Projection methods for linear systems

Nicholas Hu · Last updated on 2025-03-14

Let $A \in \mathbb{R}^{n \times n}$ be invertible and $b \in \mathbb{R}^n$. A **projection method** for solving Ax = b produces an approximation \tilde{x} to the exact solution x^* within an *m*-dimensional **search subspace** \mathcal{K} translated by an initial guess $x^{(0)}$, such that the **residual** $b - A\tilde{x}$ is *orthogonal to* an *m*-dimensional **constraint subspace** \mathcal{L} . In other words, $\tilde{x} \in x^{(0)} + \mathcal{K}$ with $b - A\tilde{x} \in \mathcal{L}^{\perp}$. If $\mathcal{L} = \mathcal{K}$, the projection method is said to be **orthogonal** and its orthogonality constraints are known as the **Galerkin conditions**; otherwise, the method is said to be **oblique** and its constraints are known as the **Petrov-Galerkin conditions**.

Such a method is well-defined if and only if $A\mathcal{K} \cap \mathcal{L}^{\perp} = \{0\}$. Indeed, if $A\mathcal{K} \cap \mathcal{L}^{\perp} = \{0\}$ and $V, W \in \mathbb{R}^{n \times m}$ are matrices whose columns are bases of \mathcal{K} and \mathcal{L} , then we must have $\tilde{x} = x^{(0)} + Vy$ for some $y \in \mathbb{R}^m$ such that $W^{\top}(r^{(0)} - AVy) = 0$, where $r^{(0)} := b - Ax^{(0)}$. Hence

$$ilde{x} = x^{(0)} + V (W^ op A V)^{-1} W^ op r^{(0)},$$

where $W^{\top}AV$ is invertible because $\operatorname{im}(AV) \cap \ker(W^{\top}) = \{0\}$. In addition, if $\tilde{x}' \in x^{(0)} + \mathcal{K}$ with $b - A\tilde{x}' \in \mathcal{L}^{\perp}$, then $A(\tilde{x} - \tilde{x}') \in A\mathcal{K} \cap \mathcal{L}^{\perp}$, so $\tilde{x} = \tilde{x}'$. Conversely, if the method is well-defined and $Av \in \mathcal{L}^{\perp}$ for some $v \in \mathcal{K}$, then $\tilde{x} + v \in x^{(0)} + \mathcal{K}$ and $b - A(\tilde{x} + v) \in \mathcal{L}^{\perp}$, so v = 0 and hence Av = 0.

This projection process may be iterated by selecting new subspaces \mathcal{K} and \mathcal{L} and using \tilde{x} as the initial guess for the next iteration, yielding a variety of iterative methods for linear systems, such as the well-known Krylov subspace methods. These iterative methods can sometimes experience a "lucky breakdown" when the projection produces the exact solution:

If $r^{(0)}\in \mathcal{K}$ and \mathcal{K} is A-invariant, then $A ilde{x}=b$ (or equivalently, $ilde{x}=x^*$).

Proof. By definition, $\tilde{x} - x^{(0)} \in \mathcal{K}$ and $b - A\tilde{x} \in \mathcal{L}^{\perp}$. On the other hand, $A\mathcal{K} \subseteq \mathcal{K}$ and $\dim(A\mathcal{K}) = \dim(\mathcal{K})$ since A is invertible, so $A\mathcal{K} = \mathcal{K}$. Hence $b - A\tilde{x} = r^{(0)} - A(\tilde{x} - x^{(0)}) \in A\mathcal{K} \cap \mathcal{L}^{\perp} = \{0\}$.

Error projection methods

An **error projection method** is a projection method where A is symmetric positive definite (SPD) and $\mathcal{L} = \mathcal{K}$. Such methods are well-defined because if $Av \in \mathcal{K}^{\perp}$ for some $v \in \mathcal{K}$, then $\|v\|_{A}^{2} = 0$.

If A is SPD and $\mathcal{L}=\mathcal{K}$, then $ilde{x}$ uniquely minimizes the A-norm of the **error** $x^*- ilde{x}$ over $x^{(0)}+\mathcal{K}.$

Proof. For all $x \in x^{(0)} + \mathcal{K}$, we have $||x^* - x||_A^2 = ||x^* - \tilde{x}||_A^2 + ||\tilde{x} - x||_A^2$ because $\tilde{x} - x \in \mathcal{K}$ and $x^* - \tilde{x} \perp_A \mathcal{K}$ according to the Galerkin conditions.

