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ABSTRACT. In this last article of the series on outer actions of a countable
discrete amenable group on AFD factors, we analyze outer actions of a count-
able discrete free abelian group on an AFD factor of type Iy, 0 < A < 1, and
compute outer conjugacy invariants. As a byproduct, we discover the asym-
metrization technique for coboundary condition on a T-valued cocycle of a
torsion free abelian group, which might have been known by the group coho-
mologists. As the asymmetrization technique gives us a very handy criteria
for coboundaries, we present it here in detail in the second section.
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§0. Introduction.

This article concludes the series of our joint work, [KtT1],[| KtT2|, and
[KtT3], on the outer conjugacy classification of outer actions of a countable
discrete amenable group on an approximately finite dimensional, (abbrevi-
ated to AFD), factor by examining outer actions of a countable discrete
abelian group G on an AFD factor Ry of type Iy, 0 < A < 1. The cocycle
conjugacy classification theory of actions of a countable discrete amenable

1



2 OUTER ACTIONS I

group on an AFD factor had been completed through the work of many
mathematicians over three decades, [Cnn3, Cnn4, Cnn6, Cnon7, Jn, JT, Ocn,
KtST1, KtST2, KwST, ST1, ST2, ST3|, prior to the outer conjugacy classi-
fication theory.

Unlike the general classification program in operator algebras, the outer
conjugacy classification of a countable discrete amenable group on R) is
almost smooth as shown in the series of previous work, see [KtT3]. Only
non-smooth part of the classification theory stems from the classification of
subgroups IV of G: for instance the classification of subgroups of a torsion free
abelian group of higher rank is non-smooth. We refer the work of Sutherland
concerning Borel parameterization of polish groups, [St2]. When the modular
automorphism part N = ¢&~1(Cnt,(M)) of the outer action ¢ of G on Ry, is
fixed, the set of invariants becomes a compact abelian group. It is a rare case
in the theory of operator algebras. So we are encouraged to make a concrete
analysis of outer conjugacy class of a countable discrete amenable group. Of
course, without having a concrete date on the group G involved, we cannot
make a fine analysis. So we take a countable discrete free abelian group G
and study its outer actions on Ry and identify the invariants completely.
The justification of this restriction rests on the fact that all outer actions of
a countable discrete abelian group A can be viewed as outer actions of G by
pulling back the outer action via the quotient map: G — A. Thanks to all
hard analytic work on the cocycle conjugacy classification in the past, cited
in the reference, our work is very algebraic and indeed done by cohomological
computations.

We will begin first by relating the discrete core of Ry and the core of an
AFD factor Ry of type Il;. This analysis will enable us to have a simple
model construction with given invariants, which is presented here in Section
1. Single automorphisms and a pair of commuting automorphisms of R
are studied first. Then we will work on the asymmetrization of a cocycle
of a countable discrete abelian group which will provide a powerful tool
for analysis of the third cohomology group H*(G,T). The general theory
of group cohomology is available to us today, for example see [Brw]. But
we have to work with individual cocycles to analyze outer actions. So we
have to have a tool to work with a cocycle directly beyond the computation
of the cohomology group. For example, we have to identify which data
of a given cocycle contributes to the modular automorphism part of the
action in question. Thus we will work on the cohomology group based on
a very primitive method of chasing cocycles, through which we discover the
asymmetrization technique which provides us a quite handy criterion for the
coboundary condition on a cocycle of a torsion free abelian group. In our
previous work, [KtT1, KtT2, KtT3|, the outer conjugacy classification of a
countable discrete amenable group outer actions were studied by a resolution
of the relevant third cocycle. In the abelian case, it is shown that there is a
universal resolution group which takes care of all third cocycles at once which
simplifies greatly the investigation of outer actions of a countable discrete
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abelian group. The reduced modified HJR-sequence will provide us a tool to
chase the cocycles along with the asymmetrization technique. The first step
of studying outer actions of countable discrete abelian group G on a factor
M of type I\, 0 < A < 1, is to find a countable discrete amenable group H
and a surjective homomorphism 7, : H — G so that the pull back 7(c) is a
coboundary, the process called the resolution of a cocycle ¢ € Z3(G ,T). Then
the outer action ¢ is identified with a lifting s},(«) of an action a of H through
a cross-section sy : G — H of the homomorphism 7. Luckily, a countable
discrete abelian group G admits a universal resolution {H, n;}, a group H
and a surjective homomorphism 7 : H — G such that WZ(H?’(H ,T)) = {1}.
The group H is constructed via relatively simple process from a countable
discrete free abelian group G. This makes us possible to reduce the study of
an outer action & of G to that of an action o of H. Now, the action a of
H does not lift to the discrete core My if mod(a) # 1. So we construct a
central extension H,, of H:

