MATH 131A

August 12, 2024

Lecture 4: Sequences

Instructor: Nicholas Hu

Notetaker: Shimon Schlessinger

4.1 Triangle Inequality

Proposition 4.1 (Triangle Inequality). If $a, b \in \mathbb{Q}$, then $|a+b| \le |a|+|b|$.

Proof. Clearly, $a \le |a|$ and $b \le |b|$. Hence, $a + b \le |a| + |b|$. Similarly, $-a \le |a|$ and $-b \le |b|$, so $-(a+b) \le |a| + |b|$. Thus, $|a+b| = \max(a+b, -(a+b)) \le |a| + |b|$.

Proposition 4.2 (Reverse Triangle Inequality). If $a, b \in \mathbb{Q}$, then $||a| - |b|| \le |a - b|$.

Proof. By the triangle inequality, $|(a+b)-b| \le |a+b|+|b|$, so $|a|-|b| \le |a+b|$. Symmetrically, $|b|-|a| \le |a+b|$. Hence, $||a| - |b|| = \max(|a| - |b|, |b| - |a|) \le |a| + |b|$.

4.2 Definition of Convergence

Definition 4.3. A sequence $(q_n)_{n=1}^{\infty}$ in \mathbb{Q} converges to $q \in \mathbb{Q}$ if for all $\varepsilon > 0$ there exists a natural number N > 0 such that for all $n \ge N$, $|q - q_n| < \varepsilon$. We call q the **limit** of (q_n) and write $q_n \to q$.

Example 4.4. $q_n \coloneqq \frac{1}{n}$. Then $q_n \to 0$.

Proof. Let $\varepsilon \in \mathbb{Q}_{>0}$. Then $|0 - q_n| < \varepsilon$ whenever $n > \frac{1}{\varepsilon}$. Rewrite $\frac{1}{\varepsilon}$ as $\frac{a}{b}$. If N = a + 1, then $N > a \ge \frac{a}{b} = \frac{1}{\varepsilon}$. Hence, if $n \ge N$, $|0 - q_n| < \varepsilon$.

4.3 Archimedean Property in Convergence Proofs

Proposition 4.5 (Archimedean Property). For all $q \in \mathbb{Q}$, there exists a natural number $N \in \mathbb{N}$ with N > q.

Proof. We will break this into two cases. First, if $q \leq 0$, then N = 1 > q. Otherwise, if q > 0, we may write $q = \frac{a}{b}$ for positive $a, b \in \mathbb{N}$. Then, if N = a + 1, $N > a \geq \frac{a}{b} = q$.

Example 4.6. Let $q_n := 1 - \frac{2}{3n}$. Then $q_n \to 1$.

 $\begin{array}{l} \textit{Proof. Let } \varepsilon > 0. \textit{ We want } |1 - (1 - \frac{2}{3n})| = |\frac{2}{3n}| < \varepsilon. \\ \textit{This surely occurs whenever } n > \frac{2}{3\varepsilon}. \textit{ By the Archimedean Property, there exists an } N \in \mathbb{N} \textit{ such that } N > \frac{2}{3\varepsilon}. \\ \textit{Then } n \geq N \textit{ would yield } n > \frac{2}{3\varepsilon}, \textit{ completing our proof.} \end{array}$

Example 4.7. Let $q_n \coloneqq \frac{3n^2}{n^2+1}$. Then $q_n \to 3$.

Proof. Let $\varepsilon \in \mathbb{Q}_{>0}$. We desire $|3 - \frac{3n^2}{n^2+1}| = |\frac{3}{n^2+1}| < |\frac{3}{n}| < \varepsilon$. By the Archimedean Property, we obtain an $N \in \mathbb{N}$ such that $N > \frac{3}{\varepsilon}$. Thus, $n \ge N$ yields $|3 - q_n| < \varepsilon$. \Box

Example 4.8. Let $q_n \coloneqq \frac{2n-1}{3n+2}$. Then $q_n \to \frac{2}{3}$.

