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Lagrange interpolation

Suppose that f is a real-valued function defined on a set of distinct nodes {a:j};?:o C R and let P, denote the
vector space of real polynomial functions of degree at most n. Then there exists a unique p,, € P, that
interpolates f at the nodes in the sense that p,(z;) = f(z;) for each j:

Pn = Z f(z5)¢;,
J

where £; := ][, ; m.] “L € P,.Clearly, p, interpolates f since £;(x;) = d;;, and it is unique because if g, € P,

also interpolates f (at the same nodes), then p, — g, € P, hasn + 1 distinct zeroes and must therefore be the
zero polynomial. The polynomials {Ej};?zo constitute a basis of P,, called the Lagrange basis.

Defining the barycentric weights w; := T 5 which notably depend only on the nodes, we can express p,

i;éj(mj*l'z

as wz Jf w] (except at the nodes - where the values ofpn are given), where w := [[, (e — ;) is the nodal

polynomlal In particular, taking f =

= 1, whence we obtain the barycentric formula

w;f(z;)

Dy — Z]:——a:]]
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Hermite interpolation

More generally, suppose that f is a real-valued function defined on a multiset of nodes {m +”J}m C R, where
x; has multiplicity 1 4- 45 and f is p; times differentiable at ;. Then there exists a unique polynomial p,, € P,,
wheren = m + Ej H4j, that interpolates f at the nodes in the sense thatp;k)(a:j) = fk) (x;) for each jand
each0 < k < p;.

Indeed, such a polynomial can be constructed recursively as follows: if m > 0, let p_ € P,,_; interpolate f at
{z lﬂL’} "o \ {z},} and p; € P,_ interpolate f at {z; ﬂL]} " \ {z{}, and define p,, € P, as

LTy — @ ® — X
Dn = p- + P+
Tm — X0 Lm — X0
® — I
Zp_+—(p+—p )-
Tm —

Clearly, p,(z;) = f(z;) for each jsince p_(z;) = f(z;) = p4(z;) for0 < j < m, p_(xo) = f(z¢), and
P+ (xm) = f(xm). Moreover, for k > 0, we have
® — T
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so, similarly, p%k) (x;) = f(k)(:z:j) for each j and each 0 < k < p;. In the base case m = 0, we take p,, to be the

,uoth degree Taylor polynomial of f centred at (. Uniqueness follows as above, counting zeroes with multiplicity.

By specifying appropriate values for f and its derivatives at the nodes, we can construct hj, € P, such that

Pn=2i>% £®) ()R, for all f. These polynomials {h;;} constitute a basis of P, called the Hermite basis.
For instance, if u; = 0 for each j, then hjo = £; and we recover the Lagrange basis functions; if instead m = 0,
1
!

then hgj = k_(. — xo)k, which is sometimes called a Taylor basis function.

Newton interpolation

Newton interpolation recasts Lagrange/Hermite interpolation in a more explicit basis in which the coefficients of
the interpolating polynomial can still be efficiently computed. Let £y, ..., ¢, be an enumeration of the nodes
{acjﬂ”};”zo (with multiplicity, in any order). The Newton basis {wj};.‘zo of P, is then defined as

wj = Hi<j(. - ti)-

To compute the coefficients of the interpolating polynomial p,, in this basis, we define the divided difference
flto, - - ., ts] as the (8)" coefficient of p,, in the monomial basis {()7}"_, (which for brevity we will refer to as

the "leading coefficient" despite the fact that it may be zero). The coefficients of p,, in the Newton basis are then
successive divided differences of f.

Coefficients of interpolating polynomial in Newton basis

Pn = Z f[to, e ,tj}wj
J

Proof. Write p,, = Zj c;w;. For each j, the polynomial Zkgj cywy, € Pjinterpolates fat {¢g,...,t;} since
wi(t;) = 0 (with multiplicity) for all ¢ < j < k. Clearly, its leading coefficient is c;, so by definition,
C; = f[to, .. .,tj]. |

From Lagrange interpolation, we obtain an explicit formula for divided differences when the ¢ are distinct in terms
of the barycentric weights:

flto, - tn] = ijf(tj)~

More generally, the recursive construction in Hermite interpolation shows that divided differences obey a
recurrence relation.

Recurrence relation for divided differences

Suppose that the nodes are ordered such that tg = ¢,, implies thattg = --- = ¢,. Then
t1, ...t — flto, .., tn_
f[lv 7n] f[()’ 7n1} ift(]?étn,
. tn - tO
fltor- - stal =3
f"(to) .
— iftg = t,.
n!

