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Lecture 4: Sequences
Instructor: Nicholas Hu Notetaker: Shimon Schlessinger

4.1 Triangle Inequality

Proposition 4.1 (Triangle Inequality). If a, b ∈ Q, then |a+ b| ≤ |a|+ |b|.

Proof. Clearly, a ≤ |a| and b ≤ |b|. Hence, a + b ≤ |a| + |b|. Similarly, −a ≤ |a| and −b ≤ |b|, so
−(a+ b) ≤ |a|+ |b|. Thus, |a+ b| = max(a+ b,−(a+ b)) ≤ |a|+ |b|.

Proposition 4.2 (Reverse Triangle Inequality). If a, b ∈ Q, then ||a| − |b|| ≤ |a− b|.

Proof. By the triangle inequality, |(a+b)−b| ≤ |a+b|+|b|, so |a|−|b| ≤ |a+b|. Symmetrically, |b|−|a| ≤ |a+b|.
Hence, ||a| − |b|| = max(|a| − |b|, |b| − |a|) ≤ |a|+ |b|.

4.2 Definition of Convergence

Definition 4.3. A sequence (qn)
∞
n=1 in Q converges to q ∈ Q if for all ε > 0 there exists a natural number

N > 0 such that for all n ≥ N , |q − qn| < ε. We call q the limit of (qn) and write qn → q.

Example 4.4. qn := 1
n . Then qn → 0.

Proof. Let ε ∈ Q>0. Then |0− qn| < ε whenever n > 1
ε . Rewrite

1
ε as a

b . If N = a+1, then N > a ≥ a
b = 1

ε .
Hence, if n ≥ N , |0− qn| < ε.

4.3 Archimedean Property in Convergence Proofs

Proposition 4.5 (Archimedean Property). For all q ∈ Q, there exists a natural number N ∈ N with N > q.

Proof. We will break this into two cases. First, if q ≤ 0, then N = 1 > q. Otherwise, if q > 0, we may write
q = a

b for positive a, b ∈ N. Then, if N = a+ 1, N > a ≥ a
b = q.

Example 4.6. Let qn := 1− 2
3n . Then qn → 1.

Proof. Let ε > 0. We want |1− (1− 2
3n )| = | 2

3n | < ε.
This surely occurs whenever n > 2

3ε . By the Archimedean Property, there exists an N ∈ N such that N > 2
3ε .

Then n ≥ N would yield n > 2
3ε , completing our proof.

Example 4.7. Let qn := 3n2

n2+1 . Then qn → 3.
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Proof. Let ε ∈ Q>0. We desire |3− 3n2

n2+1 | = | 3
n2+1 | < | 3n | < ε.

By the Archimedean Property, we obtain an N ∈ N such that N > 3
ε . Thus, n ≥ N yields |3− qn| < ε.

Example 4.8. Let qn := 2n−1
3n+2 . Then qn → 2

3 .

Proof. Let ε ∈ Q>0. Then we want | 23 − qn| = | 23 − 2n−1
3n+2 | = | 7

9n+6 | < | 7
9n | < ε.

By the Archimedean Property, we select a positive integer N > 7
9ε . Hence, n ≥ N yields | 7

9n | < ε, and, in
turn, | 23 − qn| < ε, completing our proof.

Proposition 4.9 (Uniqueness of limits). Let (qn)
∞
n=1 be a convergent sequence. If both qn → q and qn → q′,

then q = q′.

Proof. Towards a contradiction, suppose q ̸= q′. Let ε = |q−q′|
2 . Since qn → q, there exists an N1 ∈ N such

that |q − qn| < ε for all n ≥ N1. Similarly, there exists an N2 ∈ N such that |q′ − qn| < ε for all n ≥ N2.
Hence, for all n ≥ max(N1, N2), we obtain |q− q′| ≤ |q− qn|+ |q′− qn| < 2ε = |q− q′|. Since we have arrived
at a contradiction, it must be that q = q′.

