MATH 131A August 12, 2024

Lecture 4: Sequences

Instructor: Nicholas Hu Notetaker: Shimon Schlessinger

4.1 Triangle Inequality
Proposition 4.1 (Triangle Inequality). If a,b € Q, then |a + b| < |a| + |0].

Proof. Clearly, a < |a| and b < |b]. Hence, a +b < |a| + |b|. Similarly, —a < |a| and —b < |b|, so
—(a+0b) <|a| +1b|. Thus, |a + b] = max(a + b, —(a + b)) < |a| + |b]. O

Proposition 4.2 (Reverse Triangle Inequality). If a,b € Q, then ||a] — |b|| < |a — b].
Proof. By the triangle inequality, |(a+b)—b| < |a+b|+b], so |a|—|b| < |a+b|. Symmetrically, |b|—|a| < |a+b].
O

Hence, ||| —[b]| = max(|a| — [b], [b] — [a]) < |a] + |b].

4.2 Definition of Convergence

Definition 4.3. A sequence (¢,)52; in Q converges to ¢ € Q if for all £ > 0 there exists a natural number
N > 0 such that for all n > N |¢ — g,| < e. We call ¢ the limit of (¢,,) and write ¢, — q.

Example 4.4. ¢, = %L Then ¢, — 0.

Proof. Let € € Qsg. Then |0 — ¢,| < € whenever n > é Rewrite % as ¢. If N=a+1,then N >a> ¢ =1
Hence, if n > N, |0 — g,] < &. O

4.3 Archimedean Property in Convergence Proofs

Proposition 4.5 (Archimedean Property). For all ¢ € Q, there exists a natural number N € N with N > q.

Proof. We will break this into two cases. First, if ¢ <0, then NV =1 > ¢g. Otherwise, if ¢ > 0, we may write
q = § for positive a,b € N. Then, if N=a+1, N >a> 7 =gq. -
2

Example 4.6. Let ¢, := 1 — 5. Then ¢, — 1.

Proof. Let € > 0. We want [1— (1 — 2)| = |2] <e.

This surely occurs whenever n > % By the IArchimedean PropertyL there exists an N € N such that N > %

Then n > N would yield n > %, completing our proof. O
2

Example 4.7. Let ¢, = %ﬂ Then ¢, — 3.
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Proof. Let € € Qsq. We desire |3 — Tf{f1| = |n2::-1‘ <3 <e.

By the |Archimedean PropertyL we obtain an N € N such that NV > g Thus, n > N yields |3 —¢,| <e. O

Example 4.8. Let ¢, = ‘Z)Z—;; Then ¢, — %

Proof. Let € € Q. Then we want |2 — g,| = |2 — §ZI%| = |W7+6| < \%| <e.
By the |Archimedean Property|, we select a positive integer N > &. Hence, n > N yields |%| < g, and, in
turn, |3 — ¢,| < €, completing our proof. O

Proposition 4.9 (Uniqueness of limits). Let (¢,)22, be a convergent sequence. If both q, — q and q, — ¢/,
then g = ¢'.

Proof. Towards a contradiction, suppose q # ¢'. Let ¢ = |q_2q/‘. Since g, — ¢, there exists an N; € N such
that |¢ — ¢| < € for all n > Nj. Similarly, there exists an Ny € N such that |¢' — ¢,| < & for all n > Na.
Hence, for all n > max(Ny, N3), we obtain |¢ —¢'| < |¢—gn|+ ¢ — ¢n| < 26 = |¢—¢’|. Since we have arrived

at a contradiction, it must be that ¢ = ¢’. O

4.4 Divergent Sequences

Example 4.10. ¢, := (—1)" does not converge.

Proof. For contradiction, suppose ¢, — q. Let € = 1. By the definition of convergence, there must exist an
N € N such that |¢ — ¢n| < 1 for all n > N. Thus, |¢gan — q| + |gan+1 — ¢ < 2. By the triangle inequality, it
follows that 2 = |(—1) — 1| = |gan+1 — gan| < 2, a contradiction. O

Example 4.11. g, :=n? does not converge.

Proof. For contradiction, suppose g, — ¢q. Let ¢ = 1. By the definition of convergence, for some N € N,
|g — gn| < € for all n > N. However, this implies that |gn4+1 — gn| < |¢ — gv+1| +1¢ — gn| < 26 = 2. Then
2N +1=|(N?+2N + 1) — N?| < 2, which is impossible since N > 1. Hence, (g,,) must diverge. O

Remark. In the previous example, one can understand that (g,) does not converge since its elements grow
arbitrarily large. That is, the sequence (g,,) is unbounded.