n—z{

0 Z H,, H 1

and work with the characteristic cohomology group A(Hy,, L, M, T) where
the normal subgroup L stands for the inverse image L = 7 {(N) with N =
&~ 1(Cnt,(M)). Thus we are going to investigate the reduced modified HJR-
sequence:

H2(H,T) —< A(Hmp,L,M,T) —>— H™(G,N,T) —*— H*(H,T)

H ) o | H

HX(H,T) — AH,M,T) 2%, w@T) — . H3H,T)

Here s is a fixed cross-section of the quotient map: G — @ = G/N. The
groups appeared on the above exact sequences are all compact abelian groups
and are indeed computable as shown in this paper.

We refer [Brw, EMc, McWh, Hb, Jn] for the general cohomology theory of
abstract groups and [St1] for the cohomology theory related to von Neumann
algebras. We refer [Tkl, Tk2, Tk3| for the general theory of von Neumann
algebras. Concerning the discrete core of a factor of type I, we refer [Cnnl,
Cnn2, CT, FT1 and FT2].

This work was originated from the authors’ visit to the Erwin Schrédinger
Institute, Vienna, and the University of Rome, La Sapienza, in the spring
of 2005 and further developed throughout the subsequent years. The second
named author visited the Erwin Schrodinger Institute in the fall of 2008
again where the final touch on the joint work was given. The authors are
greatly indebted to these institutes, in particular to Professors Klaus Schmidt
and Sergio Doplicher who made our collaboration possible and pleasant.
We would like to record here our sincere appreciation to their support and
hospitality.



4 OUTER ACTIONS I

61 Simple Examples and Model Construction.

Factors of Type I, and Type I[;, and Their Cores: We begin by the
following folklore theorem in the structure theory of factors of type II.

Theorem 1.1. Let {Mg 1, 7,0} be a factor of type Lo equipped with faithful
semi finite normal trace T and trace scaling automorphism 6 by \,0 < A < 1,
i.€., To = A1 and let M = M8,1 be the fized point subalgebra of Mo 1 by 0.
Then we have the following statements:
i) The von Neumann algebra M is a factor of type 1 y;
ii) The triplet {Mop 1, 7,0} is conjugate to the discrete core of M;
iii) For an automorphism o € Aut(Mo 1), the following statements are

equivalent:
a) a(M) =M;
b) el = foar.

iv) Let Aut(Mo 1, M) be the group of automorphisms of Aut(Mo 1) leav-
ing M globally invariant. Then we have the following exact sequence:

a—aln

0 7 2= Aut(Mo.1, M) Aut(M) —— 1

v) The subgroup {0™ : n € Z} is the Galois group of the pair {Mg 1, M}
i the sense that

{" :neZ}={aecAut(Mp1) : a(x) =z, € M}.

vi) If a € Aut(Mo,1, M), then the modulus modyy, () as a member
of Aut(Mo 1) gives the modulus moda () of the restriction a|y €
Aut(M) in the following way:

mody (@) = w7/ (modyy, , () € R/T'Z,

where
2

:F’
2 S €ER +— Spv :S—}—T/ZER/T/Z.

