
1 Discussion 1 — Introduction to the Adjoint

HW7 B2

Some motivation for our study of adjoints with the proof of HW7 B2 courtesy of Lorelei.
Let V,W be inner-product spaces.
Let the basis for V 3 be orthonormal. Let {bi} be an orthonormal basis for W .

1. Inner Product in Coordinates

For all v, v′ ∈ V ,
⟨v, v′⟩ = [v]∗[v′].

That is, if [v] and [v′] are coordinate vectors of v and v′ in an orthonormal basis, then their inner product
is given by the conjugate transpose of one times the other. In particular,

⟨v, v⟩ = [v]∗[v].

2. Linear Maps and the Adjoint

Let T : V → W and S : W → V . We define S to be the adjoint of T if

∀v ∈ V, w ∈ W, ⟨Tv,w⟩ = ⟨v, Sw⟩.

In this case, we write T = S∗ and S = T ∗.

3. Matrix of a Transformation and its Adjoint

Let {bj} be an orthonormal basis for V , and {di} be an orthonormal basis for W . Define

A := [T ]D←B, C := [S]B←D.

Then the entries of A are
Aij = ⟨Tbj , di⟩,

while the entries of C are
Cji = ⟨Sdi, bj⟩ = ⟨di, T bj⟩ = Aij .Cji

Thus C = A∗.

Ci,j = Aij

is the ”Conjugate Transpose.

4. Matrix Form

Let Tbj =
∑

i Aijdi. Then the matrix representation of T with respect to the bases {bj} → {di} is

[T ] = [Tb1 | Tb2 | · · · | Tbm ].

5. Properties of the Adjoint Operator

If T, S ∈ Hom(V,W ) and ⟨Tv,w⟩ = ⟨v, Sw⟩ for all v ∈ V , w ∈ W , then T = S∗ and S = T ∗.
Is the adjoint unique? Yes; in finite-dimensional spaces, the Riesz Representation Theorem guarantees

uniqueness (see Axler 7A for the proof).
Is the adjoint operation linear? Yes:

(αT + βS)∗ = αT ∗ + β S∗.

Involution Property: (T ∗)∗ = T .
Product Rule: (TS)∗ = S∗ T ∗.
Matrix Rule: (AB)∗ = B∗A∗.
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Lecture 1 — Adjoints

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be finite-dimensional inner-product spaces over a field F.

Definition (Adjoint)

The adjoint of T ∈ L(V,W ) is the map T ∗ : W → V such that

⟨Tv,w⟩W = ⟨v, T ∗w⟩V (v ∈ V, w ∈ W ).

If BV and BW are orthonormal bases of V and W respectively, then

[T ∗]BW←BV
=

(
[T ]BV←BW

)∗
,

that is, the conjugate transpose. (Recall that for a unitary matrix A, one has A∗A = I.)

Propositions

(a) Composition. If S ∈ L(W,U) and T ∈ L(V,W ), then

(S ◦ T )∗ = T ∗ ◦ S∗.

Proof. For u ∈ U and v ∈ V ,

⟨S(Tv), u⟩U = ⟨Tv, S∗u⟩W = ⟨v, T ∗S∗u⟩V .

Hence, (S ◦ T )∗ = T ∗S∗.

(b) Inverse. If T is invertible, then (T−1)∗ = (T ∗)−1.

(c) Double Adjoint. (T ∗)∗ = T .

Self-Adjoint Operators

Definition 1 (Self-adjoint). A linear map T ∈ L(V ) is self-adjoint (also called Hermitian) if T = T ∗.

Classroom remarks.

• Nikhil: “For a self-adjoint operator we have T = T ∗ — the operator is its own adjoint.”

• With respect to an orthonormal basis of V , a self-adjoint operator has a Hermitian matrix:

[T ] = [T ]∗ (conjugate transpose).

Eigenvalues and Eigenvectors

Gabriel: “What does self-adjointness tell us about the eigenvalues?”
If Tv = λv with v ̸= 0, then

⟨Tv, v⟩ = λ⟨v, v⟩ = λ⟨v, v⟩ =⇒ λ ∈ R.

Hence all eigenvalues of a self-adjoint operator are real.
Moreover, if Tv = λv and Tw = µw with λ ̸= µ, then

λ⟨v, w⟩ = ⟨Tv,w⟩ = ⟨v, Tw⟩ = µ⟨v, w⟩,

so ⟨v, w⟩ = 0. Thus eigenvectors corresponding to distinct eigenvalues are orthogonal.

Orthogonality Hint

A handy identity for self-adjoint T is

⟨Tu, v⟩+ ⟨Tv, u⟩ = 0 ⇒ ⟨Tu, v⟩ = 0.

