Fractal uncertainty principles for ellipsephic sets

Nicholas Hu

The University of California, Los Angeles (UCLA)

May 27, 2022
The fractal uncertainty principle (Dyatlov–Zahl, 2016)

“No function can be localized in both position and frequency close to a fractal set.”

- Applications to quantum chaos (eigenfunction control and spectral gaps on hyperbolic surfaces).
- Connections to harmonic analysis (additive energy, Fourier decay, and Fourier restriction estimates; additive combinatorics; spectral sets).
Continuous uncertainty principles

Let $F_h : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ ($0 < h \ll 1$) be the unitary semiclassical Fourier transform

$$F_h f(\xi) := \frac{1}{\sqrt{2\pi h}} \int_{\mathbb{R}} e^{-ix\xi/h} f(x) \, dx.$$

Continuous uncertainty principles (Dyatlov–Zahl, 2016)

An h-dependent family of sets $\{X_h\}_{h>0} \subseteq \mathcal{P}(\mathbb{R})$ is said to satisfy an uncertainty principle with exponent $\beta \in \mathbb{R}$ if

$$\| \mathbf{1}_{X_h} F_h \mathbf{1}_{X_h} \|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} = O(h^\beta) \quad \text{as } h \to 0.$$

(The subscript on X is typically elided.)
Example: $X = [0, h]$.

By Hölder’s inequality,

$$
\| 1_X \mathcal{F}_h 1_X \|_{L^2 \to L^2} \leq \| 1_{[0,h]} \|_{L^\infty \to L^2} \| \mathcal{F}_h \|_{L^1 \to L^\infty} \| 1_{[0,h]} \|_{L^2 \to L^1}
\]

$$
$$
= h^{1/2} \cdot (2\pi h)^{-1/2} \cdot h^{1/2},
$$

so X satisfies an uncertainty principle with exponent $\frac{1}{2}$.
Continuous fractal uncertainty principles

For “regular” fractal sets $X \subseteq [0, 1]$ of “dimension” $\delta \in [0, 1]$, we have the basic fractal uncertainty principle (FUP) exponent

$$\beta_0 := \max \left\{ 0, \frac{1}{2} - \delta \right\}.$$

Can this be improved upon (by obtaining $\beta > \beta_0$ for δ-regular families of sets)?

- Yes – when $\delta < 1$, we can obtain $\beta > 0$: improvement for $\delta \geq \frac{1}{2}$ (Bourgain–Dyatlov, 2017).
- Yes – when $\delta > 0$, we can obtain $\beta > \frac{1}{2} - \delta$: improvement for $\delta \leq \frac{1}{2}$ (Dyatlov–Jin, 2018).
An **ellipsephic** ([ˌɪlpˈsɛf.ɪk]) set in base M is a set consisting of all k-digit integers in base M with digits in some nonempty **alphabet** $\mathcal{A} \subseteq \mathbb{Z}_M := \{0, 1, \ldots, M - 1\}$. Such a set is denoted $C_k(M, \mathcal{A})$ (or simply C_k). In other words,

$$C_k = C_k(M, \mathcal{A}) := \left\{ \sum_{d=0}^{k-1} a_d M^d : a_d \in \mathcal{A} \right\}.$$

Note that $C_k \subseteq \mathbb{Z}_N$ for $N := M^k$ and $|C_k| = |\mathcal{A}|^k = N \log_M |\mathcal{A}|$.

The **dimension** of $C_k(M, \mathcal{A})$ is $\delta := \log_M |\mathcal{A}| \in [0, 1]$. We will not consider trivial alphabets with $\delta = 0$ ($|\mathcal{A}| = 1$) or $\delta = 1$ ($|\mathcal{A}| = M$).
Example: $M = 10, \mathcal{A} = \{2, 7\}$.

$$C_2(M, \mathcal{A}) = \{22, 27, 72, 77\}$$
$$\delta = \log_{10} 2 \approx 0.3$$
Let $\mathcal{F}_N : \mathbb{C}^N \to \mathbb{C}^N$ be the unitary discrete Fourier transform

$$\mathcal{F}_N u(j) := \frac{1}{\sqrt{N}} \sum_{\ell \in \mathbb{Z}_N} e^{-2\pi ij\ell/N} u(\ell) = \frac{1}{\sqrt{N}} \sum_{\ell \in \mathbb{Z}_N} \omega_N^{j\ell} u(\ell).$$

Discrete fractal uncertainty principles (Dyatlov–Jin, 2017)

A family of ellipsephic sets $\{C_k(M, A)\}_{k \geq 1}$ is said to satisfy an uncertainty principle with exponent $\beta \in \mathbb{R}$ if

$$\|1_{C_k} \mathcal{F}_N 1_{C_k} \|_{\ell^2(\mathbb{Z}_N) \to \ell^2(\mathbb{Z}_N)} \lesssim M, A \ N^{-\beta}.$$
Example: $M = 10$, $A = \{2, 7\}$, $k = 1$.

$$\|1_{C_k} F_N 1_{C_k}\|_2 = \|1_{\{2,7\}} F_{10} 1_{\{2,7\}}\|_2 = \left\| \frac{1}{\sqrt{10}} \begin{bmatrix} \omega_{10}^{2.2} & \omega_{10}^{2.7} \\ \omega_{10}^{7.2} & \omega_{10}^{7.7} \end{bmatrix} \right\|_2$$

