
Monday, Week 10

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be finite-dimensional inner product spaces over F ∈ {R,C}.

Definitions

• Adjoint: The adjoint of a map T ∈ L(V,W ) is the unique linear map T ∗ ∈ L(W,V ) such that
⟨Tv,w⟩W = ⟨v, T ∗w⟩V for all v ∈ V,w ∈ W.

• Normal Operator: T ∈ L(V ) is normal if T ∗T = TT ∗.

• Self-adjoint Operator: T ∈ L(V ) is self-adjoint if T = T ∗.

• Unitary Operator: T ∈ L(V,W ) is unitary if:
T ∗T = IV and TT ∗ = IW .
Equivalently, T ∗ = T−1.

• Real and Imaginary Parts: For any T ∈ L(V ), we define:
Re(T ) := T+T∗

2 , Im(T ) := T−T∗

2i .

Remark: When V = W , unitary operators are always normal.

Proposition

Let T ∈ L(V,W ). The following statements are equivalent:

(a) T ∗T = IV

(b) ⟨Tv, Tv′⟩W = ⟨v, v′⟩V for all v, v′ ∈ V

(c) ∥Tv∥W = ∥v∥V for all v ∈ V

Assume T ∗T = IV . We want to show that for all v, v′ ∈ V , ⟨Tv, Tv′⟩W = ⟨v, v′⟩V .
Starting with the left-hand side:

⟨Tv, Tv′⟩W = ⟨T ∗Tv, v′⟩V = ⟨IV v, v′⟩V = ⟨v, v′⟩V .

So (a) implies (b).
Assume ⟨Tv, Tv′⟩W = ⟨v, v′⟩V for all v, v′ ∈ V .
Let v = v′. Then:

⟨Tv, Tv⟩W = ⟨v, v⟩V ⇒ ∥Tv∥2W = ∥v∥2V ⇒ ∥Tv∥W = ∥v∥V .

Hence, (b) implies (c).
Assume ∥Tv∥W = ∥v∥V for all v ∈ V .
Then:

⟨Tv, Tv⟩W = ∥Tv∥2W = ∥v∥2V = ⟨v, v⟩V .

Let’s compute:
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⟨Tv, Tv⟩W = ⟨T ∗Tv, v⟩V ⇒ ⟨(T ∗T − IV )v, v⟩V = 0 for all v ∈ V.

Since T ∗T − IV is self-adjoint (from Week 9), the inner product ⟨(T ∗T − IV )v, v⟩V = 0 for all v ∈ V
implies that T ∗T − IV = 0, hence:

T ∗T = IV .

So (c) implies (a).

Proposition

Let T ∈ L(V ). Then

T is unitary ⇐⇒ T is normal and Re(T )2 + Im(T )2 = I.
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Day 3 : Lecture 06/04/25 
The spectral theorem 
Let  be an n-dim inner product space over .  (𝑣,  <*, *>) 𝐹 = 𝐶
 
Thm (Spectral Theorem) 
If  is normal, then there exists an ONB of V such that B B is diagonal (“unitarily 𝑇 ∈ 𝐿(𝑉) [𝑇]
diagonalizable”). 
 
Claim 

This is equivalent to the statement: If  is normal, then there exists a unitary  𝐴 ∈ ℂ𝑛𝑥𝑛 𝑈 ∈ ℂ𝑛𝑥𝑛

such that  is diagonal. 𝑈−1𝐴𝑈
 
Pf 

Suppose that there exists a unitary matrix   such that   is diagonal. 𝑈 ∈ ℂ 𝑈−1𝐴𝑈

  B B := B E (E E) E B . Let j :=  so that  = . Then [𝑇] [𝐼] [𝑇] [𝐼] 𝑏
𝑖=1

𝑛

∑ 𝑢
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𝑒
𝑗 𝐸

[𝐸]
𝐵

(
𝐸

[𝑏
1
] ...  