Proof. Let $\varepsilon \in \mathbb{Q}_{>0}$. Then we want $|\frac{2}{3} - q_n| = |\frac{2}{3} - \frac{2n-1}{3n+2}| = |\frac{7}{9n+6}| < |\frac{7}{9n}| < \varepsilon$. By the Archimedean Property, we select a positive integer $N > \frac{7}{9\varepsilon}$. Hence, $n \ge N$ yields $|\frac{7}{9n}| < \varepsilon$, and, in turn, $|\frac{2}{3} - q_n| < \varepsilon$, completing our proof.

Proposition 4.9 (Uniqueness of limits). Let $(q_n)_{n=1}^{\infty}$ be a convergent sequence. If both $q_n \to q$ and $q_n \to q'$, then q = q'.

Proof. Towards a contradiction, suppose $q \neq q'$. Let $\varepsilon = \frac{|q-q'|}{2}$. Since $q_n \to q$, there exists an $N_1 \in \mathbb{N}$ such that $|q - q_n| < \varepsilon$ for all $n \geq N_1$. Similarly, there exists an $N_2 \in \mathbb{N}$ such that $|q' - q_n| < \varepsilon$ for all $n \geq N_2$. Hence, for all $n \geq \max(N_1, N_2)$, we obtain $|q - q'| \leq |q - q_n| + |q' - q_n| < 2\varepsilon = |q - q'|$. Since we have arrived at a contradiction, it must be that q = q'.

4.4 Divergent Sequences

Example 4.10. $q_n \coloneqq (-1)^n$ does not converge.

Proof. For contradiction, suppose $q_n \to q$. Let $\varepsilon = 1$. By the definition of convergence, there must exist an $N \in \mathbb{N}$ such that $|q - q_n| < 1$ for all $n \ge N$. Thus, $|q_{2N} - q| + |q_{2N+1} - q| < 2$. By the triangle inequality, it follows that $2 = |(-1) - 1| = |q_{2N+1} - q_{2N}| < 2$, a contradiction.

Example 4.11. $q_n \coloneqq n^2$ does not converge.

Proof. For contradiction, suppose $q_n \to q$. Let $\varepsilon = 1$. By the definition of convergence, for some $N \in \mathbb{N}$, $|q - q_n| < \varepsilon$ for all $n \ge N$. However, this implies that $|q_{N+1} - q_N| \le |q - q_{N+1}| + |q - q_N| < 2\varepsilon = 2$. Then $2N + 1 = |(N^2 + 2N + 1) - N^2| < 2$, which is impossible since $N \ge 1$. Hence, (q_n) must diverge. \Box

Remark. In the previous example, one can understand that (q_n) does not converge since its elements grow arbitrarily large. That is, the sequence (q_n) is **unbounded**.

Definition 4.12. A sequence $(q_n)_{n=1}^{\infty}$ is **bounded** if, for some $r \in \mathbb{Q}_{>0}$, for all $n \ge 1$, $|q_n| < r$.

Remark. Negating the above definition, we find that a sequence $(q_n)_{n=1}^{\infty}$ is **unbounded** if for all $r \in \mathbb{Q}_{>0}$, there exists an $n \ge 1$ such that $|q_n| \ge r$.

Proposition 4.13. Let $(q_n)_{n=1}^{\infty}$ be a sequence in \mathbb{Q} . If $q_n \to q$, then (q_n) is bounded.

Proof. Let $\varepsilon = 1$. Since $q_n \to q$, there exists a natural number N such that $|q - q_n| < 1$ for all $n \ge N$. Hence, whenever $n \ge N$, $|q_n| \le |q_n - q| + |q| < |q| + 1$. If n < N, $|q_n| < |q_n| + 1$. Define $r = \max\{|q_1| + 1, |q_2| + 1, \dots, |q_{N-1}| + 1, |q| + 1\}$. It directly follows that $|q_n| < r$ for all $n \in \mathbb{N}$. \Box

Corollary 4.14. If $(q_n)_{n=1}^{\infty}$ is unbounded then it does not converge.

Proof. This is the contrapositive of Proposition 4.13.

Example 4.15. As in Example 4.11, let $q_n \coloneqq n^2$. Then $(q_n)_{n=1}^{\infty}$ does not converge.

