
Math 115A Week 3 Scribe Notes

LECTURE 1 | Monday, 4/14

Notation (for 𝔽 being a field)

- 𝔽mxn: mxn matrices with entries in 𝔽

- 𝔽ℕ: sequences with terms in 𝔽

- Ex: (x1, x2, …, xn), xi∈ 𝔽

- C(X): continues functions f:X→ℝ
- X is some set

- Satisfy pointwise addition and scalar multiplication

- (f+αg)(x) = f(x)+αg(x)

- C∞(X): continuous AND infinitely differentiable (smooth) functions f: X→ℝ

Definitions: Let f:X→Y be a function (for set X and set Y). f is:

● Injective if f(x1)=f(x2) implies x1=x2
○ Every reachable output has a unique input (only one)

● Surjective if ∀y∈Y, ∃x∈X: f(x) = y
○ Every output is reachable (has an input)

● Bijective if f is both injective and surjective
○ Every output is reachable by a unique input

Exercise 1 (Testing Linear Combinations and Injectivity/Surjectivity):

Everyone in class is given a function on a sheet of paper and must answer:

1) What happens when you apply the function to a sum, scalar multiple, and linear combination of

vectors?

2) Is the function injective, surjective, and/or bijective?

Solutions to Exercise 1 (for a sample function):

Sample function:
- T : C∞(ℝ) → C∞(ℝ)
- (T(f))(x) := (f(x)) - f(x)𝑑

𝑑𝑥
Questions:



1) (a) Check sum
(T(f+g))(x) = (f(x) + g(x)) - (f(x) + g(x))𝑑

𝑑𝑥

(T(f+g))(x) = ( f(x) - f(x)) + ( g(x) - g(x)𝑑
𝑑𝑥

𝑑
𝑑𝑥

(T(f+g))(x) = (T(f))(x) + (T(g))(x)

(b) Check scalar multiplication
(T(∝f))(x) = (∝f(x)) - ∝f(x)𝑑

𝑑𝑥

(T(∝f))(x) = ∝( f(x) - f(x))𝑑
𝑑𝑥

(T(∝f))(x) = ∝(T(f))(x)

(c) Check linear combinations
(T(∝1f + ∝2g))(x) = (∝1f(x) + ∝2g(x)) - (∝1f(x) + ∝2g(x))𝑑

𝑑𝑥

(T(∝1f + ∝2g))(x) = ∝1( f(x) - f(x)) + ∝2( g(x) - g(x))𝑑
𝑑𝑥

𝑑
𝑑𝑥

(T(∝1f + ∝2g))(x) = ∝1(T(f))(x) + ∝2(T(g))(x)
2) (a) Check if T is injective

For f = ex and g = 0,
(T(f))(x) = ex - ex = 0
(T(g))(x) = 0 - 0 = 0
Thus, because inputting f and g produce the same output, T is not injective

(b) Check if T is surjective
(Didn’t have time to work on or discuss this proof)

(c) Check if T is bijective
Since T is not injective, T is not bijective

Definition (Linear Map):

A map T:V→W (for V and W being vector spaces over 𝔽) is LINEAR if:
1) T(v1+v2+...+vn) = T(v1) + T(v2) + … + T(vn) for v1, ..., vn ∈ V
2) T(∝v) = ∝T(v), for ∝ ∈ 𝔽 and v  ∈ V

Which is equivalent to saying
3) T(∝1v1 + ∝2v2 + … + ∝nvn) = ∝1T(v1) + ∝2T(v2) + … + ∝nT(vn) for ∝1, …, ∝n ∈ 𝔽 and

v1, …, vn ∈ V

Proof (for equivalent statements):

Suppose T(∝1v1 + … + ∝nvn) = ∝1T(v1) + … + ∝nT(vn)

If every ∝i = 0 except for ∝j, then we have T(∝jvj) = ∝jT(vj), which is statement 1

If ∝1, …, ∝n = 1, then we have T(v1 + … + vn) = T(v1) + … + T(vn), which is statement 2

Thus, statement 3 is equivalent to saying statement 1 and statement 2 together



DISCUSSION 1 | Tuesday, 4/15

Recap of Lecture 1:

Definition (Linear Map)
● Given two vector spaces V, W
● f: V → W is linear if

1. ∀𝑣
1
, 𝑣

2
 ϵ 𝑉;  𝑓(𝑣

1
+ 𝑣

2
) =  𝑓(𝑣

1
) + 𝑓(𝑣

2
)

2. ∀𝜆 , ∀ ; ∈ 𝔽 𝑣 ϵ 𝑉 𝑓(𝜆𝑣) =  𝜆𝑓(𝑣)

Exercise Set 1 (Testing Linearity of Linear Maps):

Approach: To test for linearity, check that the linear maps follow the (a) additive and (b) scalar

multiplication operations defined above.