Example: $M = 10$, $A = \{0, 5\}$, $k = 1$.

$$\|1_{C_k} F_N 1_{C_k}\|_2 = \left\| \frac{1}{\sqrt{10}} \begin{bmatrix} \omega_{10}^{0.0} & \omega_{10}^{0.5} \\ \omega_{10}^{5.0} & \omega_{10}^{5.5} \end{bmatrix} \right\|_2 = \left\| \frac{1}{\sqrt{10}} \begin{bmatrix} \omega_{10}^{2.2} & \omega_{10}^{2.7} \\ \omega_{10}^{7.2} & \omega_{10}^{7.7} \end{bmatrix} \right\|_2$$

Notice that $\{0, 5\} + 2 = \{2, 7\}$ and

$$\begin{bmatrix} \omega_{10}^{0.2} \\ \omega_{10}^{5.2} \end{bmatrix} \begin{bmatrix} \omega_{10}^{0.0} & \omega_{10}^{0.5} \\ \omega_{10}^{5.0} & \omega_{10}^{5.5} \end{bmatrix} \begin{bmatrix} \omega_{10}^{2.0} \\ \omega_{10}^{2.5} \end{bmatrix} \begin{bmatrix} \omega_{10}^{2.2} \\ \omega_{10}^{2.7} \end{bmatrix} = \begin{bmatrix} \omega_{10}^{2.2} & \omega_{10}^{2.7} \\ \omega_{10}^{7.2} & \omega_{10}^{7.7} \end{bmatrix}.$$
For ellipsephic sets of dimension $\delta \in [0, 1]$, we have the basic FUP exponent

$$\beta_0 := \max \left\{ 0, \frac{1}{2} - \delta \right\}.$$

Can this be improved upon (by obtaining $\beta > \beta_0$ for ellipsephic sets of dimension δ)?

- Yes – for all $0 < \delta < 1$, we can obtain $\beta > \beta_0$ (Dyatlov–Jin, 2017).
Discrete fractal uncertainty principles

Proof (basic FUP exponent):

\[
\| 1_{C_k} \mathcal{F}_N 1_{C_k} \|_2 \leq \| \mathcal{F}_N \|_2 = 1 = N^{-0}
\]

\[
\| 1_{C_k} \mathcal{F}_N 1_{C_k} \|_2 \leq \| 1_{C_k} \mathcal{F}_N 1_{C_k} \|_F = \sqrt{|C_k|^2 \left(\frac{1}{\sqrt{N}} \right)^2} = N^{-\left(\frac{1}{2} - \delta \right)}
\]
Let $r_k = r_k(M, A) := \| \mathbb{1}_{C_k(M, A)} \mathcal{F}_N \mathbb{1}_{C_k(M, A)} \|_2$.

- **Upper bound:**
 $$\beta \leq \frac{1 - \delta}{2}.$$

- **Apply** $\mathbb{1}_{C_k} \mathcal{F}_N \mathbb{1}_{C_k}$ to $1\{x\}$ for some $x \in C_k$.

- **Alphabet shift:** if $a \in \mathbb{Z}_M$ and $A \subseteq \{0, 1, \ldots, (M - 1) - a\}$, then
 $$r_k(M, A + a) = r_k(M, A).$$

- **Notice that** $C_k(M, A + a) = C_k(M, A) + (a \cdots a)_M$ and apply the shift theorem for the DFT.

- **Submultiplicativity:**
 $$r_{k_1 + k_2} \leq r_{k_1} r_{k_2}.$$

- **Notice that** $C_{k_1 + k_2} = C_{k_1} C_{k_2}$ (in the sense of *concatenation*) and use an FFT-like decomposition.
Let \(\beta_k = -\log_N r_k = -\frac{\log_M r_k}{k} \).

Fekete’s lemma applied to the subadditive sequence \(\{\log_M r_k\}_{k \geq 1} \) allows us to compute the maximal \(\beta \) as

\[
\beta = \lim_{k \to \infty} \beta_k = \sup_{k \geq 1} \beta_k.
\]
Recent work

How does (the maximal) β depend on (M, A)?

![Graph showing the approximation of FUP exponents](image)

Figure: Numerically approximated FUP exponents for all alphabets with $M \leq 10$.
For any $\delta \leq \frac{1}{2}$, the improvement over the basic exponent can be arbitrarily small, in that there exist sequences $\{(M_j, A_j)\}$ with $\delta(M_j, A_j) \to \delta$ and $\beta(M_j, A_j) \to \beta_0$ (Dyatlov–Jin, 2017).

Is this also true for $\delta > \frac{1}{2}$? (Dyatlov, 2019)

- Yes (·, 2021).
- For some sequences, the improvement over the basic exponent might even be (nearly) exponentially small. (We have an upper bound for β_1 so far.)
Which bases/alphabets attain the upper bound $\beta = \frac{1-\delta}{2}$? (Dyatlov–Jin, 2017)

- Numerical experiments ($M \leq 25$; later, $M \leq 39$) suggest that these might be the only ones.
Thank you for your attention!