𝐸
[𝑏

𝑛
])

𝐵
[𝑇]

𝐵

= B E (E E) E  , is diagonal. It remains to be shown that  is an ONB.  [𝐼] [𝑇] [𝐼] 𝐵 : =  {𝑏
1
... 𝑏

𝑛
}

 

Indeed,  =  < 𝑏
𝑖
, 𝑏

𝑗
> <

𝑖=1

𝑛

∑ 𝑢
𝑖𝑗
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𝑖
,
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𝑛
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𝑒
𝑖'

>

 =  =   
𝑖=1

𝑛

∑ 𝑢
𝑖𝑗
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𝑖
,

𝑖'=1

𝑛

∑ 𝑢
𝑖'𝑗
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𝑛

∑ (𝑈*𝑈)
𝑗'𝑗

 =  = { , }. 𝐼
𝑗'𝑗

1,  𝑗 = 𝑗' 0,  𝑗 ≠ 𝑗'

 

It remains to prove the spectral theorem for matrices. By HW 9 A4, every  is unitarily 𝐴 ∈ ℂ𝑛𝑥𝑛

triangularizable.  
 
If A is also normal, then in fact, the triangularization is a diagonalization. 
 

 



The singular-value decomposition (SVD) 

Let  and suppose . Then,  is self-adjoint, so by the spectral theorem, 𝐴 ∈ ℂ𝑚𝑥𝑛 𝑚 ≥ 𝑛 𝐴*𝐴

 for some diagonal  𝐴*𝐴 =  𝑉Λ𝑉−1 Λ ∈ ℂ𝑛𝑥𝑛 =

 λ
1

  

 …  

   λ
𝑛

For some unitary . 𝑉 ∈ 𝐶𝑛𝑥𝑛 = [𝑣
1
... 𝑣

𝑛
] ∈ 𝐶𝑛𝑥𝑛
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𝑖
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𝑖

≥ 0 𝐴*𝐴 𝐴*𝐴𝑣
𝑖
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𝑖
𝑣

𝑖
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𝑖
, 𝑣

𝑖
>=< λ

𝑖
𝑣

𝑖
, 𝑣

𝑖
> λ

𝑖
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𝑖
, 𝑣

𝑖
>

=>  ||𝐴𝑣
𝑖
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𝑖
||𝑣

𝑖
||2

=> . λ
𝑖

=  
||𝐴𝑣

𝑖
||2

||𝑣
𝑖
||2 > 0



Discussion 6/5

SVD Recap

We are given any matrix A ∈ Cm×n where m ≥ n.

Note: A∗A is self-adjoint so there exists an orthonormal basis {v1, . . . , vn} of
eigenvectors of A∗A by the Spectral Theorem.

Let λi be an eigenvalue corresponding to vi, then σi =
√
λi. We refer to these

σi as singular values.

Goal: find U,Σ, V such that A = UΣV ∗

V =
[
v1 v2 . . . vn

]
Note: {v1, . . . , vn} is an orthonormal basis, so V is unitary.

We want to construct U such that it is unitary and Σ such that it is diagonal(ish).
Specifically, we want to find that

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

0(m−n)×n


and

U∗A = ΣV ∗

in which case we can define u by

ui =
Avi
σi

It remains to show:
U =

[
u1 u2 . . . un

]
Other details to consider:

• What if σi = 0?

• Is U actually unitary?

• A = UΣV ∗
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Final Review

Week 1

Key Terms

• Vector spaces

• Groups

• Commutativity

• Associativity

• Identity

• Inverse

• Closure

• Fields

• Set

• Addition

• Multiplication

• Distributivity

• Compatibility

• Subspaces

• Intersection of subspaces

• Sum of subspaces

Key Facts

• Subspaces are vector spaces

• Unique identity and inverse

• Subspace check: closure properties, existence of 0

• Intersections and sums of subspaces are subspaces

• To prove A = B, show A ⊆ B and B ⊆ A

Aside:
If we have subspaces V1, . . . , Vn where each Vi = span{vi}, then

W = V1 + · · ·+ Vn ⇐⇒ W = span{v1, . . . , vn}.

Moreover,

W = V1⊕V2⊕· · ·⊕Vn ⇐⇒ W = span{v1, . . . , vn} and {v1, . . . , vn} is linearly independent.
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Week 2

Key Terms

• Linear Independence

• Basis

• Span

• Dimensions

Key Facts

• Linear dependence lemma

• Steinitz Exchange

• all bases same size

• bases are maximally independent and minimally spanning

Week 3

Key Terms

• Linear Maps

• Kernel

• Image

• Nullity

• Rank

• Injectivity

• Surjectivity

• Bijectivity

Key Facts

• a map is linear if it satisfies additivity and homogeneity, can show both
at once using αT (v) + T (w)

• T (0) = 0 if T ∈ L(V,W )

