Monday, Week 10

Let (V,{(-,-)v) and (W, (-,-)w) be finite-dimensional inner product spaces over F € {R, C}.

Definitions

e Adjoint: The adjoint of a map T € L(V,W) is the unique linear map T* € L(W,V) such that
(Tv,wyw = (v, T*w)y forallveV,weW.

e Normal Operator: T € L(V) is normal if T*T = TT*.
e Self-adjoint Operator: T € L(V) is self-adjoint it T = T*.

e Unitary Operator: T € L(V, W) is unitary if:
T = IV and TT* = IW
Equivalently, T* = T~1.

e Real and Imaginary Parts: For any 7' € £(V'), we define:

Re(T) := 7T+2T*’ Im(T) := LEZT*

Remark: When V = W, unitary operators are always normal.

Proposition

Let T € L(V,W). The following statements are equivalent:
(a) T*T = Iy,
(b) (Tv, Tv)w = (v,v')y for all v,v" € V
(©) ITolw = [lollv for all v € V

Assume T*T = Iyy. We want to show that for all v,v' € V, (Tv, Tv)w = (v,v')y.
Starting with the left-hand side:
(Tv, TV Yw = (T*Tv,v" )y = (Iyv,v")y = (v,0")y.
So (a) implies (b).
Assume (Tv, Tv")w = (v,v")y for all v,v’ € V.
Let v = v'. Then:
(Tv, Tv)w = (v, v)v = | Tv[fy = [0l = [Tvllw = [lvllv-

Hence, (b) implies (c).
Assume | Tv||lw = ||v||v for all v € V.
Then:

(Tv, Tvyw = | Tv[[y =[0Iy = (v, v)v-

Let’s compute:



(Tv, Tv)yw = (T"Tv,v)y = (T*T — Iy)v,v)y =0 for all v € V.

Since T*T — Iy is self-adjoint (from Week 9), the inner product ((T*T — Iy )v,v)y = 0 for all v € V
implies that T*T — Iy = 0, hence:

T =1Iy.

So (c) implies (a).

Proposition
Let T € L(V). Then

T is unitary <= T is normal and Re(T)? + Im(T)? = I.
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Day 3 : Lecture 06/04/25

The spectral theorem

Let (v, <* *>) be an n-dim inner product space over F = C.

Thm (Spectral Theorem)
If T € L(V) is normal, then there exists an ONB of V such that 3[T]is diagonal (“unitarily
diagonalizable”).

Claim
This is equivalent to the statement: If 4 € €™ is normal, then there exists a unitary U € ¢

such that U~ AU is diagonal.

Pf

Suppose that there exists a unitary matrix U € C such that U AU is diagonal.
n
s[T]s = sl]e (:[T]g) ell]s - Let b; := 51 u e, so that E[E]B =( E[bl] E[bn]). Then B[T]B
=ll]e (e[T]e) e[1] , is diagonal. It remains to be shown that B : = {bl... bn} is an ONB.
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It remains to prove the spectral theorem for matrices. By HW 9 A4, every A € (ST unitarily
triangularizable.

If A is also normal, then in fact, the triangularization is a diagonalization.



The singular-value decomposition (SVD)

LetA € € and suppose m = n. Then, AA is self-adjoint, so by the spectral theorem,
AA = VAV for some diagonal A € € =

A
1

A

n

For some unitarer ec™ = [vl... vn] ec™,

Then Ai € Rand )\i > 0 because AAdis self-adjoint. A*Avi = Aivi =>
< A*Avl,, v, >=< Aivi, v, > = Ai < v,V >

= [lAv]l = Al

2
14v |
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Discussion 6/5

SVD Recap

We are given any matrix A € C™*™ where m > n.

Note: A*A is self-adjoint so there exists an orthonormal basis {v1,...,v,} of
eigenvectors of A* A by the Spectral Theorem.

Let A; be an eigenvalue corresponding to v;, then o; = /A;. We refer to these
o; as singular values.

Goal: find U, 3,V such that A=UXV*
V= [’Ul V2 e Un]
Note: {v1,...,v,} is an orthonormal basis, so V is unitary.

We want to construct U such that it is unitary and ¥ such that it is diagonal(ish).
Specifically, we want to find that

o1 0 -+ 0
0 o9 -+ O
S=lor ol
0 0 - o,
O(m—n)xn
and
U*A=XV*
in which case we can define u by
A’Ui
U; =
oi
It remains to show:
U= [ul U ... un]

Other details to consider:
e What if o; = 07
e Is U actually unitary?

e A=UXV"



Final Review

Week 1
Key Terms

Vector spaces
Groups
Commutativity
Associativity
Identity
Inverse

Closure

Fields

Set

Addition
Multiplication
Distributivity
Compatibility
Subspaces
Intersection of subspaces

Sum of subspaces

Key Facts

Subspaces are vector spaces
Unique identity and inverse
Subspace check: closure properties, existence of 0
Intersections and sums of subspaces are subspaces

To prove A= B,show ACBand BC A

Aside:

If we have subspaces Vi, ..., V,, where each V; = span{v;}, then
W=Vi+---+4V, < W =span{vy,...,v,}.