Taking u = v shows that ⟨Tu, u⟩ = 0 implies Tu = 0; hence, if ⟨Tu, v⟩ = 0 for all u, v ∈ V , then T = 0.
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Discussion 2 — Introduction to Self-Adjoint Operators and their
Properties

Recall (Adjoints)

A linear map T : V → V is self-adjoint if T = T ∗; i.e. for all u, v ∈ V ,

⟨Tu, v⟩ = ⟨u, Tv⟩

1. Q: (Kye) What does this say about [T ] ?

A: (Brandon): [T ] is real and symmetric

A: (Nikhil): T = T ∗ ⇒ [T ] = [T ]
T
(conjugate transpose)

Counter: [T ] =

[
i i− 1

i+ 1 i

]
[T ] doesn’t necessarily have to be real

⇒ diagonals are real

2. Q: (Kye) If T is self-adjoint, what can we say about ⟨Tv, v⟩ ?
A: (Gabriel & Kaelan):

Since T is self-adj., ⟨Tv, v⟩ = ⟨v, Tv⟩ and by inner product rules,

⟨Tv, v⟩ = ⟨Tv, v⟩ ⇒ ⟨Tv, v⟩ ∈ R

3. Q: Do we know anything about the eigenvalues of T? (when T is self-adj.)

Conjecture

If T is self-adj., then its eigenvalues are real.
Proof (Kayla’s solution):

Suppose Tv = λv

⟨Tv, v⟩ = λ⟨v, v⟩ = λ⟨v, v⟩ ⇒ λ = λ ⇒ λ ∈ R

4. Q: If ⟨Tv, v⟩ = 0 for all v ∈ V and T is self-adj.?

Hint: ⟨T (u+ iv), u+ iv⟩ = 0

Proof (Gabriel & friends):

⟨T (u+ iv), u+ iv⟩ = 0

= ⟨Tu+ iTv, u+ iv⟩ = ⟨Tu, u+ iv⟩+ ⟨iTv, u+ iv⟩

= ⟨Tu, u⟩+ i⟨Tu, v⟩+ i⟨Tv, u⟩ − ⟨Tv, v⟩ = 0

Since ⟨Tv, v⟩ = 0 ⇒ ∥Tv∥2 = 0 ⇒ Tv = 0 ⇒ T = 0

5. Q: Suppose T is self-adj. and we know kerT ⊥ Im T

Let v ∈ Im(T ) ⇒ v = T (u)

Then ⟨v, x⟩ = ⟨T (u), x⟩ = ⟨u, T (x)⟩
If x ∈ ker(T ), T (x) = 0 ⇒ ⟨u, 0⟩ = 0 ⇒ ⟨v, x⟩ = 0

⇒ ker(T ) ⊥ Im(T )
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6. Bonus puzzle: T is not necessarily self-adjoint

7. Q: T + T ∗ = T ∗ + T

So T + T ∗ is self-adjoint even if T isn’t necessarily self-adj.

8. Q: What about TT ∗?

(TT ∗)∗ = T ∗∗T ∗ = TT ∗ ⇒ self-adjoint

9. Q: What about T ∗T?
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Lecture 2 — Self-Adjoint and Normal Operators

Let (V, ⟨·, ·⟩) be a finite-dimensional inner product space over F ∈ {R,C}.

Definition (Self-Adjoint Operator)

Let T ∈ L(V ). We say that T is self-adjoint if

T = T ∗.

Properties:

• If T is self-adjoint, then TT ∗ and T ∗T are also self-adjoint.

• If T = T ∗, then for all v ∈ V ,
⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨Tv, v⟩ ∈ R.

Hence, all eigenvalues of T are real.

• If ⟨Tv, v⟩ = 0 for all v ∈ V , then T = 0.

Definition (Normal Operator)

Let T ∈ L(V ). We say that T is normal if

TT ∗ = T ∗T.

Remarks:

• Every self-adjoint operator is normal.

Proposition 1

T is normal if and only if ∥Tv∥ = ∥T ∗v∥ for all v ∈ V .
Pf: Suppose T is normal. Then

∥Tv∥2 = ⟨Tv, Tv⟩ = ⟨T ∗Tv, v⟩,

∥T ∗v∥2 = ⟨T ∗v, T ∗v⟩ = ⟨TT ∗v, v⟩.
Since TT ∗ = T ∗T , it follows that

∥Tv∥2 = ∥T ∗v∥2 ⇒ ∥Tv∥ = ∥T ∗v∥.

Conversely, suppose that for all v ∈ V , ∥Tv∥ = ∥T ∗v∥. Then

∥Tv∥2 = ∥T ∗v∥2 ⇒ ⟨T ∗Tv, v⟩ = ⟨TT ∗v, v⟩ ⇒ ⟨(T ∗T − TT ∗)v, v⟩ = 0.

Since this holds for all v ∈ V , it follows that T ∗T = TT ∗, so T is normal.

Proposition 2

If T is normal and Tv = λv, then
T ∗v = λv.

Pf: Suppose Tv = λv and T is normal. Then

∥Tv∥2 = |λ|2∥v∥2, ∥T ∗v∥2 = ∥Tv∥2 = |λ|2∥v∥2.

Also,
TT ∗v = T ∗Tv = T ∗(λv) = λT ∗v,

so T ∗v is also an eigenvector with eigenvalue λ. Therefore,

T ∗v = λv.

The proofs of proposition 1 and 2 above are courtesy of Gabriel and Ari.
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Complex Case: Real and Imaginary Parts of an Operator

Suppose F = C and T ∈ L(V ). Then

T =
T + T ∗

2
+ i · T − T ∗

2i
= Re(T ) + i Im(T ),

where:

Re(T ) =
T + T ∗

2
, Im(T ) =

T − T ∗

2i
.

Properties:

• Re(T )∗ = Re(T )

• Im(T )∗ = Im(T )

• If T is normal, then
Re(T ) Im(T ) = Im(T )Re(T ).
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