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Lecture 10: Compact sets and limits of functions
Instructor: Nicholas Hu Notetaker: Nicholas Hu

10.1 Compact sets

Definition 10.1. A set K ⊆ R is (sequentially) compact if every sequence (xn)
∞
n=1 in K has a subse-

quence (xnk
)∞k=1 converging to a point in K.

Example 10.2. The set [0, 1] is compact.

Let (xn)
∞
n=1 ⊆ [0, 1]. Then (xn)

∞
n=1 is bounded, so by the Bolzano–Weierstrass theorem, it has a subsequence

(xnk
)∞k=1 converging to some x ∈ R. Moreover, x ∈ [0, 1] since [0, 1] is closed.

Example 10.3. The set (0, 1) is not compact.

Let (xn)
∞
n=1 ⊆ (0, 1) be given by xn := 1

n+1 . If (xnk
)∞k=1 is a subsequence of (xn)

∞
n=1, then xnk

→ 0 because
xn → 0, but 0 /∈ (0, 1).

Example 10.4. The set [0,∞) is not compact.

Let (xn)
∞
n=1 ⊆ [0,∞) be given by xn := n. If (xnk

)∞k=1 is a subsequence of (xn)
∞
n=1, then xnk

= nk ≥ k, so
(xnk

)∞k=1 is not bounded and therefore cannot converge.

Examples 10.3 and 10.4 show that a set may fail to be compact if it is not closed or not bounded. In fact,
these two properties are necessary and sufficient for compactness in R.

Theorem 10.5 (Heine–Borel). Let K ⊆ R. Then K is compact if and only if K is closed and bounded.

Proof. First, suppose that K is compact. Let (xn)
∞
n=1 be a sequence in K converging to some x ∈ R. Then

it has a convergent subsequence (xnk
)∞k=1 converging to some y ∈ K. As all subsequences of a convergent

sequence must converge to the limit of the sequence itself, we must have x = y ∈ K, which shows that K
is closed. Furthermore, if K were not bounded, there would exist a sequence (xn)

∞
n=1 in K with |xn| ≥ n.

As argued previously, such as sequence cannot have a convergent subsequence since all its subsequences are
unbounded. We conclude that K must also be bounded.

Conversely, suppose that K is closed and bounded, and let (xn)
∞
n=1 be a sequence in K. By the Bolzano–

Weierstrass theorem, it has a convergent subsequence (xnk
) whose limit must be in K since K is closed.

10.2 Limits of functions

Definition 10.6. Let E ⊆ R. A point p ∈ R is called a limit point of E if (Bδ(p) \ {p}) ∩ E ̸= ∅ for all
δ > 0. The set of all limit points of E is denoted E′.
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Example 10.7. Let E ∈ R \ {2}. Then 2 ∈ E′ because for all δ > 0, we have 2 − δ
2 ∈ Bδ(2) \ {2} =

(2− δ, 2) ∪ (2, 2 + δ) and 2− δ
2 ∈ E.

The following definition is analogous to the definition of limn→∞ an = a, which means that for all ε > 0,
there exists an N ≥ 1 such that for all n ≥ N , we have an ∈ Bε(a) (i.e., |a− an| < ε).

Definition 10.8. Let E ⊆ R and suppose that f : E → R is a function and p ∈ E′. We say that q ∈ R is a
limit of f as x approaches p if for all ε > 0, there exists a δ > 0 such that for all x ∈ (Bδ(p) \ {p})∩E (i.e.,
0 < |x− p| < δ and x ∈ E), we have f(x) ∈ Bε(q) (i.e., |f(x)− q| < ε). In this case, we write f(x) → q as
x → p, or limx→p f(x) = q.

Example 10.9. Let E = R and f(x) := x2. Then limx→2 f(x) = 4.

Let ε > 0. Then |x2 − 4| = |x − 2||x + 2| < ε if |x − 2| < ε
5 and |x + 2| < 5. Now if |x − 2| < 1, then

|x+2| ≤ |x− 2|+4 < 1+ 4 = 5, so if δ := min { ε
5 , 1}, then |x2 − 4| < ε whenever 0 < |x− 2| < δ and x ∈ R.

Example 10.10. Let E = R \ {1} and f(x) := x2−1
x(x−1) . Then limx→1 f(x) = 2.

Let ε > 0. Then | x2−1
x(x−1) − 2| = | 1−x

x | = |1−x|
|x| < ε if |1 − x| < ε

2 and |x| > 1
2 . Now if |x − 1| < 1

2 , then

|x| ≥ 1− |1− x| > 1
2 , so if δ := min { ε

2 ,
1
2}, then | x2−1

x(x−1) − 2| < ε whenever 0 < |x− 1| < δ and x ∈ R \ {1}.
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