
Review from Last Class:

Definition

Let E ⊆ R and suppose f : E → R is a function and p ∈ E′. The
statement limx→p f(x) = q means that for all ε > 0, there exists a δ > 0
such that for all x ∈ (Bδ(p) \ {p}) ∩ E, we have f(x) ∈ Bε(q), i.e.,
0 < |x− p| < δ, x ∈ E =⇒ |f(x)− q| < ε.

Proposition

limx→p f(x) = q if and only if for every sequence (pn)
∞
n=1 ⊆ E \ {p}

converging to p, we have f(pn) → f(q).

Proof:

First, suppose limx→p f(x) = q, and let (pn)
∞
n=1 ⊆ E \ {p} be a sequence with

pn → p. Given any ϵ > 0, there exists a δ > 0 such that |f(x)− q| < ϵ whenever
0 < |x− p| < δ and x ∈ E.
Furthermore, there exists an N ≥ 1 such that 0 < |pn−p| < 1 whenever n ≥ N .
Thus, if n ≥ N , we have 0 < |pn − p| < δ, so |f(pn)− q| < ϵ, which shows that
f(pn) → q.
Converse (Exercise): Hint (Show that if limx→p f(x) ̸= q, then there exists
a sequence (pn)

∞
n=1 ⊆ E \ {p} with pn → p such that f(pn) ̸→ q).

Proof: Suppose limx→p f(x) ̸= q. We will show that there exists a sequence
(pn)

∞
n=1 ⊆ E \ {p} such that pn → p and f(pn) ̸→ q.

By the definition of a limit, if limx→p f(x) = q, then for every ε > 0, there
exists a δ > 0 such that for all x ∈ (E \ {p}) ∩Bδ(p), we have |f(x)− q| < ε.

Since limx→p f(x) ̸= q, there must exist some ε0 > 0 such that for every δ > 0,
there exists some x ∈ (E \ {p}) ∩ Bδ(p) with |f(x) − q| ≥ ε0. For each n ∈ N,
let δ = 1

n .

By our assumption, for each n, there exists pn ∈ (E \ {p}) ∩ B 1
n
(p) such that

|f(pn)− q| ≥ ε0.

By construction, pn ∈ B 1
n
(p), which means |pn − p| < 1

n . Thus, as n → ∞, we

have pn → p. Since |f(pn)− q| ≥ ε0 for every n, the sequence (f(pn)) does not
converge to q.

If it did, there would exist an N ∈ N such that for all n ≥ N , |f(pn)− q| < ε0
2 ,

which contradicts the fact that |f(pn) − q| ≥ ε0 > 0. Therefore, we have con-
structed a sequence (pn)

∞
n=1 ⊆ E \ {p} such that pn → p and f(pn) ̸→ q.
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Thus, if limx→p f(x) ̸= q, there exists a sequence (pn)
∞
n=1 ⊆ E \ {p} with

pn → p such that f(pn) ̸→ q.

Example from Tuesday’s Lecture:

lim
x→2

x2 = 4 (E = R)

If (xn)
∞
n=1 ⊆ R \ {2} and xn → 2, then by the limit laws, x2

n → 4. Limit laws
thereby transfer to functions. For example, if limx→p f(x) = a and limx→p g(x) =
b, then

lim
x→p

(f + g)(x) = a+ b (f, g : E → R, p ∈ E′).

Proof: Let (pn) ⊆ E \ {p} with pn → p. Then f(pn) → a and g(pn) → b. So,
by the limit law, (f + g)(pn) → a+ b.

Continuous Functions:

Definition

Let E ⊆ R and suppose f : E → R is a function and p ∈ E (not E′).

Then f is said to be continuous at p if for all ε > 0, there exists a δ > 0 such
that for all x ∈ Bδ(p) ∩ E, we have:

f(x) ∈ Bε(f(p)).

Note: Equivalently, if x ∈ (Bδ(p) \ {p}) ∩ E, then

f(x) ∈ Bε(f(p)),

because we always have f(p) ∈ Bε(f(p)).

If f is continuous at every point of E, we say f is continuous on E.

Observe that if p ∈ E∩E′, f is continuous at p if and only if: limx→p f(x) = f(p).
p ∈ E′ means Bδ(p) \ {p} ∩ E ̸= ∅ for all δ > 0.

But what if p ∈ E \ E′? (These are called isolated points of E.)

Note: If p /∈ E′, it means that there exists a δ > 0 such that (Bδ(p)\{p})∩E =
∅. In other words, no point in E lies arbitrarily close to p except for p itself. If
f is continuous at every point of E, we say f is continuous on E.
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f is always continuous at p because there exists a δ > 0 such that:

Bδ(p) ∩ E = {p}

and we always have f(p) ∈ Bε(f(p)).

