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Let  be an interval and  be a function. We denote the interior of  by .

Monotonicity  
We say that  is increasing if  for all  with  and that  is strictly increasing if the 
former inequality is strict. We define decreasing and strictly decreasing analogously.

Characterization of monotonicity

Suppose that  is continuous on  and differentiable on . 1  Then  is increasing on  if and only if 

 on . In addition,  is strictly increasing on  if  on . 2

Extremality  
We say that  is a (global) minimizer and that the value  is a (global) minimum of  if 

 for all . We define (global) maximizer and (global) maximum analogously.

Extreme value theorem

If  is closed and bounded and  is continuous on , then  has a minimizer and a maximizer in .

We say that  is a local minimizer and that the value  is a local minimum of  if there exists an 
 such that  for all . We define local maximizer and local 

maximum analogously. Clearly, any global extremizer must also be a local extremizer.

Fermat’s theorem

Suppose that  is a local extremizer of . If  is differentiable at , then  (that is,  is a 
stationary point of ).

Thus, under the hypotheses of the extreme value theorem, any extremizer of  will either be an interior 
point of  and hence a point at which  is stationary or not differentiable, or else will be a boundary point of 

. We call a point of the former type (that is, a point at which  is stationary or not differentiable) a critical 
point of .

First derivative test

If  is continuous at  and there exists an  such that  on  and  on 
, then  is a local minimizer of .

Second derivative test

If  is stationary at  and , then  is a local minimizer of .
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1. If  is open, then  and the hypothesis reduces to  being differentiable on . ↩

2. The converse is false in general: consider  on . ↩

Convexity  
We say that  is convex if  for all distinct  and  
and that  is strictly convex if the inequality is strict. We define concave and strictly concave analogously.

Secant and tangent line characterizations of convexity

Given an , let  for all . Then  is convex (resp., strictly convex) on 

 if and only if  is increasing (resp., strictly increasing) in  for all . In addition, if  is 
differentiable on , then  is convex (resp., strictly convex) on  if and only if  (resp., 

) for all  and .

First-order characterization of convexity

Suppose that  is continuous on  and differentiable on . Then  is convex (resp., strictly convex) on 
 if and only if  is increasing (resp., strictly increasing) on .

Second-order characterization of convexity

Suppose that  is continuous on  and twice differentiable on . Then  is convex on  if and only if 
 on . In addition,  is strictly convex on  if  on .

Minimizers of convex functions

If  is convex and  is a local minimizer of , then  is a global minimizer of . In addition, if  is strictly 
convex, then  has at most one local minimizer.

We say that the graph of  has an inflection point at  if it has a tangent line at  (which 
may be vertical) and its (signed) curvature  changes sign at  (though  need not exist at  

itself). At such a point,  changes from strictly convex to strictly concave or vice-versa.
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