Definition 4.12. A sequence (g,,)52; is bounded if, for some r € Qsq, for all n > 1, |g,| < 7.

Remark. Negating the above definition, we find that a sequence (g,,)22; is unbounded if for all r € Q,
there exists an n > 1 such that |g,| > 7.

Proposition 4.13. Let (¢,)52, be a sequence in Q. If ¢, — q, then (gn) is bounded.

Proof. Let e = 1. Since ¢, — ¢, there exists a natural number N such that |¢ — ¢,| < 1 for all n > N.
Hence, whenever n > N, |g,| < |gn — gl +1g] < |q| + 1. Iff n < N, |gn| < |gn] + 1.
Define r = max{|q1| + 1, |g2| + 1, ..., lav—1| + 1, |g| + 1}. It directly follows that |g,| < r for alln e N. O

Corollary 4.14. If (¢,)52, is unbounded then it does not converge.
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Proof. This is the contrapositive of Proposition O

Example 4.15. As in Example 4.11} let ¢, == n?. Then (g,)52, does not converge.

Proof. By Corollary [£.14] it suffices to show that (g,,) is unbounded. Consider an arbitrary r» € Qso. By
the [Archimedean Propertyl there exists a natural number N > r. Hence, |gn| = N? > r, and thus (g,) is
unbounded. O

4.5 Limit Laws

Proposition 4.16. Suppose (¢,)52; is a sequence of rational numbers that converges to a positive ¢ € Qxp.
Then there exists a lower bound s € Q<o and a natural number N € N such that q, > s whenever n > N.

Proof. Let ¢ = 4. Since g, — ¢, there exists a natural number N € N such that |¢ — ¢,| < € whenever

n > N. For such n, |¢ — ¢,| < ¢ implies that ¢, > ¢ — €. Hence, ¢, > £ for all n > N, thus (¢, )52, has a
positive lower bound. O

Proposition 4.17. Suppose (¢,)52, is a sequence of nonnegative rational numbers. If g, — q, then g > 0.

Proof. Towards contradiction, suppose ¢ < 0. Let € = |¢|. As ¢ < 0, e = |¢| > 0. Since ¢, — ¢, for some
N €N, |¢g— gn| < e for all n > N. Hence, for such n, ¢ > ¢, — €, and thus ¢ + |¢| > ¢,, > 0. However, since
q is negative, |q| = —q, and thus 0 = ¢ + |¢| > 0, a contradiction. Therefore, ¢ > 0. O

Theorem 4.18. Suppose (¢,)52; and (1), are sequences of rational numbers such that ¢, — q and
rn, — 7. Then the following limit laws hold:

(a) If c € Q, the constant sequence s, = ¢ converges to c.

(b) The sequence (gn + 11)52, converges to q +r.

(c) The sequence (qnrn)5e, converges to qr.

(d) If g, # 0 for alln € N and q # 0, then the sequence (qi);"’:1 converges to %.

(e) If gn <1y for allm € N, then g < r.

(f) The sequence (|qn])22, converges to |q|.
Proof.

(a) Let e > 0. Set N =1. For all n > N, |c — ¢| = 0 < . Hence, the sequence (c,c,...) converges to c.

(b) Let € > 0. Since ¢,, — ¢, there exists an Ny € N such that |¢ — ¢,| < § whenever n > N. Similarly,
for some No € N, [r —r,| < § whenever n > Ny. We will now show that, whenever n > max(Ny, Na),
(g +7) = (g +70)| <e.

[(g+7) = (gn +r0)l = (g —an) + (r —14)]
< |q_Qn|+|T_Tn‘

Since n > max (N1, Na) > N1, [q — qu| < 5. Similarly, n > max(Ny, Na) > Na, so |r —r,| < 5. Hence,

13 g
|(Q+T)_(Qn+7‘n)‘<§+§:5
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()

(d)

Let € > 0. Since ¢, — ¢, by Proposition for some s € Qxg, |gn| < s for all n. Moreover, the
convergence of (g,) implies that there exists a natural number N; € N such that |¢ — ¢,| < Zlfﬁ

whenever n > Nj. Similarly, since 7, — 7, there exists a No € N such that |r —r,| < 3 whenever
n > No. We will now show that, if n > max(N1, Na), |gr — gnrn| < €.

gr — gnrnl = |qr — qur + @ur — qu7n|
< lgr — gnr| + |gnr — gnryl
=g = gnllr| + Ir — rnllgnl
Slg=anllr|+|r—ral-s

Since n > max(Ny, Na) > Ny, |qg — gn| < ﬁ Similarly, n > Ny, so |r —ry,| < 5. Hence,

€ 5

\qr—ann|<W~|7‘|+£'8
e €
<§+§7€

Therefore, the product sequence (g,7,)22; converges to gr.