1. 𝑓: ℝ →ℝ,  𝑓(𝑥) = 𝑥 + 1 

2. 𝑓: 𝒫
𝑛
(ℝ)→ℝ,  𝑓(𝑝) = 𝑝(1) 

3. 𝑓: 𝐶(ℝ)→𝐶(ℝ),  [𝑓(𝑎)](𝑥) = 𝑥𝑎(𝑥) 

4. 𝑓: 𝐶(ℝ)→𝐶(ℝ),  (𝑓(𝑎))(𝑥) = 𝑥 + 𝑎(𝑥) 

SOLUTIONS to Exercise Set 1:
1. (a) Check Addition

𝑥
1
, 𝑥

2
∈ ℝ

𝑓(𝑥
1
) = 𝑥

1
+ 1

𝑓(𝑥
2
) = 𝑥

2
+ 1

𝑓(𝑥
1

+ 𝑥
2
) = (𝑥

1
+ 𝑥

2
) + 1

𝑓(𝑥
1
) + 𝑓(𝑥

2
) = (𝑥

1
+ 1) + (𝑥

2
+ 1) = 𝑥

1
+ 𝑥

2
+ 2

Thus, since ≄ , the function is NOT linear.𝑓(𝑥
1

+ 𝑥
2
) 𝑓(𝑥

1
) + 𝑓(𝑥

2
)

2. Isabel’s Solution:
(a) Check Addition
Let and𝑝

1
= 𝑎

1
𝑥𝑛 + 𝑎

2
𝑥𝑛−1 +.  .  . + 𝑎

𝑛
𝑥0 𝑝

2
= 𝑏

1
𝑥𝑛 + 𝑏

2
𝑥𝑛−1 +.  .  . + 𝑏

𝑛
𝑥0

𝑓(𝑝
1

+ 𝑝
2
) = [(𝑝

1
+ 𝑝

2
)(1)] = [((𝑎

1
+ 𝑏

1
)𝑥𝑛 + (𝑎

2
+ 𝑏

2
)𝑥𝑛−1 +.  .  (𝑎

𝑛
+ 𝑏

𝑛
)𝑥0)(1)]

= (𝑎
1

+ 𝑏
1
) + (𝑎

2
+ 𝑏

2
) +.  .  . + (𝑎

𝑛
+ 𝑏

𝑛
) = 𝑝

1
(1) + 𝑝

2
(1)

= (𝑎
1

+ 𝑎
2

+.  .  . + 𝑎
𝑛
) + (𝑏

1
+ 𝑏

2
+.  .  . + 𝑏

𝑛
)

(b) Check Scalar Multiplication
𝑓(λ𝑝

1
) = λ𝑓(𝑝

1
) = λ[(𝑎

1
𝑥𝑛 + 𝑎

𝑛
𝑥0)(1) = λ(𝑎

1
+.  .  .  +  𝑎

𝑛
) = λ𝑝

1
(1)

Thus, since addition and scalar multiplication both hold, the function is LINEAR.
3. Robert’s Solution:

(a) Check Addition:
𝑓(𝑎) = 𝑥𝑎(𝑥)



𝑓(𝑎 + 𝑏) = 𝑥(𝑎 + 𝑏)
𝑓(𝑎) + 𝑓(𝑏) = 𝑥𝑎 + 𝑥𝑏 = 𝑥(𝑎 + 𝑏)

(b) Check Multiplication:
𝑓(𝛼𝑎) = 𝑥𝛼𝑎(𝑥)
𝛼𝑓(𝑎) = 𝛼𝑥𝑎(𝑥) 

