
Nicholas Hu
July 7, 2021

Closure operators

Definition. Let S be a set. A closure operator on S is a function cl : P(S)→ P(S) such that for
all A, B ⊆ S,

• A⊆ cl(A) (cl is extensive)

• A⊆ B =⇒ cl(A) ⊆ cl(B) (cl is increasing)

• cl(cl(A)) = cl(A) (cl is idempotent).

We call cl(A) the closure of A; a set C ⊆ S that is the closure of some subset of S is called a
closed set of cl.

These three defining conditions are in fact equivalent to a single biconditional, which is some-
times easier to verify.

Theorem 1. A function f : P(S)→ P(S) is a closure operator on S if and only if A⊆ f (B) ⇐⇒
f (A) ⊆ f (B) for all A, B ⊆ S.

Proof. Let A, B ⊆ S, and suppose first that f is a closure operator. Then A⊆ f (B) =⇒ f (A) ⊆
f ( f (B)) (since f is increasing) =⇒ f (A) ⊆ f (B) (since f is idempotent). Conversely, f (A) ⊆
f (B) =⇒ A⊆ f (B) (since f is extensive).

On the other hand, if f satisfies the biconditional above, then f (A) ⊆ f (A) =⇒ A ⊆ f (A), so
f is extensive. Using extensivity, we obtain A ⊆ B =⇒ A ⊆ f (B) =⇒ f (A) ⊆ f (B), so f is
increasing. Finally, f (A) ⊆ f (A) =⇒ f ( f (A)) ⊆ f (A), where the reverse inclusion holds by
extensivity, so f is idempotent. �

The following characterization of closed sets will be used extensively, and is frequently taken
as the definition of a closed set.

Proposition. A set A⊆ S is closed if and only if it is equal to its own closure, i.e., cl(A) = A.

Proof. If A is closed, then A= cl(B) for some B ⊆ S, whence cl(A) = cl(cl(B)) = cl(B) = A (using
idempotence). The converse follows immediately from the definition of a closed set. �

Corollary. S is a closed set.

Proof. Clearly cl(S) ⊆ S, and the reverse inclusion follows from extensivity. �

Moore collections

Definition. Let S be a set. A collection C ⊆ P(S) of subsets of S is called a Moore collection if
any intersection of elements in C is also in C.

The following two theorems exhibit a ‘duality’ between closure operators and Moore collections.
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Theorem 2. Let cl be a closure operator on S. If C is the collection of all closed sets of cl, then
C is a Moore collection, and for any A⊆ S,

cl(A) =
⋂

{C ∈ C : C ⊇ A}.

In other words, any intersection of closed sets is also closed, and cl(A) is the intersection of all
closed sets containing A.

Proof. Let {Ci}i∈I ⊆ C be a collection of closed sets, and define C = ∩i∈I Ci. If x ∈ cl(C) and
i ∈ I , then C ⊆ Ci =⇒ cl(C) ⊆ cl(Ci) =⇒ x ∈ cl(Ci) = Ci, so cl(C) ⊆ C . As the reverse
inclusion holds by extensivity, C is equal to its own closure, and hence is closed. Thus C is a
Moore collection.

Now if A⊆ S, let B denote the set on the right-hand side above. Clearly A⊆ B (an intersection
of sets containing A must also contain A), so cl(A) ⊆ cl(B) = B, since B is an intersection of
closed sets. On the other hand, cl(A) ∈ C and cl(A) ⊇ A, so B ⊆ cl(A). �

Remark. cl(A) is therefore the “smallest closed set containing A”, in that it is contained in any
other closed set containing A.

Theorem 3. Let C ⊆ P(S) be a Moore collection. Then the function f : P(S)→ P(S) given by

f (A) :=
⋂

{C ∈ C : C ⊇ A}

is a closure operator on S, and the collection of closed sets of f is C.

Proof. By Theorem 1, it suffices to prove that A ⊆ f (B) ⇐⇒ f (A) ⊆ f (B) for all A, B ⊆ S to
show that f is a closure operator on S. Suppose first that A ⊆ f (B). Then f (B) ∈ C, as it is
an intersection of elements of the Moore collection C, and f (B) ⊇ A, so f (A) ⊆ f (B). On the
other hand, if f (A) ⊆ f (B), we must also have A⊆ f (B), since A⊆ f (A). Hence f is a closure
operator on S.

Now if C ⊆ S is closed, then C = f (C) ∈ C since C is a Moore collection. Conversely, if C ∈ C,
then C ⊇ C =⇒ f (C) ⊆ C , and the reverse inclusion holds by extensivity. Thus the closed sets
of f are exactly the sets of C. �

Thus, any closure operator is determined by a Moore collection (namely, the collection of its
closed sets), and any Moore collection is determined by a closure operator.

Examples

If V is a vector space, it is easily verified that the collection of all subspaces of V is a Moore
collection. The closure operator that this collection defines is none other than the span of a
set of vectors. In other words, if A ⊆ V , then span(A) is the intersection of all subspaces of V
containing A, or equivalently, the smallest subspace of V containing A.

Other examples are tabulated below:
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Set Moore collection Closure operator Notation

A vector space V Subspaces of V Span of A span(A)

A topological space
X

Closed sets of X (Topological) closure of A A

A group G Subgroups of G Subgroup generated by A 〈A〉
A group G Normal subgroups of G Normal closure of A 〈AG〉
A ring R Subrings of R Subring generated by A —

A ring R Ideals of R Ideal generated by A (A)

All subsets of a set X σ-algebras on X σ-algebra generated by A σ(A)

Rn Convex subsets of Rn Convex hull of A conv(A)
Rn Affine subsets of Rn Affine hull of A aff(A)
Rn Convex cones in Rn

containing the origin
Conical hull of A cone(A)

All binary relations
on a set X

Transitive binary relations
on X

Transitive closure of A A+

All words over an
alphabet Σ

Languages containing the
empty string that are closed
under string concatenation

Kleene star of A A∗