Without loss of generality, assume ¢ > 0 (if ¢ < 0, negating all ¢, via (¢) makes ¢ positive and
generalizes this result). Let € > 0. As ¢ > 0, by Proposition there exists a positive s € Q¢ and
N; € N such that g, > s whenever n > N;. Moreover, since ¢, — ¢, there exists an Ny € N such that
|g — gn| < |q|se whenever n > No. We will now show that |+ — %| < € whenever n > max(Ny, Na).

A g g
For such n, since n > Ny, we have

’1 A q‘
q Qn qqn
1
= =g — g
lallan|
< (lalse)
lalgn|
s
-5 .
|gn
Since n > Ny, s < gn, and hence
‘1 1
-——|<e
q Qn

From the previous limit laws, it follows that the sequence (7, — ¢, )52, converges to r—q. Since g, < 7y,
for all n, each element of this sequence is nonnegative. By Proposition the limit r — ¢ must be
nonnegative as well. Therefore, ¢ < r.

Let € > 0. As ¢, — g, for some N € N, |g — g,| < € for all n > N. For such n, by the reverse triangle

o0

inequality, ||g| — [¢nl| < |¢ — gn| < e. Hence, (|gn|)7Z, converges to |q].

4.6 Cauchy Sequences

Remark. We are trying to use convergent sequences to construct the real numbers. However, only sequences
that approach rational numbers converge. That is, if a sequence limits to a “gap” in the rationals (ie. an
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irrational number), it would not converge, since there would be no rational ¢ to which the sequence can
limit. Cauchy sequences will formalize the idea that such sequences “stabilize,” even if they don’t necessarily
converge in Q.

Definition 4.19. A sequence (g,)22; is Cauchy if, for all ¢ € Qq, there exists a positive N € N such
that, for all m,n > N, |gm — qn| < &.

Proposition 4.20. Equivalently, a sequence (g,)5%, is Cauchy if (and only if ) for all e € Qsg, there exists
a positive N € N such that, for alln > N, |g, — gn]| < €.

Proof. Clearly, all Cauchy sequences satisfy this condition, as it is equivalent to letting m to be exactly N.
To prove the other direction, let € > 0. Then, by our new condition, for some N € N, |¢, — qn| < § for
all n > N. Hence, for m,n > N, both |¢, — qn| < § and |¢, — qn| < 5. By the triangle inequality,
|gm — qn| < § + 5 = ¢, and thus (g,);2, is Cauchy. O

Proposition 4.21. If a sequence (g,)52, converges, it is Cauchy.

Proof. Suppose ¢, — q and let € > 0. Then there exists N € N such that |¢ — ¢, | < § for all n > N. Hence,
whenever m,n > N, by the triangle inequality, [¢gn — ¢m| < [¢ = qn| + ¢ —am| < 5+ § =¢. 0

Example 4.22. Let ¢, '= max{7%&: a € Nand (7% ) < 2} be the sequence ”approximating V/2.” Then
(gn)52 is Cauchy but does not converge in Q.

Proof. We will prove each of the two claims independently.

(i) (gn)52; does not converge in Q.

For contradiction, suppose ¢,, — ¢. By construction, for each n € N, ¢2 < 2 < (g, + 147)2. As (w%)ff:l
converges to 0, by the (gn + ﬁ);’f:l converges to q. Moreover, the imply that
¢ — ¢® and (g, + #) — ¢°. However, since limits preserve ordering, we obtain ¢ < 2 < ¢2. Hence,
q*> = 2 for a rational ¢ € Q, a contradiction. Thus, the sequence (g,)3; does not converge in Q.

(i) (¢n)22, is Cauchy.
Let € > 0. By the [Archimedean Property| there exists a natural number N > % We will show that,

for all m,n > N, |gm — qn| < €. Without loss of generality, assume m > n. Note that, by construction,
On < Gn+1 < qn + 10”% for all n. We now calculate as follows:

lm — @nl = (@m — @m—1) + (@m-1 — Gm—2) + -+ (gn+1 — @n)|
<@m = @m-1| + |gm=1 — Gm—2| + - + [@n+1 — @nl
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