Since = and addition holds, this is LINEAR.𝑓(𝛼𝑎) 𝛼𝑓(𝑎)
4. (a) Check Addition

𝑎, 𝑏 ∈ 𝐶(ℝ)
𝑓(𝑎 + 𝑏)(𝑥) = 𝑓(𝑎 + 𝑏)(𝑥) = 𝑥 + (𝑎 + 𝑏)(𝑥) = 𝑥 + 𝑎𝑥 + 𝑏𝑥
𝑓(𝑎)(𝑥) + 𝑓(𝑏)(𝑥) = (𝑥 + 𝑎(𝑥)) + (𝑥 + 𝑏(𝑥)) = 2𝑥 + 𝑎(𝑥) + 𝑏(𝑥)
Since ≄ , the function is NOT linear.𝑓(𝑎 + 𝑏)(𝑥) 𝑓(𝑎)(𝑥) + 𝑓(𝑏)(𝑥)

Observation:

If f is linear, then … maybe?𝑓(0) = 0

Review:

● Injective (one-to-one): If , then𝑓(𝑥
1
) = 𝑓(𝑥

2
) 𝑥

1
= 𝑥

2

*Not injective since multiple inputs have the same output

● Surjective (onto): ∀ s.t.𝑏 ∈ 𝐵,  ∃ 𝑎 ϵ 𝐴 𝑓(𝑎) = 𝑏

*Surjective since each output is “accounted for” or “mapped to”

● Bijective: Both injective and surjective

Definition (Kernel)
● If is linear,𝑓: 𝑉→𝑊 𝑘𝑒𝑟𝑓 = {𝑎 ϵ 𝑉:  𝑓(𝑎) = 0}

Definition (Image)
● If is linear,𝑓: 𝑉→𝑊 𝑖𝑚𝑓 = {𝑤 ϵ 𝑊:  ∃ 𝑣 ϵ 𝑉,  𝑓(𝑣) = 𝑤}

Exercise Set 2:



Q: What is the kernel and image of each function? What are the dimensions of the kernel/image?

What does kernel/image have to do with being injective/surjective?

1. ;𝑇:  𝒫
3
(ℝ)→ℝ 𝑇(𝑝) = 𝑝(1)

2. ;𝑇:  𝒫
𝑛
(ℝ)→𝒫

𝑛
(ℝ) 𝑇(𝑝) = ∂2

∂𝑥2 𝑝(𝑥)

3. ; *𝑇:  𝔽𝑛→𝔽𝑛−1 𝑇(𝑥
1
,  .  .  .,  𝑥

𝑛
) =  𝑇(𝑥

2
,  .  . .,  𝑥

𝑛
)

*Kye’s suggestion is to start with the 3rd exercise first, as it is easier.

SOLUTIONS to Exercise Set 2:

1. Kernel: 𝑘𝑒𝑟𝑇 = {(− 𝑎
1

− 𝑎
2

− 𝑎
3
) + 𝑎

1
𝑥 + 𝑎

2
𝑥2 + 𝑎

3
𝑥3}

Image: 𝑖𝑚𝑇 = ℝ 
Dimension: ,𝑑𝑖𝑚(𝑘𝑒𝑟𝑇) =  3 𝑑𝑖𝑚(𝑖𝑚𝑓) = 1

2. Kernel: 𝑘𝑒𝑟𝑇 = {α
1

+ α
2
𝑥,  α

1
,  α

2
ϵ ℝ}

Image: 𝑖𝑚𝑇 = 𝒫
𝑛−2

(ℝ) 
Dimension: ,𝑑𝑖𝑚(𝑘𝑒𝑟𝑇) =  2 𝑑𝑖𝑚(𝑖𝑚𝑇) = 𝑛 − 2

3. Kernel: 𝑘𝑒𝑟𝑇 = (𝑘, 0,  .  . .,  0),  𝑘 ϵ ℝ
Image: 𝑖𝑚𝑇 = 𝔽𝑛−1

Dimension: ,𝑑𝑖𝑚(𝑘𝑒𝑟𝑇) =  1 𝑑𝑖𝑚(𝑖𝑚𝑇) = 𝑛 − 1

Ending Note
We must define the domain and codomain as vector spaces before finding the kernel/image!!