• Rank-Nullity Theorem

• Bijective ⇐⇒ Surjective and Injective

• T ∈ L(V,W ) is injective ⇐⇒ ker(T ) = {0}
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• T ∈ L(V,W ) is surjective ⇐⇒ W = im(T )

• kernel and image are subspaces

Week 4

Key Terms

• Inverse

• Isomorphism

• Matrices

• Matrix Addition

• Matrix Multiplication

• Column Space

• Column Rank

• Row Space

• Row Rank

Key Facts

• matrix multiplication is a representation of function composition

• column k of matrix product AB is A times column k of b

• columns of matrix product AB are linear combinations of columns of A

• rows of matrix product AB are linear combinations of row of B

• transpose of a matrix is the matrix obtained by interchanging the rows
and columns

• Change of Basis: columns of a transformation matrix represent trans-
formed coordinates of basis vectors,

W [I]V = [W [v1] . . .W [vn]]

V [I]W = [V [w1] . . .V [wn]]

• If T ∈ L(V,W ) is invertible, then T−1 is its inverse. TT−1 = IW . T−1T =
IV .

• invertibility ⇐⇒ bijectivity

• injectivity is equivalent to surjectivity if dim(V ) = dim(W ) for T ∈
L(V,W )

• two vector spaces are isomorphic ⇐⇒ have the same dimension
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Week 5

Key Terms

• Determinant

• Polynomials

• Polynomial division

Key Facts

• determinant is multilinear, alternating, and normalized

• determinant of an upper triangular matrix is the product of its diagonal
entries

• polynomial division theorem
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Math 115A Lecture Notes

June 6, 2025

Matrix of a linear map

Let T ∈ L(V ) be a linear map on a vector space V . Let B = {v1, . . . , vn} be a
basis for V . The matrix of T with respect to the basis B is denoted as [T ]B .

[T ]B =

a11 . . . a1n
...

. . .
...

am1 . . . amn


This matrix is constructed by applying T to each basis vector and expressing

the result in the same basis: [T ]B =
(
[Tv1]B [Tv2]B . . . [Tvn]B

)
Triangularization and Diagonalization

If [T ]B is an upper triangular matrix, then the eigenvalues of T are the diagonal
entries a11, . . . , ann.

If [T ]B is a diagonal matrix: [T ]B =

a11 0
. . .

0 ann

 then the eigenvalues

of T are the diagonal entries a11, . . . , ann, and the corresponding eigenvectors
are the basis vectors v1, . . . , vn.

For a general matrix representation, we have Tvj =
∑n

i=1 aijvi. In the case
of a diagonal matrix, this simplifies to Tvj = ajjvj .

The Spectral Theorem relates to the case where the basis B is also orthonor-
mal.

Topics Discussed

• Eigenvalues of linear maps, diagonalization, and triangularization

• The Spectral Theorem and orthonormal diagonalization

• Determinants using the permutation formula

• Minimal Polynomials

• Direct Sums
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Direct Sums

Let V be a vector space, and let U1, . . . , Uk be subspaces of V . The sum W =
U1 + · · ·+ Uk is a direct sum, denoted W = U1 ⊕ · · · ⊕ Uk or W =

⊕k
i=1 Ui, if

every vector w ∈ W can be written uniquely as a sum w = u1 + · · ·+ uk, where
each ui ∈ Ui.

Reminder: The sum of two subspaces is defined as W = U1+U2 = {u1+u2 |
u1 ∈ U1, u2 ∈ U2}.

A condition for a sum to be direct is that for any i ̸= j, the intersection of
the subspaces is the zero vector: Ui ∩ Uj = {0}.

Example in R3

Let V = R3. Consider the subspaces: U1 = span


1
1
0

 ,

0
1
1

 U2 = span


0
0
1

 ,

0
1
0


(Note: The original notes have some ambiguity here, this is one interpretation).

Let’s check if R3 = U1 ⊕ U2. A vector in R2 is written as a sum of vectors
from U1 and U2.

Another example from the notes: Let U1 = span


1
1
0

 ,

0
1
1

. Let’s

define U2 based on Branden’s idea. Pick a vector v not in U1. Let v =

0
0
1

,

and set U2 = span{v}. To check if R3 = U1 ⊕ U2, we can form a matrix with
the basis vectors of U1 and U2 and check if they are linearly independent. The

vectors are

1
1
0

,

0
1
1

, and

0
0
1

. These are linearly independent, so their

span is R3 and the sum is direct.
The notes also show a calculation for a cross product which results in the

vector

0
1
1

.
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