Math 115A Week 8 Notes

May 24, 2025

1 Monday

05/19/2025

Definition 1.1. (complex numbers) $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}$ where i is a special number with property $i^2 = -1$

Operations on complex numbers:

1. (a + bi) + (c + di) = a + c + (b + d)i2. (a + bi)(c + di) = ac - bd + bci + adi = (ac - bd) + (ad + bc)3. $\overline{a + bi} = a - bi$

Definition 1.2. (normed vector space)

A normed vector space is a vector space over \mathbb{C} or \mathbb{R} with a norm function $\|\cdot\| : V \to \mathbb{R}$ satisfying these properties:

- 1. $\forall v, ||v|| = 0$
- 2. $\forall v \in V \text{ if } ||v|| = 0$, then v = 0
- 3. $\forall v \in V, \forall c \in \mathbb{F} ||cv|| = |c| ||v||$
- 4. $\forall u, v \in V, ||u + v|| \le ||u|| + ||v||$

Definition 1.3. (inner product space)

is a vector space V, with a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$. satisfying properties:

- 1. linear in first argument
 - (a) $\forall u, v, w \in V, \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
 - (b) $\forall v, w \in V, \forall c \in \mathbb{F} < cv, w \ge c < v, w \ge c$
- 2. $\forall v, w \in V, \langle v, w \rangle = \overline{\langle w, v \rangle}$ "conjugate symmetry" Notice: if $z \in \mathbb{R}, z = \overline{z}$
- 3. $\forall v \in V, \langle v, v \rangle \in R \ge 0$, and [if $\langle v, v \rangle = 0$ then v = 0]

Question:(Avik) Why did Kye not say $\langle \cdot, \cdot \rangle$ is linear in the second argument?

Question: (Kye) Given a vector space \mathbb{C}^2 . Come up with

- 1. A valid norm function?
- 2. inner product?

Answers: Question (Avik), Answer():

$$< u, av + bw > = \overline{\langle av + bw, u \rangle}$$

$$= \overline{a < v, u > b < w, u \rangle}$$

$$= \overline{a < v, u > b < w, u \rangle}$$

$$= a < u, v > b < u, w > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b < u > b <$$

Lemma 1.1. For $z_1, z_2 \in \mathbb{C}$, $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

Question(Kye):
Answer(Kyle): For
$$\binom{z_1}{z_2}$$
, the norm is $\sqrt{z_1\overline{z_1} + z_2\overline{z_2}}$
Answer(Jasmine): For $\binom{a+bi}{c+di}$, the norm is $|a| + |b| + |c| + |d|$

2 Tuesday

5/20/2025

For $x, y \in \mathbb{C}$:

1. $\overline{x+y} = \overline{x} + \overline{y}$

Proof. let x = a + bi, y = c + di

$$\overline{(a+c+(b+d)i)} = a+c-(b+d)i$$
$$= a-bi+c-di$$
$$= \overline{x}+\overline{y}$$

Г		٦
L		
-	-	_

2. $\overline{xy} = \overline{x} \cdot \overline{y}$

Proof. let
$$x = a + bi$$
, $y = c + di$

$$\overline{(a + bi)(c + di)} = \overline{(a + bi)(c + di)}$$

$$= ac - bd - (ad + bc)i$$

$$= ac - adi - bci - bd$$

$$= (a - bi)(c - di)$$

$$= \overline{x} \cdot \overline{y}$$

Q: is $\langle \cdot, \cdot \rangle$ linear in second arg?

1. linear in addition

$$\begin{split} \langle u, v + w \rangle &= \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} \\ &= \overline{\langle v, u \rangle} + \overline{\langle w, u \rangle} \\ &= \langle u, v \rangle + \langle u, w \rangle \end{split}$$

2. Linear in scalar multiplication

$$\langle u, cv \rangle = \overline{\langle cv, u \rangle} = \overline{c \langle v, u \rangle}$$
$$= \overline{c} \langle u, v \rangle$$

Q: If I have an inner product, do I also have a norm? Define:

$$\|v\| = \sqrt{\langle v, v \rangle}$$

- 1. Non-negative As $\langle v, v \rangle$ is non-negative, $\sqrt{\langle v, v \rangle}$ must also be non-negative.
- 2. Positive Definition

$$\begin{aligned} \|cv\| &= \sqrt{\langle cv, cv \rangle} \\ &= \sqrt{c\langle v, cv \rangle} \\ &= \sqrt{c\langle v, cv \rangle} \\ &= \sqrt{c\overline{\langle cv, v \rangle}} \\ &= \sqrt{c\overline{c}\langle v, v \rangle} \\ &= |c|\sqrt{\langle v, v \rangle} \\ &= |c| \|v\| \end{aligned}$$

- 3. Triangle Inequality Proved later on
- 4. Absolute Homogeneity

$$\|v\| = 0 \implies v = 0$$
$$\sqrt{\langle v, v \rangle} = 0$$
$$\langle v, v \rangle = 0$$
$$v = 0$$

Side Quests: If we're given u,v satisfying $\langle u, v \rangle = 0$ what is ||u + v||?

$$\begin{aligned} \|u+v\| &= \sqrt{\langle u+v, u+v \rangle} \\ &= \sqrt{\langle u, u+v \rangle + \langle v, u+v \rangle} \\ &= \sqrt{\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle} \\ &= \sqrt{\langle u, u \rangle + \langle v, v \rangle} \\ &= \sqrt{\|u\|^2 + \|v\|^2} \end{aligned}$$

Thus $||u + v||^2 = ||u|| + ||v||$, which is the Pythagorean Theorem.