T =—log\, T

Proof. The statements (i) and (ii) are known in the general structure theory
of a factor of type I, see [Tk2, Chapter XII, §2 and §6].

v) We prove the statement (v) first. Let 1) be a generalized trace of M,
i.e., a faithful semi-finite normal weight on M such that (1) = +oo and

a# = id. Then the covariant system {My 1,60} is conjugate to the dual

system {M Xgv R/TZ, 7, U/‘\p} So we identify them, so that My ; admits a

periodic one parameter unitary group {uw(s) 1S E R}:

u?(T) =1, 0u¥(s)) = X*u¥(s), and o¥ = Ad(u¥(s))|n, sc<R.
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Furthermore, the one parameter unitary group {uw (s):s€ ]R} together with
U(M) generates the normalizer Uo(M) = {v € U(Mp,1) : vMv* = M}, giving
the semi-direct product decomposition Uy = U(M) X 5v R/T7Z. Suppose that
a € Aut(Mp 1) leaves M pointwise fixed. We then show that x € M and
u¥(s)*a(u¥(s)), s € R, commute:

au? (s)*a(u?(s)) = u () () () a(u®(s))
= u"(s)" 0¥ () ( ) u(s)"a(of (x)u”(s))

(s)” ( (),

so that u’(s)*a(u¥(s)) = Mo N M = C. Hence there exists a scalar
wu(s) € T such that

Since u¥(T) = 1, we have u(T) = 1. Since u(s +1t) = u(s)u(t),s, t € R, we
have _
pu(s) = A" s € R, forsome n€Z.

Since M together with {u¥(s) : s € R} generate the whole algebra Mo 1, we
conclude that o = ™. This shows (v).

iii) Suppose that o € Aut(Mp ;) leave M globally invariant. Let [ =
ane = afy be the automorphism of M obtained as the restriction of o to M.
Then the uniqueness of a generalized trace on M gives a scalar s € R and a
unitary v € U(M) such that

e ") = ¢o(Ad(v)°f).
This means that
mod(f) = mod(Ad(v)ef) = 7w =s+T'Z € R/T'Z,

and that 0¥ and Ad(v)e3 commute. Hence it is possible to extend Ad(v)-3
to the automorphism v € Aut{M 1} such that

'y(uw(t)) =u¥(t), teR, ~(z)=Ad(Ww)p(z), xecM.
Now we compare o and v on M:
v(x) = Ad(v)of(z) = Ad(v)ea(z), x € M.
From (v) it follows that « is of the form:

a = 0" Ad(v*)ey
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for some n € Z. Since § commutes with both v and Ad(v), a and € commute.
Hence the implication (a) = (b) follows. The reversed implication: (b) = (a)
is trivial. So the proof of (iii) is complete.

iv) This follows from (iii) and (v).

Let {JT/[,R, T, 9} be the non-commutative flow of weights on M so that

the covariant system {Mg 1,Z, 0} is identified with {M Vv {¢}, 07/}
vi) Fix a member a € Aut(My 1, M) and let m(a) = mod(a) € R so that

Toaw = e () p,
Consider the crossed product
M = Mo, %p Z = MBL(2(2))

and the generalize trace ¢ = 7-€ on M:

o(r) =T1&(x) =71 (/R/TZ és(:c)ds>, x € JT/[JF.

With U € U(M) the unitary corresponding to the crossed product Mg 1 Xy Z,
we extend a to a € Aut (3\7[) by:

alz) =azr), €My, o)

Then we have for each = € JT/[JF

() = 7 ( /]R . és(&(x))ds> - (a ( é . és(x)ds> )
= e @) </R/TZ 0, (x)ds)

—m(a)

I
S

=e o(z).

Hence we get
mod(a) = [m(a)] =m(a)+T'Z € R/T'Z. (1.1)

Since the covariant systems {M, «a} and {J\N/E,&} are cocycle conjugate, we

have mod(a) = mod(a). This completes the proof.

Now, we denote by Ry an approximately finite dimensional factor of type
II; throughout the paper.

A factor M of type II; generates one parameter family {M, : 0 < A < 1}
of factors of type I\, who share the same discrete core Mg . So let M,
be a factor of type II;, and {Mo 1,60s,s € R} be the non-commutative flow
of weights on My, i.e., Mo 1 is a factor of type I equipped with a trace
scaling one parameter automorphism group {fs : s € R} and a faithful semi-
finite normal trace 7 such that

My =My, 70, =e 1, s€R.
The following is a folklore theorem in the structure theory of type IIL.
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Theorem 1.2. In the above context, fixing T' > 0, set

2T

_ =T _
)\—6 s T—F,

and let My be the fized point subalgebra Mgfl’ of Mo,1 under the automor-
phism Op:. Then the following statements hold:
i) The subalgebra My C Mo 1 is a factor of type I, whose discrete core
is conjugate to the pair {Mo 1,07 }.
ii) The triplet {Mo 1, Mx, 07/} is a Galois triplet in the sense:

Gal(Moyl/M)\) = {9%/ tn e Z},

where

Gal(M/N) = {a € Aut(M) : ofy = id}
for any pair N C M of von Neumann algebras. Furthermore, we have
the following exact sequence:

1 —— {0} :neZ} —— Aut(My)y —— Aut(My) —— 1

and
Aut(M)\)m = {5[ S Aut(MO,l) : &(M)\) = M)\}
= {& S Aut(M()’l) s ol = GT/Oa}.

iii) Another pair {Mx, M1} forms a Galois pair:
Gal(Mx/My) = {6;,, : 57 =s+T'Z e R/T'Z,s € R},

i.e., an automorphism o € Aut(My) is of the form o = 05, for some
s € R/T'Z if and only if a(x) = x,x € Mj.
iv) The modulus of 0;,, € Aut(My) is precisely =57 € R/T'Z itself,
1.€.,
mod(0;,,) = —$7 € R/T'Z.

If any one of My, My and Mo,1 is approximately finite dimensional, then
all others are approximately finite dimensional and in addition the following
statements hold:
v) If o € Aut(My) has aperiodic modulus m = mod(«), i.e., if km # 0
for every non-zero integer k € Z, or equivalently if

{mod(c )}T’
T/
then « is cocycle conjugate to 0_,
vi) If an automorphism o € Aut(My) has trivial asymptotic outer period,
i.e., po(a) = 0, then its cocycle conjugacy class is determined by its
modulus m = mod(«a) € R/T"Z. In fact, the automorphism « is cocy-
cle conjugate to the automorphism 0_,QRcq on My = MARRy, where
oo € Aut(Ry) is any aperiodic automorphism of the approzimately
finite dimensional factor Ry. If m # 0, then we have 6, ~ 0,®0g.

¢Q7
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Proof. We present a proof the statements (v) and (vi). Choose an auto-
morphism « € Aut(M)) such that m = mod(«) is aperiodic. Let Ry be
an approximately finite dimensional (to be abbreviated to AFD afterward)
factor of type II; realized as the infinite tensor product of two by two matrix
algebras

Ro = [ [ ®{Mn, 7}

nez

relative to the normalized traces 7,, = Tr/2 on M,, = M(2,C). Let o be the
Bernouille shift automorphism of Ry, i.e., the automorphism determined by

the following:
o[ = I

nez ne”z

Then thanks to the grand theorem of Connes, [Cnn6, Tk3, page 267], o and
a ® oq are cocycle conjugate under the identification of M and M) ® Ry

because the asymptotic outer period p, () of « is zero, p,(a) = 0. The same

is true for 0., i.e., O, ~. 0, ® 0, where “~_.” means the outer conjugacy.

Since mod(a; ® ag) = mod(a;) + mod(asz) on My @ My = M), we have

a~e @ 0o ~e a®0n®0_1n ~e UO®‘9—m ~e 0 .

This proves the statement (v).
vi) Suppose that p € N is the period of m € R/T'Z, i.e., the smallest
non-negative integer with pm = 0. We assume that p # 0. Let
{ej’k 01 Sj,k Sp}

be the standard matrix units of the p x p-matrix algebra M(p;C), and for
each n € N set M,, = M(p;C),n € N, and also consider the diagonal unitary

D .
Uy, = Zexp (271'1(%))6%1 & U(p; C) c M,
=1

of order p, i.e., u2 = 1. Now we identify the AFD factor Ry with the infinite
tensor product:

1
Ry = H O M, Tn}, T = ETr

neN

and let
op = [ [ ®Ad(un) € Aut(Ro) € Aut(Ry).
neN
Then the automorphism o, has the properties:

U]’; ¢ Int(Rg), for k=1,--- ,p—1, and o} =id
Om ~c 9m®0'p on M, = Jv[,\®930,
00RO _ ~, id®id®0p on MM, = M)\®M>\®:Ro,

0'0®O'p ~e.0p On RO@RO = :Ro.
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If « € Aut(M)) has the trivial asymptotic outer period p,(«) = 0, then the
automorphism « has the properties:

areop@a on My =2 Ro@M,y,
Om@a ~ id®oy on  Mr@My = MA®@Ro,

0_m®00 ~¢ 0 ROm@a ~. 0,00 ~¢
under the isomorphisms:
MA@Rg = MHy@MHAQMy = Ro@My = M.