Ponder
What is the correlation between the dimension of the kernel and image? Ponder this until the
next class…



LECTURE 2 | Wednesday, 4/16

KERNEL AND IMAGE

Let V, W be vector spaces over and𝔽 𝑇 ϵ 𝐿(𝑉,  𝑊)
⋆ is the set of Linear maps from𝐿(𝑉,  𝑊) 𝑉 → 𝑊

Define: The “KERNEL” of is:𝑇 𝑘𝑒𝑟(𝑇) ≔ {𝑣 ϵ 𝑉 :  𝑇𝑣 = 0} ⊆ 𝑉
⋆ This can be read as “the kernel of is all the inputs that map to 0”𝑇

Define: The “IMAGE” of is:𝑇 𝑖𝑚(𝑇)≔ {𝑇𝑣 :  𝑣 ϵ 𝑉} ⊆ 𝑊
⋆ This can be read as “the image of is all the mappable outputs”𝑇

Example 1:
𝑇: 𝑃

4
(ℝ) → 𝑃

3
(ℝ)

(𝑇𝑓)(𝑥) ≔ 𝑓"(𝑥)

“When does ?” “When does ?”𝑇𝑓 = 0 ⇔ 𝑓"(𝑥) = 0



𝑇𝑓 = 0
⇒ 𝑓"(𝑥) = 0
⇒ 𝑓'(𝑥) = α

1
,  α

1
 ϵ ℝ

⇒ 𝑓'(𝑥) = α
1
𝑥 + α

2
,  α

1
, α

2
 ϵ ℝ

𝑘𝑒𝑟(𝑇) = {α
1
𝑥 + α

2
:  α

1
, α

2
 ϵ ℝ} = 𝑃

1
(ℝ)

This is a vector space of !↳ 𝑃4

𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇)) = 𝑑𝑖𝑚(𝑃
1
(ℝ)) = 2

More generally,↳ 𝑑𝑖𝑚(𝑃
𝑛
(ℝ)) = 𝑛 + 1

If , then ,𝑓 ϵ 𝑃
4
(ℝ) 𝑓(𝑥) = α

4
𝑥4 + α

3
𝑥3 + α

2
𝑥2 + α

1
𝑥 + α

0

So (𝑇𝑓)(𝑥) = (4α
4
𝑥3 + 3α

3
𝑥2 + 2α

2
𝑥 + α

1
)' = 12α

4
𝑥2 + 6α

3
𝑥 + 2α

2
 ϵ 𝑃

2
(ℝ)

This shows that something in the image must be contained within↳ 𝑃
2
(ℝ)

𝑖𝑚(𝑇) ⊆ 𝑃
2
(ℝ)

Conversely, if we have some ,𝑔(𝑥) = β
2
𝑥2 + β

1
𝑥 + β

0
 ϵ 𝑃

2
(ℝ)

Then taking gives12α
4

= β
2
,  6α

3
= β

1
, 2α

2
= β

0
𝑇𝑓 = 𝑔

If I have something in , I can apply T and get anything in↳ 𝑃
2

𝑃
2

𝑃
2
(ℝ) ⊆ 𝑖𝑚(𝑇)

Hence, , and↳ 𝑖𝑚(𝑇) = 𝑃
2
(ℝ) 𝑑𝑖𝑚(𝑖𝑚(𝑇)) = 3

Observations from Ex. 1:
⋆ is a subspace of𝑘𝑒𝑟(𝑇) = 𝑃

1
(ℝ) 𝑉 = 𝑃

4
(ℝ)

⋆ is a subspace of𝑖𝑚(𝑇) = 𝑃
2
(ℝ) 𝑊 = 𝑃

2
(ℝ)

⋆ since𝑑𝑖𝑚(𝑉) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇)) + 𝑑𝑖𝑚(𝑖𝑚(𝑇)) 5 = 2 + 3

Example 2:
𝑇: ℝ2𝑥2 → ℝ2𝑥2

𝑇
𝑎

21

𝑎
11

𝑎
22

𝑎
12  ⎡

⎢
⎣

⎤
⎥
⎦( ) ≔ 1

2 (𝑎
21

+𝑎
12

)