Proposition

f is continuous at p ∈ E if and only if for every sequence (pn)
∞
n=1 ⊆ E

with pn → p, we have f(pn) → f(p).

Theorem

f is continuous on R if and only if

f−1(F ) = {x ∈ R : f(x) ∈ F} is closed for all closed sets F ⊆ R.

Remark: Equivalently, f−1(G) is open for all open sets G ⊆ R because f−1(G)
is open if f−1(Gc) = (f−1(G))c is closed. (Note: check this.)

Theorem

f is continuous on R if and only if f−1(F ) is closed for all closed sets
F ⊆ R.

Proof:
1. Forward Direction: Suppose f is continuous on R. We want to show that
f−1(F ) is closed for all closed sets F ⊆ R.

Let F ⊆ R be a closed set. To show that f−1(F ) is closed, we need to prove
that if (xn) is a sequence in f−1(F ) that converges to some point x ∈ R, then
x ∈ f−1(F ).

Suppose (xn) ⊆ f−1(F ) and xn → x. This means that for each n, xn ∈ f−1(F ),
so f(xn) ∈ F .

Using the continuity of f : Since f is continuous on R and xn → x, we have:

f(xn) → f(x).

Using the closedness of F : Since F is closed and f(xn) ∈ F for all n, the
limit of the sequence (f(xn)) must also lie in F . Therefore:

f(x) ∈ F.

Since f(x) ∈ F , we have x ∈ f−1(F ). Thus, every limit point of f−1(F ) is
contained in f−1(F ), proving that f−1(F ) is closed.
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2. Reverse Direction: Suppose f−1(F ) is closed for every closed set F ⊆ R.
We want to show that f is continuous on R.

To prove that f is continuous, we need to show that for every x0 ∈ R and
every ε > 0, there exists a δ > 0 such that if |x−x0| < δ, then |f(x)−f(x0)| < ε.

Consider an arbitrary x0 ∈ R and any ε > 0. The set Bε(f(x0)), which is
the open ball centered at f(x0) with radius ε, is an open set in R.

The preimage f−1(Bε(f(x0))) is an open set in R because we assumed that the
preimage of every open set under f is open.

Since x0 ∈ f−1(Bε(f(x0))), there exists some δ > 0 such that the ball Bδ(x0) ⊆
f−1(Bε(f(x0))).

This means that for all x ∈ Bδ(x0), we have f(x) ∈ Bε(f(x0)), which is precisely
the definition of continuity at x0.

Since x0 was arbitrary, f is continuous on R.

Summary of Key Steps:

- The closedness of F is used to argue that if f(xn) ∈ F for all n and F
is closed, then lim f(xn) = f(x) must also lie in F .
- The continuity of f is used to ensure that f(xn) → f(x) whenever xn → x.

Equivalence of Continuity and Openness/Closeness

A function f : E → R is continuous on E if and only if:

• For every closed set F ⊆ R, f−1(F ) is closed.

• Equivalently, for every open set G ⊆ R, f−1(G) is open.

Theorem: Compactness of Continuous Functions

Let K ⊆ R be compact. If f : K → R is continuous, then f(K) =
{f(x) : x ∈ K} is compact.

Proof

Suppose {yn} ⊆ f(K). For each n, there exists xn ∈ K such that yn = f(xn).
Since K is compact, the sequence {xn} has a convergent subsequence {xnk

} →
x ∈ K. Hence, ynk

= f(xnk
) → f(x) ∈ f(K). Since f is continuous, this shows

f(K) is compact.
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Remark: We say that f : E → R is bounded if f(E) is bounded.

Theorem: Extreme Value Theorem

Let K ⊂ R be nonempty and compact. If f : K → R is continuous, then
f is bounded and attains a maximum and minimum on K (i.e., there
exist p, q ∈ K such that

f(p) ≤ f(x) ≤ f(q) for all x ∈ K.

Proof: From the preceding theorem, we know f(K) is compact. By the Heine-
Borel theorem, f(K) is closed and bounded. Since f(K) is nonempty and
bounded,

m = inf f(K) and M = sup f(K) exist (Dedekind completeness of R).

Now there exists a sequence (yn)
∞
n=1 ⊆ f(K) such that yn → M (from MT Q3).

Since f(K) is closed, we must have M ∈ f(K).
In other words, there exists a q ∈ K such that

f(q) = M = sup{f(x) : x ∈ K},

meaning f(q) is a maximum.
The proof of the existence of a minimum is similar.

Theorems and Properties of Continuous Functions

Theorem: Operations on Continuous Functions

Let f and g be real-valued functions that are continuous at x0 ∈ R.
Then:

1. f + g is continuous at x0.