4.4 Divergent Sequences

Example 4.10. qn := (−1)n does not converge.

Proof. For contradiction, suppose qn → q. Let ε = 1. By the definition of convergence, there must exist an
N ∈ N such that |q − qn| < 1 for all n ≥ N . Thus, |q2N − q|+ |q2N+1 − q| < 2. By the triangle inequality, it
follows that 2 = |(−1)− 1| = |q2N+1 − q2N | < 2, a contradiction.

Example 4.11. qn := n2 does not converge.

Proof. For contradiction, suppose qn → q. Let ε = 1. By the definition of convergence, for some N ∈ N,
|q − qn| < ε for all n ≥ N . However, this implies that |qN+1 − qN | ≤ |q − qN+1|+ |q − qN | < 2ε = 2. Then
2N + 1 = |(N2 + 2N + 1)−N2| < 2, which is impossible since N ≥ 1. Hence, (qn) must diverge.

Remark. In the previous example, one can understand that (qn) does not converge since its elements grow
arbitrarily large. That is, the sequence (qn) is unbounded.

Definition 4.12. A sequence (qn)
∞
n=1 is bounded if, for some r ∈ Q>0, for all n ≥ 1, |qn| < r.

Remark. Negating the above definition, we find that a sequence (qn)
∞
n=1 is unbounded if for all r ∈ Q>0,

there exists an n ≥ 1 such that |qn| ≥ r.

Proposition 4.13. Let (qn)
∞
n=1 be a sequence in Q. If qn → q, then (qn) is bounded.

Proof. Let ε = 1. Since qn → q, there exists a natural number N such that |q − qn| < 1 for all n ≥ N .
Hence, whenever n ≥ N , |qn| ≤ |qn − q|+ |q| < |q|+ 1. If n < N , |qn| < |qn|+ 1.
Define r = max{|q1|+ 1, |q2|+ 1, . . . , |qN−1|+ 1, |q|+ 1}. It directly follows that |qn| < r for all n ∈ N.

Corollary 4.14. If (qn)
∞
n=1 is unbounded then it does not converge.
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Proof. This is the contrapositive of Proposition 4.13.

Example 4.15. As in Example 4.11, let qn := n2. Then (qn)
∞
n=1 does not converge.

Proof. By Corollary 4.14, it suffices to show that (qn) is unbounded. Consider an arbitrary r ∈ Q>0. By
the Archimedean Property, there exists a natural number N > r. Hence, |qN | = N2 > r, and thus (qn) is
unbounded.

4.5 Limit Laws

Proposition 4.16. Suppose (qn)
∞
n=1 is a sequence of rational numbers that converges to a positive q ∈ Q>0.

Then there exists a lower bound s ∈ Q>0 and a natural number N ∈ N such that qn > s whenever n ≥ N .

Proof. Let ε = q
2 . Since qn → q, there exists a natural number N ∈ N such that |q − qn| < ε whenever

n ≥ N . For such n, |q − qn| < ε implies that qn > q − ε. Hence, qn > q
2 for all n ≥ N , thus (qn)

∞
n=1 has a

positive lower bound.

Proposition 4.17. Suppose (qn)
∞
n=1 is a sequence of nonnegative rational numbers. If qn → q, then q ≥ 0.

Proof. Towards contradiction, suppose q < 0. Let ε = |q|. As q < 0, ε = |q| > 0. Since qn → q, for some
N ∈ N, |q − qn| < ε for all n ≥ N . Hence, for such n, q > qn − ε, and thus q + |q| > qn ≥ 0. However, since
q is negative, |q| = −q, and thus 0 = q + |q| > 0, a contradiction. Therefore, q ≥ 0.

Theorem 4.18. Suppose (qn)
∞
n=1 and (rn)

∞
n=1 are sequences of rational numbers such that qn → q and

rn → r. Then the following limit laws hold:

(a) If c ∈ Q, the constant sequence sn := c converges to c.