         𝑎
11

        𝑎
22

1
2 (𝑎

21
+𝑎

12
)
  ⎡

⎢
⎣

⎤
⎥
⎦



⋆ What are ?𝑘𝑒𝑟(𝑇),  𝑖𝑚(𝑇)
⋆ Are they subspaces? If so, what ?𝑑𝑖𝑚

Set 1
2 (𝑎

21
+𝑎

12
)

         𝑎
11

        𝑎
22

1
2 (𝑎

21
+𝑎

12
)
  ⎡

⎢
⎣

⎤
⎥
⎦
 =

0
0

0
0   ⎡⎢⎣

⎤⎥⎦ 

, which is a subspace of⇒ 𝑘𝑒𝑟(𝑇) =
−𝑎

12

0
0

𝑎
12  ⎡

⎢
⎣

⎤
⎥
⎦
 , ∀𝑎

12
 ϵ ℝ

⎰
⎱

⎱
⎰ 𝑉

By simply identifying the output from the problem statement,

, which is a subspace of⇒ 𝑖𝑚(𝑇) = 1
2 (𝑎

21
+𝑎

12
)

         𝑎
11

        𝑎
22

1
2 (𝑎

21
+𝑎

12
)
  ⎡

⎢
⎣

⎤
⎥
⎦
 ,  ∀𝑎

11
... 𝑎

22
 ϵ ℝ

⎰
⎱

⎱
⎰ 𝑉

𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇)) = 1
𝑑𝑖𝑚(𝑖𝑚(𝑇)) = 3
⇒ 𝑑𝑖𝑚(𝑇) = 4 = 1 + 3

Prop: is a subspace of𝑘𝑒𝑟(𝑇) 𝑉

pf: Using the subspace test, since . If and , then0 ϵ 𝑘𝑒𝑟(𝑇) 𝑇0 = 0 𝑣
1
,  𝑣

2
 ϵ 𝑘𝑒𝑟(𝑇) α ϵ 𝔽

, so is closed under addition &𝑇(𝑣
1

+ α𝑣
2
) = 𝑇𝑣

1
+ 𝑇α𝑣

2
= 0 + α0 = 0 𝑘𝑒𝑟(𝑇)

scalar multiplication.

Prop: is a subspace of𝑖𝑚(𝑇) 𝑉

pf: [This was left as an exercise to the reader]

Define: The “KERNEL” of is:𝑇 𝑛𝑢𝑙𝑙(𝑇) ≔ 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇))

Define: The “RANK” of is:𝑇 𝑟𝑎𝑛𝑘(𝑇) ≔ 𝑑𝑖𝑚(𝑖𝑚(𝑇))

Theorem: “Rank-Nullity Theorem”: If is finite-dimensional, then𝑉
𝑑𝑖𝑚(𝑉) = 𝑛𝑢𝑙𝑙(𝑇) + 𝑟𝑎𝑛𝑘(𝑇)



pf: Let 𝑛 ≔ 𝑑𝑖𝑚(𝑉),  𝑘 ≔ 𝑛𝑢𝑙𝑙(𝑇) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇)) ≤ 𝑛
Let be a basis of{𝑣

1
, ...  , 𝑣

𝑘
} 𝑘𝑒𝑟(𝑇)

Extend to a basis of{𝑣
1
, ...  , 𝑣

𝑘
} {𝑣

1
, ...  , 𝑣

𝑘
,  𝑣

𝑘+1
,  𝑣

𝑘+2
,  ...  ,  𝑣

𝑛
} 𝑉

Now if and , then𝑣 ϵ 𝑉 𝑣 = α
1
𝑣

1
+ α

2
𝑣

2
+  ...  +  α

𝑛
𝑣

𝑛
(all kernel terms drop out),𝑇𝑣 = α

𝑘+1
𝑣

𝑘+1
+  ... +  α

𝑛
𝑣

𝑛
So 𝑖𝑚(𝑇) = 𝑠𝑝𝑎𝑛{𝑇𝑣

𝑘+1
,  ...  ,  𝑇𝑣

𝑛
}

Moreover, if , thenβ
𝑘+1

𝑇𝑣
𝑘+1

+  ...  +  β
𝑛
𝑇𝑣

𝑛
= 0

β
𝑘+1

𝑇𝑣
𝑘+1

+  ...  +  β
𝑛
𝑇𝑣

𝑛
 ϵ 𝑘𝑒𝑟(𝑇)