Definition 2.1. $u, v \in V$ are orthogonal if $\langle u, v \rangle = 0$

3 Wednesday

05/22/2025

Let $V, \langle \cdot, \cdot \rangle$ be an inner prod space over $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$

Orthogonal Projections Let $||v|| = \sqrt{\langle v, v \rangle}$. Then $||v + w||^2 = ||v||^2 + 2Re\langle v, w \rangle + ||w||^2$

Prop: (Pythagorean Theorem) If $\langle v, w \rangle = 0$, then $||v + w||^2 = ||v||^2 + ||w||^2$

Thm: $(V, \|\cdot\|)$ is an normed space (i.e. $\|\cdot\|$ is indeed a norm)

It remains to show that $||v + w|| \le ||v|| + ||w||$ (for all $v, w \in V$), which would follow from $Re\langle v, w \rangle \le ||v|| \cdot ||w||$

Q: Given $v, w \in V \le w \neq 0$, find $\alpha \in \mathbb{F}$ st $v - \alpha w \perp w$.

A:

$$v - \alpha w \perp w \iff \langle v - \alpha w, w \rangle = 0$$
$$\iff \langle v, w \rangle - \alpha \langle w, w \rangle = 0$$
$$\iff \alpha = \frac{\langle v, w \rangle}{\langle w, w \rangle} = \frac{\langle v, w \rangle}{\|w\|^2}$$

Def: The (Orthogonal) Projection of v onto w is $proj_w(v) := \frac{\langle v, w \rangle}{\langle w, w \rangle} w$

Notice that:

$$\|proj_{w}(v)\| \leq \|v\| \iff \left\|\frac{\langle v, w \rangle}{\|w\|^{2}}w\right\| \leq v \ (*)$$
$$\iff \frac{|\langle v, w \rangle|}{\|w\|^{2}}\|w\| \leq \|v\|$$
$$\iff |\langle v, w \rangle| \leq \|v\|\|w\|$$

This inequality is called the **Cauchy-Schawrz Inequality** Note, if $|\langle v, w \rangle| \le ||v|| ||w||$ then $Re\langle v, w \rangle \le ||v|| ||w||$

and (*) holds b/c: $\|v\|^2 = \|\alpha w\|^2 + \|v - \alpha w\|^2$ by Pythagorean thm ($v - \alpha w \perp \alpha w$ by def of α) Then $\|v\|^2 = \|\alpha w\|^2 + \|v - \alpha w\|^2 \ge \|proj_w(v)\|^2$

Prop:

 $||v - proj_w(v)|| \le ||v - w'||$ for all $w' \in span\{w\}$ (is projection minimizes the distance to v within $span\{w\}$), with equality iff $w' = proj_w(v)$.

Proof:

$$\|v - \beta w\|^{2} = \|v - \alpha w\|^{2} + \|\beta w - \alpha w\|^{2}$$
$$\|v - \beta w\|^{2} \ge \|v - \alpha w\|^{2}$$
$$\text{if } \|v - \beta w\|^{2} = \|v - \alpha w\|^{2} \implies \alpha = \beta$$

Is $v - \alpha w \perp \beta w - \alpha w$? $\langle v - \alpha w, (\beta - \alpha)w \rangle = \overline{\beta - \alpha} \langle v - \alpha w, w \rangle = 0$

Generalize: Given $v \in V$ and a subspace W w/ basis $\{w_1, \dots, w_m\}$, find $w \in W$ st $v-w \perp W$, ie, $v \perp w'$ for all $w' \in W$.

By linearity, it suffices to find scalars $\alpha_q, \dots, \alpha_m \in \mathbb{F}$ st for each j, $\langle v - \sum_{i=1}^m \alpha_i w_i, w_j \rangle = 0$

4 Thursday

05/22/2025

Fix $v, w \in V$, $w \neq 0$, then $proj_w(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle}$ Useful Properties:

- 1. minimizes distance to v among all elements $m \in span\{w\}$
- 2. $v proj_w(v) \perp w$
- 3. $||v proj_w(v)|| \le ||v w'||$

Q: Given $\{w_1w_2\}$ basis of subspace $W = span\{w_1, w_2\}$. Given V, come up with a formula for $proj_W(v)$ so that.