(b) The sequence (qn + rn)
∞
n=1 converges to q + r.

(c) The sequence (qnrn)
∞
n=1 converges to qr.

(d) If qn ̸= 0 for all n ∈ N and q ̸= 0, then the sequence ( 1
qn
)∞n=1 converges to 1

q .

(e) If qn ≤ rn for all n ∈ N, then q ≤ r.

(f) The sequence (|qn|)∞n=1 converges to |q|.

Proof. **secret message**

(a) Let ε > 0. Set N = 1. For all n ≥ N , |c− c| = 0 < ε. Hence, the sequence (c, c, . . . ) converges to c.

(b) Let ε > 0. Since qn → q, there exists an N1 ∈ N such that |q − qn| < ε
2 whenever n ≥ N . Similarly,

for some N2 ∈ N, |r − rn| < ε
2 whenever n ≥ N2. We will now show that, whenever n ≥ max(N1, N2),

|(q + r)− (qn + rn)| < ε.

|(q + r)− (qn + rn)| = |(q − qn) + (r − rn)|
≤ |q − qn|+ |r − rn|

Since n ≥ max(N1, N2) ≥ N1, |q − qn| < ε
2 . Similarly, n ≥ max(N1, N2) ≥ N2, so |r − rn| < ε

2 . Hence,

|(q + r)− (qn + rn)| <
ε

2
+

ε

2
= ε
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(c) Let ε > 0. Since qn → q, by Proposition 4.13, for some s ∈ Q>0, |qn| ≤ s for all n. Moreover, the
convergence of (qn) implies that there exists a natural number N1 ∈ N such that |q − qn| < ε

2|r|+1

whenever n ≥ N1. Similarly, since rn → r, there exists a N2 ∈ N such that |r − rn| < ε
2s whenever

n ≥ N2. We will now show that, if n ≥ max(N1, N2), |qr − qnrn| < ε.

|qr − qnrn| = |qr − qnr + qnr − qnrn|
≤ |qr − qnr|+ |qnr − qnrn|
= |q − qn||r|+ |r − rn||qn|
≤ |q − qn||r|+ |r − rn| · s

Since n ≥ max(N1, N2) ≥ N1, |q − qn| < ε
2|r|+1 . Similarly, n ≥ N2, so |r − rn| < ε

2s . Hence,

|qr − qnrn| <
ε

2|r|+ 1
· |r|+ ε

2s
· s

<
ε

2
+

ε

2
= ε

Therefore, the product sequence (qnrn)
∞
n=1 converges to qr.

(d) Without loss of generality, assume q > 0 (if q < 0, negating all qn via (c) makes q positive and
generalizes this result). Let ε > 0. As q > 0, by Proposition 4.16, there exists a positive s ∈ Q>0 and
N1 ∈ N such that qn > s whenever n ≥ N1. Moreover, since qn → q, there exists an N2 ∈ N such that
|q − qn| < |q|sε whenever n ≥ N2. We will now show that | 1q − 1

qn
| < ε whenever n ≥ max(N1, N2).

For such n, since n ≥ N2, we have ∣∣∣∣1q − 1

qn

∣∣∣∣ = ∣∣∣∣qn − q

qqn

∣∣∣∣
=

1

|q||qn|
|qn − q|

<
1

|q||qn|
(|q|sε)

=
s

|qn|
· ε

Since n ≥ N1, s < qn, and hence ∣∣∣∣1q − 1

qn

∣∣∣∣ < ε

(e) From the previous limit laws, it follows that the sequence (rn−qn)
∞
n=1 converges to r−q. Since qn ≤ rn

for all n, each element of this sequence is nonnegative. By Proposition 4.17, the limit r − q must be
nonnegative as well. Therefore, q ≤ r.