Hence, because are a basis ofα
1

=... =  α
𝑘

=− β
𝑘+1

=... =− β
𝑛

= 0 𝑣
1
,  ...  ,  𝑣

𝑛
𝑉

This shows that are linearly independent.𝑇𝑣
𝑘+1

,  ...  ,  𝑇𝑣
𝑛

Therefore, 𝑟𝑎𝑛𝑘(𝑇) = 𝑑𝑖𝑚(𝑖𝑚(𝑇)) = 𝑛 − 𝑘

Prop: is a subspace of𝑖𝑚(𝑇) 𝑊

[something to ponder on until the next section]



DISCUSSION 2 | Thursday, 4/17

Question: If is a linear map, must ?𝑇 𝑇(0) = 0

Answer: Yes!

Proposed
pf:

[Attributed to Kaelan]
;𝑇(0) = 𝑇(α𝑣) α = 0,  𝑣 ϵ 𝑉

𝑇(α𝑣) = α𝑇(𝑣) = 0(𝑇(𝑣))
𝑇(0) = 0(𝑇(𝑣)) = 0

Guiding Question: What do the kernel and image have to do with injectivity and surjectivity?

Prop 1: If the kernel is not just , then is not injective{0} 𝑇

pf: Assume 𝑘𝑒𝑟(𝑇) ≠ {0}
⇒ |𝑘𝑒𝑟(𝑇)| > 1

such that⇒ ∃ 𝑣 ϵ 𝑘𝑒𝑟(𝑇) 𝑣 ≠ 0
⇒ 𝑇(𝑣) = 0

is NOT injective as this violates the definition of injectivity⇒ ∴ 𝑇

“If , then is not injective” “If is injective, then ”𝑘𝑒𝑟(𝑇) ≠ 0 𝑇 ⇔ 𝑇 𝑘𝑒𝑟(𝑇) = {0}

Prop 2: If , then is injective?𝑘𝑒𝑟(𝑇) = {0} 𝑇

pf: [Attributed to Brandon]

Suppose 𝑘𝑒𝑟(𝑇) = {0}
Let such that𝑣

1
,  𝑣

2
 ϵ 𝑉 𝑇(𝑣

1
) = 𝑇(𝑣

2
)

We want to show that 𝑣
1

= 𝑣
2

𝑇(𝑣
1
) = 𝑇(𝑣

2
)

⇒  𝑇(𝑣
1
) − 𝑇(𝑣

2
) = 0

⇒ 𝑣
1

− 𝑣
2
 ϵ 𝑘𝑒𝑟(𝑇) = {0}

⇒ 𝑣
1

− 𝑣
2

= 0
⇒ 𝑣

1
= 𝑣

2
is injective⇒ 𝑇



Prop 3: For linear , being surjective means𝑇: 𝑉 → 𝑊 𝑇 𝑖𝑚(𝑇) = 𝑊

pf: None given by instructor; “self-evident”

Parting Question: For , what can we𝑇: 𝑉 → 𝑊,  𝑉 = {𝑣
1
,  𝑣

2
,  ...  ,  𝑣

𝑛
},  𝑊 = {𝑤

1
,  𝑤

2
,  ...  ,  𝑤

𝑛
}

say about the following relationship?:

linearly independent linearly independent{𝑣
1
,  𝑣

2
,  ...  ,  𝑣

𝑛
} ⇐≟⇒ {𝑇(𝑣

1
),  𝑇(𝑣

2
),  ...  ,  𝑇(𝑣

𝑛
)}

[left by instructor as an exercise for the reader]



LECTURE 3 | Friday, 4/18 [Alan]

EXERCISES

Suppose we have a linear map , where and are finite-dimensional vector𝑇 :  𝑉 → 𝑊 𝑉 𝑊

spaces.