Proof. By Corollary 4.14, it suffices to show that (q_n) is unbounded. Consider an arbitrary $r \in \mathbb{Q}_{>0}$. By the Archimedean Property, there exists a natural number N > r. Hence, $|q_N| = N^2 > r$, and thus (q_n) is unbounded.

4.5 Limit Laws

Proposition 4.16. Suppose $(q_n)_{n=1}^{\infty}$ is a sequence of rational numbers that converges to a positive $q \in \mathbb{Q}_{>0}$. Then there exists a lower bound $s \in \mathbb{Q}_{>0}$ and a natural number $N \in \mathbb{N}$ such that $q_n > s$ whenever $n \ge N$.

Proof. Let $\varepsilon = \frac{q}{2}$. Since $q_n \to q$, there exists a natural number $N \in \mathbb{N}$ such that $|q - q_n| < \varepsilon$ whenever $n \ge N$. For such $n, |q - q_n| < \varepsilon$ implies that $q_n > q - \varepsilon$. Hence, $q_n > \frac{q}{2}$ for all $n \ge N$, thus $(q_n)_{n=1}^{\infty}$ has a positive lower bound.

Proposition 4.17. Suppose $(q_n)_{n=1}^{\infty}$ is a sequence of nonnegative rational numbers. If $q_n \to q$, then $q \ge 0$.

Proof. Towards contradiction, suppose q < 0. Let $\varepsilon = |q|$. As q < 0, $\varepsilon = |q| > 0$. Since $q_n \to q$, for some $N \in \mathbb{N}$, $|q - q_n| < \varepsilon$ for all $n \ge N$. Hence, for such $n, q > q_n - \varepsilon$, and thus $q + |q| > q_n \ge 0$. However, since q is negative, |q| = -q, and thus 0 = q + |q| > 0, a contradiction. Therefore, $q \ge 0$.

Theorem 4.18. Suppose $(q_n)_{n=1}^{\infty}$ and $(r_n)_{n=1}^{\infty}$ are sequences of rational numbers such that $q_n \to q$ and $r_n \to r$. Then the following limit laws hold:

- (a) If $c \in \mathbb{Q}$, the constant sequence $s_n \coloneqq c$ converges to c.
- (b) The sequence $(q_n + r_n)_{n=1}^{\infty}$ converges to q + r.
- (c) The sequence $(q_n r_n)_{n=1}^{\infty}$ converges to qr.
- (d) If $q_n \neq 0$ for all $n \in \mathbb{N}$ and $q \neq 0$, then the sequence $(\frac{1}{q_n})_{n=1}^{\infty}$ converges to $\frac{1}{q}$.
- (e) If $q_n \leq r_n$ for all $n \in \mathbb{N}$, then $q \leq r$.
- (f) The sequence $(|q_n|)_{n=1}^{\infty}$ converges to |q|.

Proof.

- (a) Let $\varepsilon > 0$. Set N = 1. For all $n \ge N$, $|c c| = 0 < \varepsilon$. Hence, the sequence (c, c, ...) converges to c.
- (b) Let $\varepsilon > 0$. Since $q_n \to q$, there exists an $N_1 \in \mathbb{N}$ such that $|q q_n| < \frac{\varepsilon}{2}$ whenever $n \ge N$. Similarly, for some $N_2 \in \mathbb{N}$, $|r r_n| < \frac{\varepsilon}{2}$ whenever $n \ge N_2$. We will now show that, whenever $n \ge \max(N_1, N_2)$, $|(q + r) (q_n + r_n)| < \varepsilon$.

$$|(q+r) - (q_n + r_n)| = |(q-q_n) + (r-r_n)|$$

$$\leq |q-q_n| + |r-r_n|$$

Since $n \ge \max(N_1, N_2) \ge N_1$, $|q - q_n| < \frac{\varepsilon}{2}$. Similarly, $n \ge \max(N_1, N_2) \ge N_2$, so $|r - r_n| < \frac{\varepsilon}{2}$. Hence,

$$|(q+r) - (q_n + r_n)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(c) Let $\varepsilon > 0$. Since $q_n \to q$, by Proposition 4.13, for some $s \in \mathbb{Q}_{>0}$, $|q_n| \leq s$ for all n. Moreover, the convergence of (q_n) implies that there exists a natural number $N_1 \in \mathbb{N}$ such that $|q - q_n| < \frac{\varepsilon}{2|r|+1}$ whenever $n \geq N_1$. Similarly, since $r_n \to r$, there exists a $N_2 \in \mathbb{N}$ such that $|r - r_n| < \frac{\varepsilon}{2s}$ whenever $n \geq N_2$. We will now show that, if $n \geq \max(N_1, N_2)$, $|qr - q_n r_n| < \varepsilon$.

