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The LDL* factorization

Let A € C™" and suppose that its first n — 1 leading principal minors are nonzero. Then A has a unique
LU factorization A = LU, and moreover 411, . . - y Un—1,n—1 are nonzero (being the pivots in the LU

factorization). As a result, A has a unique LDU factorization A = LDU, where I, € C™*™is unit lower
triangular, D € C™*" is diagonal, and U € C™™ is unit upper triangular; given by the unique factorization
of Uas U = DU. When Ais also self-adjoint, we must have U = L*, in which case this factorization is

called the LDL* factorization (or LDLT factorization if A is real).

Given a self-adjoint A € C™ ™, we can also derive the LDL* factorization directly: if
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for some o € C (in fact, @ € R since A is self-adjoint), c € C* !, and B € Cn=1)x(n=1) then
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and if L'D’(L')* is the LDL* factorization of the Schur complement A’ = B — < then
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is the LDL* factorization of A.

Diagonal pivoting methods

Let A € C™ ™ be self-adjoint. Just as an LU factorization may fail to exist because of a zero pivot, an LDL*
factorization may fail to exist as well. To obtain a nonzero pivot while preserving the symmetry of A, we can
interchange two rows of A along with the corresponding columns (illustrated below), which amounts to
replacing A with P; AP;* for some permutation matrix P.
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However, using a symmetric interchange as such, pivots can only be selected from the diagonal entries of A,
which could all be zero despite the matrix itself being nonzero. To remedy this, we can use a permutation to
move a nonzero off-diagonal entry at position (%, 7) to position (2, 1) (illustrated below), which allows us to
then perform a 2 x 2 block elimination step.
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In general, if A is nonzero, there exists a permutation matrix P; such that
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where the pivot E € C*** is invertible and s € {1,2}, C € C("=)*5, and B € C("=#)*(n=5) we then

have
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Continuing symmetric elimination with the Schur complement A’ = B — CE~1C*, we ultimately produce
a factorization of the form PAP* = LDL*, where P is a permutation matrix, L is unit lower triangular,
and D is self-adjoint quasi-diagonal (block diagonal with 1 X 1 or 2 X 2 blocks).

The Bunch-Parlett factorization

a;j| = ||Al|1,00 and g1 := max; |a;;|. The Bunch-Parlett factorization is a diagonal
pivoting method that uses a 1 x 1 pivot with |e11] = p1 whenever 1 > aptp and a 2 x 2 pivot with
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lea1| = o otherwise, where a € (0, 1) is a constant chosen to minimize an upper bound for
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Namely, fora1l x 1 pivot, we have
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and for a2 x 2 pivot, we have
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To choose a, we equate the growth factor (1 + %)2 fortwo 1 x 1 pivots to the growth factor 1 + % for

one 2 x 2 pivot, which yields a = ”T\/ﬁ ~ 0.640.
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The Cholesky factorization

Let A € C™ ™ be (self-adjoint) positive definite. Then A has a unique LDL* factorization A = LDL* since its
principal submatrices are also positive definite, and moreover D = (L 1) A(L~1)* is positive definite. As a
result, A has a unique Cholesky factorization A = LL* where L € C™™ s lower triangular with positive
diagonal entries, given byf/ = LV/D.

Given a positive definite A € C™*", we can also derive the Cholesky factorization directly: if
a cf
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for some a € C (in fact, @ € R~ since A is positive definite), ¢ € C* !, and B € C(*~Dx(=1) then
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and if L'(L")* is the Cholesky factorization of the Schur complement A’ = B — £ then
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is the Cholesky factorization of A.
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