- 1. $\forall x \in W, v proj_W(v) \perp x$
- 2. $\forall x \in W, ||v proj_W(v)|| \le ||v x||$

Assume that w_1, w_2 are orthonormal:

- 1. $w_1 \perp w_2$
- 2. $||w_1|| = ||w_2|| = 1$

Proposal: $proj_W(v) = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2$

If $w_1 \cdots w_n$ orthonormal, define: $proj_W(v) := \sum_{i=1}^n \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i$

Prove:

1.
$$\forall w \in W, \langle v - proj_W(v), w \rangle = 0$$

2. $\forall w' \in W, ||v - projW(v)|| \le ||v - w'||$

Given basis $B = \{b_1, \dots, b_n\}$ We want to construct an orthonormal set using B.

Define:

$$b'_{1} = b_{1}$$

$$b'_{2} = b_{2} - proj_{b'_{1}}b_{2}$$

$$b'_{3} = b_{3} - proj_{b'_{1}}b_{3} - proj_{b'_{2}}b_{3}$$

$$\vdots$$

$$b'_{k} = b_{k} - \sum_{i=1}^{k-1} proj_{b'_{i}}b_{k}$$

Finally, define $\forall i = 1 \cdots n$ $\hat{b}_i = \frac{b'_1}{\|b'_i\|}$

OMG GRAHAM SHMIDT

If $\hat{b}_i \cdots \hat{b}_n$ orthonormal then linearly independent and spanning? Why does this not fail, how come $b'_i \neq 0$ If $\hat{B} = {\hat{b}_1, \cdots, \hat{b}_n}$ is basis? what is ||x|| in terms of $[x]_{\hat{B}}$

4.1 Friday

05/25/2025

 $\forall w \in W, \, v - proj_w \perp w'$

Proof. (Jamie)

Consider some $\langle v - proj_w v, w' \rangle$, by linearity in the first term

$$\langle v - proj_w v, w' \rangle = \langle v, \sum_{i=1}^m \alpha_i w_I \rangle - \langle \sum_{i=1}^m \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i, \sum_{j=1}^m \alpha_j w_j \rangle$$
$$= \sum_{i=1}^m \overline{\alpha_i} \langle v, w_i \rangle - \sum_{i=1}^m \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} \sum_{j=1}^m \alpha_j \langle w_i, w_j \rangle$$

As W is orthonormal all inner product of $i \neq j$ are 0

$$=\sum_{i=1}^{m} \overline{\alpha_i} \langle v, w_i \rangle - \sum_{i=1}^{m} \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} \alpha_i \langle w_i, w_i \rangle$$
$$=\sum_{i=1}^{m} \overline{\alpha_i} \langle v, w_i \rangle - \sum_{i=1}^{m} \alpha_i \langle v, w_i \rangle = 0$$

$\ v - proj_w v\ \leq$	$\leq \ v - w'\ $
-------------------------	-------------------

Proof. Observe, $proj_wv - w' \in W$ Thus, $v - proj_wv \perp proj_wv - w'$ By Pythagorean Theorem:

$$||v - w'||^2 = ||v - proj_w v||^2 + ||proj_w v - w'||^2 \ge ||v - proj_w v||$$

Definition 4.1. (Orthogonal Complement) For a subset $W \subseteq V$, the Orthogonal Complement is:

 $W^{\perp} := \{ v \in V : w \in W, \langle v, w \rangle = 0 \}$

Prop: Let $W \subseteq V$, then W^{\perp} is a subspace of V.

Proof. (Avik) WTS: $0 \in W^{\perp}$, and that W^{\perp} is closed under addition and scalar multiplication.

- 1. $\langle 0, w \rangle = 0$
- 2. $\forall v, w \in V \text{ st } \langle v, w \rangle = 0$, For $\alpha \in \mathbb{F}$, $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle = 0$
- 3. $\forall v_1, v_2, w \text{ st } \langle v_1, w \rangle = 0 \text{ and } \langle v_2, w \rangle 0:$ $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle = 0$

If W is a finite dimensional subspace of V and $v \in V$, we showed that $w := proj_w(v)$ is the unique vector satisfying:

- 1. $w \in W$
- 2. $v w \in W^{\perp}$

Prop: Let W be a finite dimensional subspace of V and $P_w := proj_w$, then $P_w \in L(W)$

Proof. (Alan)

- 1. $\forall v \in V, P_w(v) \in V$ As all $P_w(v) \in W$ and $W \subseteq V$, then $P_w(v) \in V$
- 2. $P_w(\alpha v_1 + v_2) = \alpha P_w(v_1) + P_w(v_2)$ $\alpha v_1 + v_2 + \alpha P_w(v_1) + P_w(v_2) \in W$ As for any vector v there exists a unique w such that $v w \in W^{\perp}$, thus $P_w(v_1) + P_w(v_2) = P(\alpha v_1 + v_2)$