$$\begin{aligned} |qr - q_n r_n| &= |qr - q_n r + q_n r - q_n r_n| \\ &\leq |qr - q_n r| + |q_n r - q_n r_n| \\ &= |q - q_n||r| + |r - r_n||q_n| \\ &\leq |q - q_n||r| + |r - r_n| \cdot s \end{aligned}$$

Since $n \ge \max(N_1, N_2) \ge N_1$, $|q - q_n| < \frac{\varepsilon}{2|r|+1}$. Similarly, $n \ge N_2$, so $|r - r_n| < \frac{\varepsilon}{2s}$. Hence,

$$\begin{split} |qr - q_n r_n| &< \frac{\varepsilon}{2|r| + 1} \cdot |r| + \frac{\varepsilon}{2s} \cdot s \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Therefore, the product sequence $(q_n r_n)_{n=1}^{\infty}$ converges to qr.

(d) Without loss of generality, assume q > 0 (if q < 0, negating all q_n via (c) makes q positive and generalizes this result). Let $\varepsilon > 0$. As q > 0, by Proposition 4.16, there exists a positive $s \in \mathbb{Q}_{>0}$ and $N_1 \in \mathbb{N}$ such that $q_n > s$ whenever $n \ge N_1$. Moreover, since $q_n \to q$, there exists an $N_2 \in \mathbb{N}$ such that $|q - q_n| < |q|s\varepsilon$ whenever $n \ge N_2$. We will now show that $|\frac{1}{q} - \frac{1}{q_n}| < \varepsilon$ whenever $n \ge max(N_1, N_2)$. For such n, since $n \ge N_2$, we have

$$\begin{aligned} \left| \frac{1}{q} - \frac{1}{q_n} \right| &= \left| \frac{q_n - q}{qq_n} \right| \\ &= \frac{1}{|q||q_n|} |q_n - q| \\ &< \frac{1}{|q||q_n|} (|q|s\varepsilon) \\ &= \frac{s}{|q_n|} \cdot \varepsilon \end{aligned}$$

Since $n \ge N_1$, $s < q_n$, and hence

$$\left|\frac{1}{q} - \frac{1}{q_n}\right| < \varepsilon$$

- (e) From the previous limit laws, it follows that the sequence $(r_n q_n)_{n=1}^{\infty}$ converges to r q. Since $q_n \leq r_n$ for all n, each element of this sequence is nonnegative. By Proposition 4.17, the limit r q must be nonnegative as well. Therefore, $q \leq r$.
- (f) Let $\varepsilon > 0$. As $q_n \to q$, for some $N \in \mathbb{N}$, $|q q_n| < \varepsilon$ for all $n \ge N$. For such n, by the reverse triangle inequality, $||q| |q_n|| \le |q q_n| < \varepsilon$. Hence, $(|q_n|)_{n=1}^{\infty}$ converges to |q|.

4.6 Cauchy Sequences

Remark. We are trying to use convergent sequences to construct the real numbers. However, only sequences that approach rational numbers converge. That is, if a sequence limits to a "gap" in the rationals (ie. an

irrational number), it would not converge, since there would be no rational q to which the sequence can limit. Cauchy sequences will formalize the idea that such sequences "stabilize," even if they don't necessarily converge in \mathbb{Q} .

Definition 4.19. A sequence $(q_n)_{n=1}^{\infty}$ is Cauchy if, for all $\varepsilon \in \mathbb{Q}_{>0}$, there exists a positive $N \in \mathbb{N}$ such that, for all $m, n \geq N$, $|q_m - q_n| < \varepsilon$.