(f) Let ε > 0. As qn → q, for some N ∈ N, |q − qn| < ε for all n ≥ N . For such n, by the reverse triangle
inequality, ||q| − |qn|| ≤ |q − qn| < ε. Hence, (|qn|)∞n=1 converges to |q|.

4.6 Cauchy Sequences

Remark. We are trying to use convergent sequences to construct the real numbers. However, only sequences
that approach rational numbers converge. That is, if a sequence limits to a “gap” in the rationals (ie. an
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irrational number), it would not converge, since there would be no rational q to which the sequence can
limit. Cauchy sequences will formalize the idea that such sequences “stabilize,” even if they don’t necessarily
converge in Q.

Definition 4.19. A sequence (qn)
∞
n=1 is Cauchy if, for all ε ∈ Q>0, there exists a positive N ∈ N such

that, for all m,n ≥ N , |qm − qn| < ε.

Proposition 4.20. Equivalently, a sequence (qn)
∞
n=1 is Cauchy if (and only if) for all ε ∈ Q>0, there exists

a positive N ∈ N such that, for all n ≥ N , |qn − qN | < ε.

Proof. Clearly, all Cauchy sequences satisfy this condition, as it is equivalent to letting m to be exactly N .
To prove the other direction, let ε > 0. Then, by our new condition, for some N ∈ N, |qn − qN | < ε

2 for
all n ≥ N . Hence, for m,n ≥ N , both |qm − qN | < ε

2 and |qn − qN | < ε
2 . By the triangle inequality,

|qm − qn| < ε
2 + ε

2 = ε, and thus (qn)
∞
n=1 is Cauchy.

Proposition 4.21. If a sequence (qn)
∞
n=1 converges, it is Cauchy.

Proof. Suppose qn → q and let ε > 0. Then there exists N ∈ N such that |q− qn| < ε
2 for all n ≥ N . Hence,

whenever m,n ≥ N , by the triangle inequality, |qn − qm| ≤ |q − qn|+ |q − qm| < ε
2 + ε

2 = ε.

Example 4.22. Let qn := max{ a
10n : a ∈ N and ( a

10n )
2 ≤ 2} be the sequence ”approximating

√
2.” Then

(qn)
∞
n=1 is Cauchy but does not converge in Q.

Proof. We will prove each of the two claims independently.

(i) (qn)
∞
n=1 does not converge in Q.

For contradiction, suppose qn → q. By construction, for each n ∈ N, q2n ≤ 2 < (qn+
1

10n )
2. As ( 1

10n )
∞
n=1

converges to 0, by the limit laws, (qn + 1
10n )

∞
n=1 converges to q. Moreover, the limit laws imply that

q2n → q2 and (qn +
1

10n )
2 → q2. However, since limits preserve ordering, we obtain q2 ≤ 2 ≤ q2. Hence,

q2 = 2 for a rational q ∈ Q, a contradiction. Thus, the sequence (qn)
∞
n=1 does not converge in Q.

(ii) (qn)
∞
n=1 is Cauchy.

Let ε > 0. By the Archimedean Property, there exists a natural number N > 1
ε . We will show that,

for all m,n ≥ N , |qm− qn| < ε. Without loss of generality, assume m ≥ n. Note that, by construction,
qn ≤ qn+1 ≤ qn + 9

10n+1 for all n. We now calculate as follows:

|qm − qn| = |(qm − qm−1) + (qm−1 − qm−2) + · · ·+ (qn+1 − qn)|
≤ |qm − qm−1|+ |qm−1 − qm−2|+ · · ·+ |qn+1 − qn|

≤ 9

10m
+

9

10m−1
+ · · ·+ 9

10n+1

≤
(

9

10n+1

)(
1

10m−n−1
+

1

10m−n−2
+ · · ·+ 1

)
=

(
9

10n+1

)(
1− 1

10m−n

1− 1
10

)
<

9

10n+1
· 1

1− 1
10

=
9

10n+1
· 10
9

=
1

10n

<
1

n
≤ 1

N
< ε.
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