Proof. This follows immediately from the construction above: namely, if ty # t,, then
o—to

pn=p- + 7 (p+ —p-), wherep_ € P,y interpolates f at {to,...,tn-1}and p; € P,_; interpolates f

at{ti,...,t,}; otherwise, if ty = t,, then p,, is the nth degree Taylor polynomial of f centred att,. u
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This also yields a recursive algorithm for evaluating p,, known as Neville's algorithm. To wit, suppose that the
nodes are ordered such that t; = ¢; forz < jimplies thatt; = --- = t;, and let p; ; € P;_; interpolate f at
{ti,...,t;} sothat p, = pon. Then

(t —ti)pit1,(t) — (¢ — t))piia(t)
ti—t;

S8 FR() :
ZT(t—tz)k lfti :tj.
k=0

ift; # ¢,
pij(t) =

Properties of divided differences

* (Linearity) If a, B € R, then (af + Bg)[to, ..., tn] = - flto,...,tn] + B glto, ... tn].
* (Symmetry) If o is a permutation of {0, ...,n}, then flto,...,ta] = flts0),---»tom)]-
e (Factor property) Ifn > 1,then ((o — o) f)[to, ..., tn] = flt1,. .., tn].

Proof.

e (Linearity) If py € P, and py € P, interpolate fand g, respectively, at {to,...,t,}, then aps + fBp, € P,
interpolates af + Bg at {tg,...,t,}

e (Symmetry) This is immediate since the definition of the divided difference is independent of the ordering
of the nodes.

e (Factor property) If py € P,_1 interpolates f at {t1,...,t,}, then (e —ty)ps € P, interpolates (o — t9) f
at {to, e ,tn}. |

In fact, the recurrence relation, excluding the base case, can be derived solely from these three properties:

(tn —to) - fltos-- - tn] = (((® —to) — (& — tn))f) [t0s - - tn)
= ((e —t0)f)[tos-- - tn) — ((® — tn) ) [to, - - - s tn]
= fltr, - tn] = flto, - - tna]

(n)
Thus, these properties along with the property flto,...,tn] = fTst”) whentg = - -+ = t, characterize divided

differences.

The identity f[to,t1] = %{0@0) fortg # t1 suggests another relationship between divided differences and
derivatives: if, say, to < t1, fis continuous on [tg,¢1], and f’ exists on (%o, t1), then the mean value theorem
amounts to the assertion that there exists a £ € (%o, t1) such that f[to, t1] = f'(&). This generalizes readily to

divided differences and derivatives of higher order.
Mean value theorem for divided differences

Suppose that @ := min {¢;}}_, < max {t;}}_, =: b.If £ is continuous on [a, b] and f™ exists on
(a,b), then there exists a £ € (a, b) such that

fltoy .- tn] =

Proof. Let p, € P, interpolate f at {to,...,t,}. Then f — p, hasn + 1 zeroes in [a, b] (with multiplicity), so by
repeated applications of Rolle’s theorem, (f — p)™ = f™ — f[to,...,t,n! hasazero ¢ € (a,b). n



As a consequence, we can express the error in polynomial interpolation, which fortg = - - - = ¢,, reduces to the

statement of Taylor's theorem.
Polynomial interpolation error
Suppose that a := min {¢;}7 ;U {t} < max {t;}} ,U{t} =: b.If £ ™ is continuous on [a, b] and 1)
exists on (a, b), then there exists a £ € (a, b) such that

(n+1) (n+1)
PO )~ O Ty,

(n+1)! Wni1(t) = 1

£8) = palt) = o

Proof. Let p, € P, interpolate f at {to,...,t,}. Thenp, + flto,...,tn, tjwni1 interpolates f at {to,...,tn,t},
so the result follows from the mean value theorem for divided differences. n

We also have the identity (fg)[to, 1] = flto] - g[to, t1] + flto,t1] - g[t1], where the case to = t; is the product
rule for derivatives (which also follows from taking t; — t¢ in the case ty # t1). More generally, we have the
following identity, which for g = - - - = t,, reduces to the generalized product rule for derivatives

(f9) (n) — Zj (?) @ gn=i),

Product rule for divided differences

(fg)[t()a---;tn] :Zf[t()a""tj] 'g[tjf"’tn}

J

Proof. Let p, € P, interpolate fat {tg,...,t,}. Then (fg)[to,---,tn] = (Png)[to,- .., tns] since fg agrees with
pngon {to,...,t,}. By linearity and the factor property, we have

(png)[to, e ,tn] = (Z f[to, e ,tj]LUjg) [to, ce ,tn]
= Z flto, ..., t;] - (wig)lto, - .., ta]
:Zf[to,...,tj]-g[tj,...,tn]. |

Furthermore, from the recurrence relation for divided differences, we see that if f € C?, then fltoy .-, tnlis
jointly continuous in tg, . . . , t,, wherever they are distinct; if f € C", the mean value theorem for divided
differences implies that it is jointly continuous everywhere.
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