Derivative tests

Nicholas Hu · Last updated on 2025-11-27

Let $I\subseteq\mathbb{R}$ be an interval and $f:I\to\mathbb{R}$ be a function. We denote the interior of I by I° .

Monotonicity

We say that f is **increasing** if $f(x) \le f(y)$ for all $x, y \in I$ with x < y and that f is **strictly increasing** if the former inequality is strict. We define **decreasing** and **strictly decreasing** analogously.

Characterization of monotonicity

Suppose that f is continuous on I and differentiable on I° . Then f is increasing on I if and only if f'>0 on I° . In addition, f is strictly increasing on I if f'>0 on I° .

Extremality

We say that $x \in I$ is a **(global) minimizer** and that the value f(x) is a **(global) minimum** of f if $f(x) \le f(y)$ for all $y \in I$. We define **(global) maximizer** and **(global) maximum** analogously.

Extreme value theorem

If I is closed and bounded and f is continuous on I, then f has a minimizer and a maximizer in I.

We say that $x\in I$ is a **local minimizer** and that the value f(x) is a **local minimum** of f if there exists an $\varepsilon>0$ such that $f(x)\leq f(y)$ for all $y\in I\cap (x-\varepsilon,x+\varepsilon)$. We define **local maximizer** and **local maximum** analogously. Clearly, any global extremizer must also be a local extremizer.

Fermat's theorem

Suppose that $x \in I^{\circ}$ is a local extremizer of f. If f is differentiable at x, then f'(x) = 0 (that is, x is a **stationary point** of f).

Thus, under the hypotheses of the extreme value theorem, any extremizer of f will either be an interior point of I and hence a point at which f is stationary or not differentiable, or else will be a boundary point of I. We call a point of the former type (that is, a point at which f is stationary or not differentiable) a **critical point** of f.

First derivative test

If f is continuous at x and there exists an $\varepsilon>0$ such that $f'\leq 0$ on $(x-\varepsilon,x)$ and $f'\geq 0$ on $(x,x+\varepsilon)$, then x is a local minimizer of f.

Second derivative test

If f is stationary at x and f''(x) > 0, then x is a local minimizer of f.

Convexity

We say that f is **convex** if $f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y)$ for all *distinct* $x, y \in I$ and $\theta \in (0,1)$ and that f is **strictly convex** if the inequality is strict. We define **concave** and **strictly concave** analogously.

Secant and tangent line characterizations of convexity

Given an $x\in I$, let $g(y;x):=\frac{f(y)-f(x)}{y-x}$ for all $y\in I\setminus\{x\}$. Then f is convex (resp., strictly convex) on I if and only if g is increasing (resp., strictly increasing) in y for all $x\in I$. In addition, if f is differentiable on I° , then f is convex (resp., strictly convex) on I if and only if $g(y;x)\geq f'(x)$ (resp., g(y;x)>f'(x)) for all $x\in I^\circ$ and $y\in I\setminus\{x\}$.

First-order characterization of convexity

Suppose that f is continuous on I and differentiable on I° . Then f is convex (resp., strictly convex) on I if and only if f' is increasing (resp., strictly increasing) on I° .

Second-order characterization of convexity

Suppose that f is continuous on I and twice differentiable on I° . Then f is convex on I if and only if $f'' \geq 0$ on I° . In addition, f is strictly convex on I if f'' > 0 on I° .

Minimizers of convex functions

If f is convex and x is a local minimizer of f, then x is a global minimizer of f. In addition, if f is strictly convex, then f has at most one local minimizer.

We say that the graph of f has an **inflection point** at (x, f(x)) if it has a tangent line at (x, f(x)) (which may be vertical) and its **(signed) curvature** $\kappa := \frac{f''}{[1+(f')^2]^{3/2}}$ changes sign at x (though κ need not exist at x itself). At such a point, f changes from strictly convex to strictly concave or vice-versa.

^{1.} If I is open, then $I^{\circ}=I$ and the hypothesis reduces to f being differentiable on I. \Box

^{2.} The converse is false in general: consider $f(x)=x^3$ on $I=\mathbb{R}$.