Def An ZQUAVALENCE RELATION ON X is a relation ~ = X × X that is. REFLEXTIVE, for out x & X ~ X

SYMMETRIC for out
$$x \in X$$
, if $x \sim y$, then $y \stackrel{\sim}{\rightarrow} x$
 Z_X : 'is a sibling of " \rightarrow symmetric
'is a browher of " \rightarrow not symmetric
TRANSITIVE for all $x \cdot y \cdot z \in X$, if $x \sim y$ and $y \sim z$. then $x \sim z$
 E_X . '' is an cestor of " \rightarrow yes
'' is a peneure of " \rightarrow no

Def 1 Equivalent class [X]~ := {y & X : X ~ y} Also written as [X].

$$\frac{\text{Propenty}}{(a)} \begin{bmatrix} \text{let} & \sim & \text{be an equivalence relation on } X \text{ and } & X, y \in X \\ (a) & \text{if } & X & \gamma \text{ , then } [X] &= [\gamma] \\ (b) & \text{if } & X & \gamma \text{ , then } [X] \cap [\gamma] &= \phi \\ \end{bmatrix} \begin{bmatrix} Y \end{bmatrix} = \{X, Y\} \\ \begin{bmatrix} Y \end{bmatrix} = \{X, Y\} \end{bmatrix}$$

Parf (a)
(E) Suppose
$$z \in [x]$$
, then by defin $x \sim z$
Given that $x \sim y$
By symmetry of equiv. vel., $y \sim x$, $x \sim z$
By transitivity of equiv. vel., $y \sim x \sim z$
 $\therefore y \sim z$
And by defin of equiv. class, $z \in [y]$
 $\therefore [x] \in [y]$
(z) Suppose $z \in [y]$
By symmetry of equiv. rel., we also know that $[y] \in [x]$
Overall, $[x] = [y]$
(b) (proof by contradiction)
Suppose $x \neq y$, and $a \in [x] \cap [y]$
Then, by defin. $X \sim a$ and $y \sim a$
By symmetry of equiv. vel., $x \sim a$
Therefore, $X \sim a \sim y$
Then, $X \sim Y$, which contradicts with the assump. that $X \neq Y$

Then, $a \notin [x] \cap [y]$

We conclude that [x] N [y] has no element if X + y

Rational Numbers (Q)
We would to construct
$$\#s$$
 that represent "dividing" on integer a
into b pares
On the set $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, we define an equil rel. as follows:
For (a,b). (c,d) $\in \mathbb{Z} \times \mathbb{Z}^*$,
we declare (a,b) ~ (c,d), when $a \cdot d = b \cdot c$
Def! The rowinal numbers are $\mathbb{Q} := \{equi. class of ~ i = \mathbb{Z} \times \mathbb{Z}^* / i = equiv. class of ~ i = jequiv. class of ~ i = jequi$

But the def'n of Q is still insufficient e.g., these is no rational q with $q^2 = 2$ Proof 1: (The proof is by conoradiction) Suppose there's such a rational number 9 Then we can Write $q = \frac{m}{n}$, We can assume that n > 0 and as small as possible. Then $q^2 = 2$ implies $m^2 = 2n^2$ so, m² is even. This, in turn, implies m is even (b/c if m were odd (m=2k+1, for some k ∈ Z) so $m^2 = (2k+1)(2k+1) = 4k^2 + 4k+1 = 2(2k^2+2k)+1$, which is still an odd . m² is even => m is even as well.) Hence, M = 2K for some K & Z So, $4k^2 = 2n^2 \implies 2k^2 = n^2$ \therefore n' is even \Rightarrow n is even : m, n are both even :. they have the same factor a . In is not as small as possible (m. n could be divided by 2), which contradicts with the assumption that ni's as small as possible. However. Notice that we can "approximate" a positive # whose square is 2 using rational # eg: rational # 1.4 1.41 1.414 14 4 1+ # + 100 1+ 4 + 100 + 4 1.414:1.999396 1.4 = 1.96 1.41² = 1.988

Therefore. We will construct IP using sequence of torimal #5 (12)

SEQUENCES
Def A sequence in Q (i.e. of rational #s) is a func.
$$q: \mathbb{Z}_{>0} \longrightarrow Q$$

We write q_n for $q_{(n)}$
and $(q_n)_{n=1}^{\infty} [or (q_n)_n, (q_n), g_{2n}]_{n=1}^{\infty}]$ for the sequence
 $\overline{bc} = 2f q_n = \frac{1}{n}$, then $q_1 = \frac{1}{r}$, $q_2 = \frac{1}{2}$, $q_3 = \frac{1}{3}$
 $Q_{(1)}$
 $Q_{(2)}$
 $Q_{(3)}$

We then call q is a limit of
$$(qn)$$
 and we write $qn \rightarrow q$
(or $\lim_{n \rightarrow \infty} qn = q$. $\lim_{n \rightarrow \infty} qn = \frac{n \rightarrow \infty}{2} q$

Proof Suppose ∈ ∈ Q >0 Then WTS |0- +1| < € for n ≥ N, where N is TBD That is. +1 < € for n ≥ N, where N is TBD Or ± < n for n ≥ N, where N is TBD Since € ∈ Q >0 ∴ ± ∈ Q >0 ∴ ± can also be written as ± = +2, a, b ∈ Z >0 It's obvious that, a ≥ +2 for a, b ∈ Z >0 Let N = a+1, then we can have N > a Then, we have n ≥ N > a ≥ +2 = > n > ± Therefore, we showed that n ≥ N implies |0 - +1| < € for N=a+1, a ∈ Z >0