The gradient descent method

The **gradient descent method** for solving Ax = b when A is SPD is the iterative method with $\mathcal{K} = \mathcal{L} := \operatorname{span}\{r^{(k)}\}$, where $x^{(k)}$ denotes the k^{th} iterate and $r^{(k)} := b - Ax^{(k)}$. Thus, $x^{(k+1)}$ minimizes the A-norm of the error over the line $x^{(k)} + \operatorname{span}\{r^{(k)}\}$; indeed, if $f(x) := \frac{1}{2} ||x^* - x||_A^2$, then $\nabla f(x^{(k)}) = -r^{(k)}$, so $r^{(k)}$ represents the direction of steepest descent of f. The projection formula above

reduces to

$$x^{(k+1)} = x^{(k)} + rac{\langle r^{(k)}, r^{(k)}
angle}{\langle Ar^{(k)}, r^{(k)}
angle} \, r^{(k)} =: x^{(k)} + lpha_k r^{(k)}.$$

We also note that $r^{(k+1)} = r^{(k)} - \alpha_k A r^{(k)}$, so this method can be implemented with only one multiplication by A per iteration.

To analyze the convergence of the gradient descent method, we consider the error $e^{(k)} := x^* - x^{(k)}$. Using the fact that $e^{(k+1)} = e^{(k)} - \alpha_k r^{(k)} \perp_A r^{(k)}$, we compute that

$$egin{aligned} \|e^{(k+1)}\|_A^2 &= \langle e^{(k+1)}, e^{(k)}
angle_A \ &= \|e^{(k)}\|_A^2 - lpha_k \langle r^{(k)}, e^{(k)}
angle_A \ &= \left(1 - rac{\langle r^{(k)}, r^{(k)}
angle^2}{\langle r^{(k)}, r^{(k)}
angle_A \langle r^{(k)}, r^{(k)}
angle_{A^{-1}}}
ight) \|e^{(k)}\|_A^2. \end{aligned}$$

Next, we establish a useful algebraic inequality:

Kantorovich's inequality

If $heta_i \geq 0$ and $0 < a \leq x_i \leq b$ for $1 \leq i \leq n$, then

$$\left(\sum_{i=1}^n heta_i x_i
ight) \left(\sum_{i=1}^n rac{ heta_i}{x_i}
ight) \leq rac{(a+b)^2}{4ab} \left(\sum_{i=1}^n heta_i
ight)^2.$$

Proof. By homogeneity, we may assume that $\sum_i \theta_i = 1$ and ab = 1. Since $x \mapsto x + \frac{1}{x}$ is convex on [a, b], we have $x_i + \frac{1}{x_i} \leq a + b$ and hence $\sum_i \theta_i x_i + \sum_i \frac{\theta_i}{x_i} \leq \sum_i \theta_i (a + b) = a + b$. The result then follows from the AM–GM inequality.

Now if the eigenvalues of A are $\lambda_1 \geq \cdots \geq \lambda_n > 0$, then by Kantorovich's inequality,

$$rac{\langle r^{(k)},r^{(k)}
angle^2}{\langle r^{(k)},r^{(k)}
angle_A\langle r^{(k)},r^{(k)}
angle_{A^{-1}}}\geq rac{4\lambda_1\lambda_n}{(\lambda_1+\lambda_n)^2}=rac{4\kappa}{(\kappa+1)^2},$$

where κ is the (2-norm) condition number of A. Hence

$$\|e^{(k)}\|_A \leq \left(rac{\kappa-1}{\kappa+1}
ight)^k \|e^{(0)}\|_A.$$

Residual projection methods

A **residual projection method** is a projection method where A is invertible and $\mathcal{L} = A\mathcal{K}$.

If A is invertible and $\mathcal{L} = A\mathcal{K}$, then \tilde{x} uniquely minimizes the norm of the **residual** $b - A\tilde{x}$ over $x^{(0)} + \mathcal{K}$.

Proof. For all $x \in x^{(0)} + \mathcal{K}$, we have $\|b - Ax\|^2 = \|b - A\tilde{x}\|^2 + \|A(\tilde{x} - x)\|^2$ because $A(\tilde{x} - x) \in A\mathcal{K}$ and $b - A\tilde{x} \perp A\mathcal{K}$ according to the Petrov–Galerkin conditions.