Proposition 4.20. Equivalently, a sequence $(q_n)_{n=1}^{\infty}$ is **Cauchy** if (and only if) for all $\varepsilon \in \mathbb{Q}_{>0}$, there exists a positive $N \in \mathbb{N}$ such that, for all $n \geq N$, $|q_n - q_N| < \varepsilon$.

Proof. Clearly, all Cauchy sequences satisfy this condition, as it is equivalent to letting m to be exactly N. To prove the other direction, let $\varepsilon > 0$. Then, by our new condition, for some $N \in \mathbb{N}$, $|q_n - q_N| < \frac{\varepsilon}{2}$ for all $n \geq N$. Hence, for $m, n \geq N$, both $|q_m - q_N| < \frac{\varepsilon}{2}$ and $|q_n - q_N| < \frac{\varepsilon}{2}$. By the triangle inequality, $|q_m - q_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, and thus $(q_n)_{n=1}^{\infty}$ is Cauchy.

Proposition 4.21. If a sequence $(q_n)_{n=1}^{\infty}$ converges, it is Cauchy.

Proof. Suppose $q_n \to q$ and let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $|q - q_n| < \frac{\varepsilon}{2}$ for all $n \ge N$. Hence, whenever $m, n \ge N$, by the triangle inequality, $|q_n - q_m| \le |q - q_n| + |q - q_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Example 4.22. Let $q_n \coloneqq \max\{\frac{a}{10^n} : a \in \mathbb{N} \text{ and } (\frac{a}{10^n})^2 \le 2\}$ be the sequence "approximating $\sqrt{2}$." Then $(q_n)_{n=1}^{\infty}$ is Cauchy but does *not* converge in \mathbb{Q} .

Proof. We will prove each of the two claims independently.

(i) $(q_n)_{n=1}^{\infty}$ does not converge in \mathbb{Q} .

For contradiction, suppose $q_n \to q$. By construction, for each $n \in \mathbb{N}$, $q_n^2 \leq 2 < (q_n + \frac{1}{10^n})^2$. As $(\frac{1}{10^n})_{n=1}^{\infty}$ converges to 0, by the limit laws, $(q_n + \frac{1}{10^n})_{n=1}^{\infty}$ converges to q. Moreover, the limit laws imply that $q_n^2 \to q^2$ and $(q_n + \frac{1}{10^n})^2 \to q^2$. However, since limits preserve ordering, we obtain $q^2 \leq 2 \leq q^2$. Hence, $q^2 = 2$ for a rational $q \in \mathbb{Q}$, a contradiction. Thus, the sequence $(q_n)_{n=1}^{\infty}$ does not converge in \mathbb{Q} .

(ii) $(q_n)_{n=1}^{\infty}$ is Cauchy.

Let $\varepsilon > 0$. By the Archimedean Property, there exists a natural number $N > \frac{1}{\varepsilon}$. We will show that, for all $m, n \ge N$, $|q_m - q_n| < \varepsilon$. Without loss of generality, assume $m \ge n$. Note that, by construction, $q_n \leq q_{n+1} \leq q_n + \frac{9}{10^{n+1}}$ for all n. We now calculate as follows:

`.

$$\begin{split} |q_m - q_n| &= |(q_m - q_{m-1}) + (q_{m-1} - q_{m-2}) + \dots + (q_{n+1} - q_n)| \\ &\leq |q_m - q_{m-1}| + |q_{m-1} - q_{m-2}| + \dots + |q_{n+1} - q_n| \\ &\leq \frac{9}{10^m} + \frac{9}{10^{m-1}} + \dots + \frac{9}{10^{n+1}} \\ &\leq \left(\frac{9}{10^{n+1}}\right) \left(\frac{1}{10^{m-n-1}} + \frac{1}{10^{m-n-2}} + \dots + 1\right) \\ &= \left(\frac{9}{10^{n+1}}\right) \left(\frac{1 - \frac{1}{10^{m-n}}}{1 - \frac{1}{10}}\right) \\ &< \frac{9}{10^{n+1}} \cdot \frac{1}{1 - \frac{1}{10}} = \frac{9}{10^{n+1}} \cdot \frac{10}{9} = \frac{1}{10^n} \\ &< \frac{1}{n} \leq \frac{1}{N} < \varepsilon. \end{split}$$