Moreover,

W =Vi®Ve®- - -0V, < W =span{vi,...,v,} and {vi,...,v,} is linearly independent.



Week 2

Key Terms
e Linear Independence
e Basis
e Span

e Dimensions

Key Facts

e Linear dependence lemma

Steinitz Exchange

all bases same size

e bases are maximally independent and minimally spanning

Week 3
Key Terms
e Linear Maps
e Kernel
e Image
e Nullity
e Rank
e Injectivity
e Surjectivity
e Bijectivity
Key Facts

e a map is linear if it satisfies additivity and homogeneity, can show both
at once using aT'(v) + T'(w)

e T(0)=0if T € L(V,IW)
e Rank-Nullity Theorem

e Bijective <= Surjective and Injective

T € L(V,W) is injective <= ker(T') = {0}



o T e L(V,W) is surjective <= W =im(T)

e kernel and image are subspaces

Week 4
Key Terms
e Inverse
e Isomorphism
o Matrices
e Matrix Addition
e Matrix Multiplication
e Column Space
e Column Rank
e Row Space

e Row Rank

Key Facts
e matrix multiplication is a representation of function composition
e column k of matrix product AB is A times column & of b
e columns of matrix product AB are linear combinations of columns of A
e rows of matrix product AB are linear combinations of row of B

e transpose of a matrix is the matrix obtained by interchanging the rows
and columns

e Change of Basis: columns of a transformation matrix represent trans-
formed coordinates of basis vectors,

wllly = [wlvi]...w [vn]]
villw = [v[wi]...v [wy]]

o If T € L(V,W) is invertible, then T~ ! is its inverse. TT~! = Iyy,. T71T =
Iy.

e invertibility <= bijectivity

e injectivity is equivalent to surjectivity if dim(V) = dim(W) for T €
L(V.W)

e two vector spaces are isomorphic <= have the same dimension



Week 5
Key Terms

e Determinant
e Polynomials

e Polynomial division

Key Facts

e determinant is multilinear, alternating, and normalized

e determinant of an upper triangular matrix is the product of its diagonal
entries

e polynomial division theorem



Math 115A Lecture Notes
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Matrix of a linear map

Let T € L(V) be a linear map on a vector space V. Let B = {vy,...,v,} be a
basis for V. The matrix of T' with respect to the basis B is denoted as [T]z.

a1 e A1n
[Tl =
Am1 .. Amn
This matrix is constructed by applying 7" to each basis vector and expressing
the result in the same basis: [T]|p = ([Tvl]B [Tvo]lp ... [TUn]B)

Triangularization and Diagonalization

If [T] g is an upper triangular matrix, then the eigenvalues of T are the diagonal
entries @iy, ..., anp-

ail 0
If [T]p is a diagonal matrix: [T]p = then the eigenvalues
0 Qnpn
of T are the diagonal entries aq1,...,an,, and the corresponding eigenvectors

are the basis vectors vy, ..., vU,.

For a general matrix representation, we have Tv; = > | a;;v;. In the case
of a diagonal matrix, this simplifies to Tv; = a;;v;.

The Spectral Theorem relates to the case where the basis B is also orthonor-
mal.

Topics Discussed

e Eigenvalues of linear maps, diagonalization, and triangularization

The Spectral Theorem and orthonormal diagonalization

Determinants using the permutation formula
e Minimal Polynomials

Direct Sums



Direct Sums

Let V be a vector space, and let Uy, ..., U be subspaces of V. The sum W =
Ui+ ---+ Uy is a direct sum, denoted W =U; @ ---® U or W = @?:1 Ui, if
every vector w € W can be written uniquely as a sum w = uy + - - - + ug, where
each u; € U;.

Reminder: The sum of two subspaces is defined as W = Uy + Uy = {ug +us |
up € Uy, ug € UQ}

A condition for a sum to be direct is that for any ¢ # j, the intersection of
the subspaces is the zero vector: U; N U; = {0}.

Example in R?

1 0 0 0
Let V = R3. Consider the subspaces: U; = span 11,11 U, = span 01,1
0 1 1 0

(Note: The original notes have some ambiguity here, this is one interpretation).
Let’s check if R3 = U; @ U,y. A vector in R? is written as a sum of vectors
from U; and Us,.

1 0
Another example from the notes: Let U; = span 11,11 . Let’s
1
define Us based on Branden’s idea. Pick a vector v not in U;. Let v = [ 0|,

1
and set Uy = span{v}. To check if R® = U; @ Uy, we can form a matrix with
the basis vectors of U; and Us and check if they are linearly independent. The

1 0 0
vectors are | 1], [ 1], and | 0. These are linearly independent, so their
0 1 1

span is R® and the sum is direct.
The notes also show a calculation for a cross product which results in the
0
vector | 1
1