1. Show that is a subspace of .𝑖𝑚(𝑇) 𝑊

a. We also have that is a subspace of .𝑘𝑒𝑟(𝑇) 𝑉

2. Show that if and only if is injective.𝑘𝑒𝑟(𝑇) = {0} 𝑇

a. is injective if𝑇 ∀ 𝑣,  𝑣' ∈ 𝑉,  𝑇(𝑣) = 𝑇(𝑣') ⇒ 𝑣 = 𝑣'.

b. We also have that if and only if is surjective (by definition).𝑖𝑚(𝑇) = 𝑊 𝑇

3. Show that if , then is not injective.𝑑𝑖𝑚(𝑉) > 𝑑𝑖𝑚(𝑊) 𝑇

SOLUTIONS TO EXERCISES

Exercise 1 Solution

Suppose we have where Then, since is a vector𝑇(𝑢),  𝑇(α𝑣) ∈ 𝑖𝑚(𝑇), 𝑢, 𝑣 ∈ 𝑉,  α ∈ 𝔽. 𝑉

space, we must have Thus, we𝑢 + α𝑣 ∈ 𝑉 ⇒ 𝑇(𝑢 + α𝑣) = 𝑇(𝑢) + α𝑇(𝑣) ∈ 𝑖𝑚(𝑇).

have shown that is closed under addition and scalar multiplication. Moreover, we have𝑖𝑚(𝑇)

, so is non-empty. Therefore, is a subspace of .𝑇(0) =  0 𝑖𝑚(𝑇) 𝑖𝑚(𝑇) 𝑊

Exercise 2 Solution

First, we show that is injective.𝑘𝑒𝑟(𝑇) = {0} ⇒ 𝑇

Suppose we have , and for some Then,𝑘𝑒𝑟(𝑇) = {0} 𝑇(𝑣) = 𝑇(𝑣') 𝑣,  𝑣' ∈ 𝑉.

Thus, we must have . However, sine𝑇(𝑣) − 𝑇(𝑣') =  𝑇(𝑣 − 𝑣') = 0. 𝑣 − 𝑣' ∈ 𝑘𝑒𝑟(𝑇)

, we must have So, for all𝑘𝑒𝑟(𝑇) =  {0} 𝑣 − 𝑣' = 0 ⇒ 𝑣 = 𝑣'.

, i.e. is injective.𝑣,  𝑣' ∈ 𝑉,  𝑇(𝑣) = 𝑇(𝑣') ⇒ 𝑣 = 𝑣' 𝑇

Now, we show that is injective𝑇 ⇒ 𝑘𝑒𝑟(𝑇) =  {0}.



If is injective, then Let . Then, we have𝑇 𝑇(𝑣) = 𝑇(𝑣') ⇒ 𝑣 = 𝑣'  ∀𝑣,  𝑣' ∈ 𝑉. 𝑣' = 0

Since the only satisfying is , we have that𝑇(𝑣) = 0 ⇒ 𝑣 = 0 ∀𝑣 ∈ 𝑉. 𝑣 𝑇(𝑣) = 0 𝑣 = 0

𝑘𝑒𝑟(𝑇) = {0}.

Exercise 3 Solution

Since is a subspace of (Exercise 1), we have that𝑖𝑚(𝑇) 𝑊

𝑟𝑎𝑛𝑘(𝑇) = 𝑑𝑖𝑚(𝑖𝑚(𝑇)) ≤ 𝑑𝑖𝑚(𝑊).

Combining this with the given inequality yields

𝑟𝑎𝑛𝑘(𝑇) ≤ 𝑑𝑖𝑚(𝑊) < 𝑑𝑖𝑚(𝑉) ⇒ 𝑟𝑎𝑛𝑘(𝑇) < 𝑑𝑖𝑚(𝑉) ⇒ 𝑑𝑖𝑚(𝑉) − 𝑟𝑎𝑛𝑘(𝑇) > 0.

By the rank-nullity theorem, , so𝑑𝑖𝑚(𝑉) − 𝑟𝑎𝑛𝑘(𝑇) = 𝑛𝑢𝑙𝑙(𝑇) = 𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇))

Thus, cannot be , which has dimension 0. Since is injective𝑑𝑖𝑚(𝑘𝑒𝑟(𝑇)) >  0. 𝑘𝑒𝑟(𝑇) {0} 𝑇

only if (Exercise 2), we have that is not injective.𝑘𝑒𝑟(𝑇) = {0} 𝑇