2. fg is continuous at x0.

3. f
g is continuous at x0 if g(x0) ̸= 0.

Proof:
1. Sum of Continuous Functions:
Let f and g be continuous at x0. To show f + g is continuous at x0, take any
sequence (xn) → x0.
- Since f and g are continuous at x0:

lim
n→∞

f(xn) = f(x0), lim
n→∞

g(xn) = g(x0).

- Then:

lim
n→∞

(f(xn) + g(xn)) = lim
n→∞

f(xn) + lim
n→∞

g(xn) = f(x0) + g(x0) = (f + g)(x0).
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Thus, f + g is continuous at x0.
2. Product of Continuous Functions:
Let f and g be continuous at x0. Consider the sequence (xn) → x0.
- Since f and g are continuous:

lim
n→∞

f(xn) = f(x0), lim
n→∞

g(xn) = g(x0).

- Then:

lim
n→∞

(f(xn)g(xn)) = lim
n→∞

f(xn) · lim
n→∞

g(xn) = f(x0) · g(x0) = (fg)(x0).

Hence, fg is continuous at x0.
3. Quotient of Continuous Functions:
Assume g(x0) ̸= 0 and f and g are continuous at x0. Consider (xn) → x0.
- Then:

lim
n→∞

g(xn) = g(x0) ̸= 0.

- Thus, for sufficiently large n, g(xn) ̸= 0 and:

lim
n→∞

f(xn)

g(xn)
=

limn→∞ f(xn)

limn→∞ g(xn)
=

f(x0)

g(x0)
=

(
f

g

)
(x0).

Therefore, f
g is continuous at x0.

Theorem: Composition of Continuous Functions

If f is continuous at x0 and g is continuous at f(x0), then the composite
function g ◦ f is continuous at x0.

Explanation of dom(f) and dom(g):
The terms dom(f) and dom(g) refer to the domains of the functions f and g,
respectively:

dom(f) is the set of all x ∈ R for which the function f(x) is defined.

dom(g) is the set of all y ∈ R for which the function g(y) is defined.
Proof:
We are given that x0 ∈ dom(f) and f(x0) ∈ dom(g). Let (xn) be a se-
quence in dom(f) such that limn→∞ xn = x0. Since f is continuous at x0,
we have limn→∞ f(xn) = f(x0). Since g is continuous at f(x0), we also have
limn→∞ g(f(xn)) = g(f(x0)). Therefore, g ◦ f is continuous at x0.

In the proof, the domains are crucial because, for the composition g ◦ f to
be defined and continuous at a point x0 ∈ R, we require: 1. x0 ∈ dom(f), so
f(x0) is defined. 2. f(x0) ∈ dom(g), so g(f(x0)) is defined.
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Examples Illustrating Continuity and Discontinuity

Example 1: Polynomial Function

Let f(x) = 2x2 + 1. Prove that f is continuous on R using both defini-
tions:

• Using the sequential definition.

• Using the ϵ-δ definition.

Solution:
1. Using the Sequential Definition:
Let (xn) be a sequence such that limn→∞ xn = x0.

lim
n→∞

f(xn) = lim
n→∞

(2x2
n + 1) = 2 lim

n→∞
x2
n + 1 = 2x2

0 + 1 = f(x0).

Thus, limn→∞ f(xn) = f(x0), proving that f is continuous at every x0 ∈ R.
2. Using the ϵ-δ Definition:
To show that f(x) = 2x2+1 is continuous at any x0 ∈ R, we need to find δ > 0
such that for all x with |x− x0| < δ, we have |f(x)− f(x0)| < ϵ.

|f(x)− f(x0)| = |2x2 + 1− (2x2
0 + 1)| = |2x2 − 2x2

0| = 2|x− x0||x+ x0|.

Choose δ = min
(
1, ϵ

2(|x0|+1)

)
. Then, if |x− x0| < δ, we have:

|f(x)− f(x0)| < ϵ.

Explanation of the Choice of δ:
The choice of δ = min(1, ϵ

2(|x0|+1) ) ensures that f(x) = 2x2 +1 is continuous at

any x0 ∈ R:
1. The term min(1, ·) restricts δ to be at most 1, controlling the size of the
neighborhood around x0.
2. The term ϵ

2(|x0|+1) ensures that when |x− x0| < δ, we have:

|f(x)− f(x0)| = 2|x− x0||x+ x0| < ϵ,

because |x+ x0| ≤ |x− x0|+ 2|x0| ≤ 1 + 2|x0| when |x− x0| < 1.
Thus, this choice guarantees both |x− x0| < δ and |f(x)− f(x0)| < ϵ, meeting
the criteria for continuity.
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