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The LU factorization  
Let  be a field and . Given a , recall that the linear system  can be solved by 
performing Gaussian elimination (also known as row reduction) on the augmented matrix  to 
transform it into an augmented matrix of the form , where  is upper triangular and 
, which represents an equivalent linear system . Such a system can then be solved readily by 
backward substitution. In fact, this process (under certain conditions) amounts to computing an LU 
factorization of  as , where  is unit lower triangular and  is upper triangular.

To illustrate this, suppose that  and

Then the variable  can be eliminated from the second equation  by 
multiplying the first equation  by  and subtracting the resulting equation 
from the second. The quotient  is called a multiplier and the divisor  is called a pivot. In other 
words (ignoring the vector   for now),

Similarly,  can be eliminated from the third and fourth equations, yielding the factorization

(where blanks denote zeroes).

The variable  can then be eliminated analogously from the new third and fourth equations. For instance,

In view of the previous step, this means that
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Thus, after the second step of the factorization, we have

Finally, an entirely analogous third step completes the LU factorization:

In general, we can regard LU factorization as partitioning a matrix  as

where , , , and . Provided that the pivot  is nonzero, we can 
eliminate  by using the multipliers  to write  for some 
; the matrix  is known as the Schur complement of  in . This yields the factorization

which can be recursively continued by computing an LU factorization  of . If one exists, then 
, so

is an LU factorization of .

Existence and uniqueness  

Let  denote the ( , )-entry of  after the th step in the LU factorization. From the example above, it is 

clear that  will have an LU factorization provided that the pivots  are nonzero. 

Moreover, we see after  steps that the th leading principal minor of  is equal to , 
so  will have an LU factorization if its first  leading principal minors are nonzero.

If  is nonsingular, this condition is also necessary because the th leading principal minor of  must be 

equal to . Furthermore, the LU factorization is unique in this case, for if  and  are 
both LU factorizations of , then  must be simultaneously unit lower triangular and upper 
triangular, and hence equal to the identity.
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Solving linear systems  

If the same row operations that were applied to  are applied to  as well, evidently the resulting vector  
will satisfy  (since  = ). Therefore the solutions of  will indeed be those of 

. Notably, once an LU factorization of  has been computed, it is possible to solve  for any 
given  by solving  for  and then  for , reusing the computed factors  and ! (The 
former system can be solved readily by forward substitution and the latter by backward substitution.)

The PLU factorization  
It is possible to produce an LU-like factorization for any  by allowing for row interchanges in 
addition to the elementary row operation above. The resulting PLU factorization consists of a permutation 
matrix  along with matrices  and  as above such that  (or equivalently,  
).

As an illustration, consider the matrix

Following one elimination step as before, we arrive at

Since the (2, 2)-entry of the factor on the right is zero, it is impossible to introduce zeroes in the second 
column using this entry as a pivot. However, by interchanging the second row with a row below it whose 

entry in the second column is nonzero, we can obtain a nonzero pivot to perform the elimination. 1  Also, 
note that had such a row not existed, it could only have been because all subdiagonal entries in the second 
column were zero, in which case we could have immediately continued to the next elimination step!

For example, suppose we wish to use the (4, 2)-entry, , as a pivot. We have

so if  is the permutation matrix that interchanges the second and fourth rows, then

from which elimination can proceed as in the LU factorization. Namely,
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Once again, we see that a row interchange is required. We have

so if  is the permutation matrix that interchanges the third and fourth rows, then

The product of all the permutation matrices used for row interchanges becomes the permutation matrix ; 

if no interchange is performed in the th step, we can regard this as multiplication by  at that step. 
For instance, after the final elimination step in our example (which is trivial since the (4, 3)-entry is already 
zero),

In general, given a matrix , either there exists a permutation matrix  such that  is 
of the form

for some nonzero , or the first column of  is zero, in which case  is of the form

for any permutation matrix  . Let  in the former case and  in the latter. Then

where , and if  is a PLU factorization of , then



1. In practice, implementations of PLU factorization typically perform a row interchange that maximizes the absolute value of the pivot, regardless of 
whether it is needed to prevent division by zero. With this convention, all multipliers are at most  in absolute value. ↩

is a PLU factorization of  .

Solving linear systems  

By the same reasoning as above, row-reducing  in the manner that  was reduced results in a vector  
satisfying . Therefore the solutions of  will be those of . Once a PLU factorization of 

 has been computed, it is possible to solve  for any given  by solving  for  and 
then  for , reusing the computed factors  and  and the permutation represented by .
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