This completes the proof. Q

Thus if mod(«) is aperiodic, or p,(a) = 0, then the grand theorem of
Connes [Cnn6, Tk3, page 270], identifies the cocycle conjugacy class of a €
Aut(My). But if mod(«) has non trivial period, and p; = p,(a) # 0, then
the cocycle conjugacy class of « involves algebraic invariants. For example,
one has to consider the extension of o to the discrete core My 4 on which
« alone cannot act. In fact, one has to consider a larger group Z? than the
integer group Z. So we continue to the next paragraph.

Invariants for Single Automorphisms: We consider a single auto-
morphism of a factor M of type I\, which can be viewed as an action of the
integer additive group Z. As the integer group Z appears in many different
roles, we denote it by G = Z. Let a; be the generator of the group G so
that G = Za;. Sometime, we view G as a multiplicative group in which case
G becomes G = {a’f ke Z}. Since the integer group is cohomologically
trivial, i.e., H*(G, T) = H*(G, T) = {1}, there is no distinction between the
cocycle conjugacy problem and the outer conjugacy problem of actions of
G. Namely, an outer action & of G comes always from an action a of G
and outer conjugacy of the outer action & of G is the same as the cocycle
conjugacy of the action « of G. Hence the obstruction Ob(&) of & and the
characteristic invariant y(«) of a is handily identified. The same is true for
the modular obstruction Oby,(é&) and the modular characteristic invariant
Xm (@)

As the single automorphism cocycle conjugacy classification wasn’t han-
dled properly in our previous work, [KtST1, KtST2], and more importantly
the presentation of a single automorphism on a factor of type I, in the book
of the second named author [Tk3| contains a minor mistake, we present it
here in some detail.

Since the case that the modulus m = mod(«) is aperiodic, then the last
theorem takes care of the cocycle conjugacy of «, i.e., it must be cocycle
conjugate to 6_,,. So we handle only the case that {mod(«)} is rational
multiple of T".

Suppose o~ !(Cnt,(M)) = Zb; and by = pyai,p; € N.
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Choose a pair p1,q1 € N of positive integers ¢; < p; such that

m=L7 L T'ZecR/T'Z, 0<q <p.
n
Then we form a group extension:
Gm={(9,8) EGXR:gm=3sp =s+T'ZeR/T'Z},

k—(0,kT’ r

(1.2)

G 0.

Set

2o = (O,T/), 21 = (al, {m}T,), (1 3)
bl = P1”21 — (q1<0, N = Zbl, Qm = Gm/N '

The group Gy, is equipped with a distinguished homomorphism k,,, = pr, to
R:
knm(g,s) =s€R, (g,5) € G- (1.4)

Let g, : g € Gy — ¢ € @, be the quotient map and further set

oo @

Dy = ged(p1,¢1), and 7‘1=D1, Sl_Dl’

(1.5)

and find a pair u;,v; € Z of integers such that
1 =7riu; — syv1, equivalently D = piui — qiv1,

which can be done through the Euclid algorithm. In the event that ¢; = 0,
the modulus m is trivial, i.e., m =0 and G, = G D Z.

Theorem 1.3 (Invariants for a Single Automorphism with Periodic
Modulus). In the case that p1 and q1 are both mon-zero, we have the
following statements with D1 = ged(p1, q1):

i) The pair {zo, 21} is a free basis of Gy, so that every element g € Gy,
s written uniquely in the form:

g9 =eo(9)z0 + ex(g)z1.
ii) The group Gy, admits another free basis {wo, w1} such that
by = Dywy,
and therefore

N:DlZwl, Qm :ZMO@Zwla
D1w1:0 n Qm%Z@ZDN
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where the dotted notations indicate their images in the quotient group

Qm-
iii) The character group Qum of Qm and the characteristic cohomology
group AN(Gy, N, T) is identified under the correspondence:

A(nbis g) = (70 (9))", g € Gy X € Qun. (1.6)

iv) The character group @; 18 given by the exact sequence:

_exp(2mi ) T@Zm:@; 0,

0 72 Re (£7)
which describes the characteristic cohomology group A(Gm, N, T):
A(Gu, N, T) 2T ®Zp,. (1.7)

If x(z0) is a root of unity, then the outer period p,(c) of a is given as the
product p1s, with s, € Zy the smallest non-negative integer s € Zy such
that 1 = x(20)°. If x(z0) is not a root of unity, then the corresponding
automorphism « is aperiodic, i.e., po(a) = 0.

