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Lagrange interpolation  

Suppose that  is a real-valued function defined on a set of distinct nodes  and let  denote the 

vector space of real polynomial functions of degree at most . Then there exists a unique  that 

interpolates  at the nodes in the sense that  for each :

where . Clearly,  interpolates  since , and it is unique because if  

also interpolates  (at the same nodes), then  has  distinct zeroes and must therefore be the 

zero polynomial. The polynomials  constitute a basis of  called the Lagrange basis.

Defining the barycentric weights , which notably depend only on the nodes, we can express  

as  (except at the nodes – where the values of  are given), where  is the nodal 

polynomial. In particular, taking  implies that , whence we obtain the barycentric formula

Hermite interpolation  

More generally, suppose that  is a real-valued function defined on a multiset of nodes , where 

 has multiplicity  and  is  times differentiable at . Then there exists a unique polynomial , 

where , that interpolates  at the nodes in the sense that  for each  and 

each .

Indeed, such a polynomial can be constructed recursively as follows: if , let  interpolate  at 

 and  interpolate  at , and define  as

Clearly,  for each  since  for , , and 

. Moreover, for , we have
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so, similarly,  for each  and each . In the base case , we take  to be the 

th degree Taylor polynomial of  centred at . Uniqueness follows as above, counting zeroes with multiplicity.

By specifying appropriate values for  and its derivatives at the nodes, we can construct  such that 

 for all . These polynomials  constitute a basis of  called the Hermite basis. 

For instance, if  for each , then  and we recover the Lagrange basis functions; if instead , 

then , which is sometimes called a Taylor basis function.

Newton interpolation  

Newton interpolation recasts Lagrange/Hermite interpolation in a more explicit basis in which the coefficients of 

the interpolating polynomial can still be efficiently computed. Let  be an enumeration of the nodes 

 (with multiplicity, in any order). The Newton basis  of  is then defined as 

.

To compute the coefficients of the interpolating polynomial  in this basis, we define the divided difference 

 as the  coefficient of  in the monomial basis  (which for brevity we will refer to as 

the "leading coefficient" despite the fact that it may be zero). The coefficients of  in the Newton basis are then 

successive divided differences of .

Coefficients of interpolating polynomial in Newton basis

Proof. Write . For each , the polynomial  interpolates  at  since 

 (with multiplicity) for all . Clearly, its leading coefficient is , so by definition, 

. ∎

From Lagrange interpolation, we obtain an explicit formula for divided differences when the  are distinct in terms 

of the barycentric weights:

More generally, the recursive construction in Hermite interpolation shows that divided differences obey a 

recurrence relation.

Recurrence relation for divided differences

Suppose that the nodes are ordered such that  implies that . Then

Proof. This follows immediately from the construction above: namely, if , then 

, where  interpolates  at  and  interpolates  

at ; otherwise, if , then  is the th degree Taylor polynomial of  centred at . ∎
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This also yields a recursive algorithm for evaluating  known as Neville's algorithm. To wit, suppose that the 

nodes are ordered such that  for  implies that , and let  interpolate  at 

 so that . Then

Properties of divided differences

(Linearity) If , then .

(Symmetry) If  is a permutation of , then .

(Factor property) If , then .

Proof.

(Linearity) If  and  interpolate  and , respectively, at , then  

interpolates  at .

(Symmetry) This is immediate since the definition of the divided difference is independent of the ordering 

of the nodes.

(Factor property) If  interpolates  at , then  interpolates  

at . ∎

In fact, the recurrence relation, excluding the base case, can be derived solely from these three properties:

Thus, these properties along with the property  when  characterize divided 

differences.

The identity  for  suggests another relationship between divided differences and 

derivatives: if, say, ,  is continuous on , and  exists on , then the mean value theorem 

amounts to the assertion that there exists a  such that . This generalizes readily to 

divided differences and derivatives of higher order.

Mean value theorem for divided differences

Suppose that . If  is continuous on  and  exists on 

, then there exists a  such that

Proof. Let  interpolate  at . Then  has  zeroes in  (with multiplicity), so by 

repeated applications of Rolle’s theorem,  has a zero . ∎



As a consequence, we can express the error in polynomial interpolation, which for  reduces to the 

statement of Taylor’s theorem.

Polynomial interpolation error

Suppose that . If  is continuous on  and  

exists on , then there exists a  such that

Proof. Let  interpolate  at . Then  interpolates  at , 

so the result follows from the mean value theorem for divided differences. ∎

We also have the identity , where the case  is the product 

rule for derivatives (which also follows from taking  in the case ). More generally, we have the 

following identity, which for  reduces to the generalized product rule for derivatives 

.

Product rule for divided differences

Proof. Let  interpolate  at . Then  since  agrees with 

 on . By linearity and the factor property, we have

Furthermore, from the recurrence relation for divided differences, we see that if , then  is 

jointly continuous in  wherever they are distinct; if , the mean value theorem for divided 

differences implies that it is jointly continuous everywhere.
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