)| <e

Explanation of the Choice of §:

The choice of § = min(1, m) ensures that f(z) = 222 + 1 is continuous at

any xo € R:

1. The term min(1,-) restricts § to be at most 1, controlling the size of the

neighborhood around xg.

2. The term zr—*—5 ensures that when |z — x| < J, we have:
|[f(2) = f(zo)| = 2|z — mol|z + mo| <,

because |z + xo| < |z — zo| + 2|zo] < 1+ 2|zo| when |z — o] < 1.
Thus, this choice guarantees both |z — z¢| < ¢ and |f(x) — f(x0)| < €, meeting
the criteria for continuity.



