Linear algebra notation

Vector spaces

$\operatorname{span}(S)$	span of set S
$\dim(V)$	dimension of vector space V
$U_1 + U_2$	sum of subspaces U_1 and U_2
$U_1 \oplus U_2$	direct sum of subspaces U_1 and U_2
Array spaces	
\mathbb{F}^n (over \mathbb{F})	<i>n</i> -tuples with entries in field \mathbb{F}
$\mathbb{F}^{m imes n}$ (over \mathbb{F})	$m \times n$ matrices with entries in field \mathbb{F}
Function spaces	
$L(V,W)$ (over \mathbb{F})	linear maps from vector space V to vector space W
$L(V)$ (over \mathbb{F})	linear maps from vector space V to itself
$P(\mathbb{F})$ (over \mathbb{F})	polynomials with coefficients in field $\mathbb F$
$P_n(\mathbb{F})$ (over \mathbb{F})	polynomials of degree at most n with coefficients in field $\mathbb F$
$C(X)$ (over $\mathbb R$ or $\mathbb C$)	continuous functions on set X with values in $\mathbb R$ or $\mathbb C$
$C^\infty(X)$ (over $\mathbb R$ or $\mathbb C$)	smooth (i.e., infinitely differentiable) functions on set X with values in $\mathbb R$ or $\mathbb C$
•	

Sequence spaces

$\mathbb{F}^{\mathbb{N}}$ (over \mathbb{F})	sequences in field $\mathbb F$
\mathbb{F}^{∞} (over \mathbb{F})	sequences in field $\mathbb F$ with finitely many nonzero terms

Linear maps

$\ker(T)$	kernel of linear map T
$\operatorname{im}(T)$	image of linear map T
$\operatorname{null}(T)$	nullity of linear map T
rank(T)	rank of linear map T
I, I _V	identity map on vector space V
T^{-1}	inverse of linear map T

Matrices

$_{B}[v]$	matrix of vector v with respect to basis B
$_{B'}[T]_B$	matrix of linear map T with respect to bases B and B'
a _{ij}	(i, j)-entry of matrix A
A^{T}	transpose of matrix A
$det(A), det(a_1,, a_n)$	determinant of matrix A with columns $a_1,, a_n$ (also used for linear maps)
$\operatorname{sgn}(\sigma)$	sign of permutation σ

e _i	i^{th} standard basis vector of \mathbb{F}^n
tr(A)	trace of matrix A (also used for linear maps)

Eigenvalues and eigenvectors

$E_T(\lambda)$ eigens	bace of eigenvalue λ of linear map T
$\gamma_T(\lambda)$ geome	tric multiplicity of eigenvalue λ of linear map T
$\alpha_T(\lambda)$ algebra	ic multiplicity of eigenvalue λ of linear map T
χ_T charact	eristic polynomial of linear map T
μ_T minima	l polynomial of linear map T

Normed and inner product spaces

<i>v</i>	norm of vector v
$\langle v, w \rangle$	inner product of vectors v and w
$\operatorname{proj}_w(v), P_w(v)$	orthogonal projection of vector v onto span of vector w
$\operatorname{proj}_W(v)$, $P_W(v)$	orthogonal projection of vector v onto subspace W
S^{\perp}	orthogonal complement of set S
T^*	adjoint of linear map T
A^*	conjugate transpose of matrix A

Complex numbers

\overline{Z}	complex conjugate of complex number z
z	absolute value of complex number z
$\Re(z)$	real part of complex number z
$\Im(z)$	imaginary part of complex number z

Norms and inner products

$\langle v, w \rangle_2$	standard inner/dot product of $v, w \in \mathbb{F}^n$ (where $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$) := $\sum_{i=1}^n v_i \overline{w_i}$
<i>v</i> ₂	standard/2- norm of $v, w \in \mathbb{F}^n$ (where $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$) $:= \langle v, v \rangle_2^{1/2}$