Proof. 1) Since pry(z1) = a1 and G is a free abelian group, the exact se-
quence (1.2) splits along with the cross-section: m € G — mz; € Gy,.
ii) We set
Wo = U129 — V121, W1 = —S8120 + Tr121.

Since
20 = T1Wo + V1w, 21 = S1Wo + U1 Wi,
the pair {wg,w; } is a free basis of Gy, such that
Gm = Z’wo + Zwl, bl = Dlwl, N = Dlzwl,
Qm = G /N = Zvg ® Zain,

as we wanted.

iii) Since H?*(N,T) = {1}, the second cocycle part of a characteristic
cocycle in Z(Gy,, N, T) is taken to be trivial, so that the A-part vanishes on

N and therefore it is a character of GG, which vanishes on N and factors
through the quotient map 7, : Gy, — Q. Thus it is of the form:

A(bi:9) = x(me(9)): 9 € G, X € Q-
iv) It follows from (ii) that the character group Qu is parameterized by
R <DL12>:
Xa,y(9) = exp(2mi(z fo(9) +yf1(9)), 9= fo(g)wo + fi(g)wr € G,

with (z,y) e R&® (&Z). This gives the exact sequence:

0 72 R @ (ﬁz) X, A T Zp, —— 0

The assertion (iv) follows. This completes the proof. Q



12 OUTER ACTIONS I

Model Construction: Let G be a fixed countable discrete amenable
group and {H, .} be a universal resolution group of the third cocycles of G,
i.e, m;: H — G is a surjective homomorphisms such that

m(Z*(G,T)) C B*(H,T).

We require H to be a countable discrete amenable group. Let M = Ker(ng).
Fix a normal subgroup N of G and set L = 7% N). With a fixed invariant
homomorphism m € Homg(N,R/T"Z) such that Ker(m) D N, we use the
notation m for men for short and form a group extension Hy,:

0 Z H, /™ H 1,

where

Hy ={(g,s) € HxR:m(g) =ép =s+T'ZeR/T'ZL},
T™(g,8) =g € H, k(g,s)=s€R, (g,s)€ Hpy.

Then we get the following reduced modified HJR-sequence:

S H2(H,T) —2 A(Hm,L,M,T) —2

HOY (G, N, T) ——— 1
Thus every modular obstruction cocycle (¢, v) € Zgy's (G, N, T) is of the form:
(¢,v) =6(A, 1) mod B'L(G,N,T).

Consequently the construction of an outer action & of G on an AFD factor
My of type I, with Oby, (&) = ([¢],v) € H‘;EE(G, N, T) is reduced to the
construction of an action a™* of H,, such that

(™)) 7 (Int(My)) D M, (o) (Cnt(M,)) = L,
x(e™) = [\, pu] € A(Hym, L, M, T),
mod(a;"“) =m(n/9)), g€ Hun.

So fix a set of invariants (A, u) € Z(Hpy, L, M, T) and m € Homg(G,R/T'Z)
such that Ker(m) D N. We are going to construct the model action a** of
H,, as follows:

Step I: Let X be a countable but infinite set on which H,, acts freely from
the left. In the case that H,, is an infinite group, then we take X
to be H,, itself and let H,, act on it by the multiplication from the
left. So the infinite set X is only needed when Hy, is a finite group
in which case X can be taken to be the product set X = H, x N
and H,, act on the first component by the left multiplication . Let
{M,,x € Hy,} be the set of 2 by 2 matrix algebras M(2,C) indexed
by elements x € X.



Step II:

Step III:

Step IV:
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Form the infinite tensor product
RO = H ®{MCC7TCC}
zeX

relative to the normalized trace

- aj1  aiz \ _ Q11+ a2
w -_— .
a1 G2 2

Then let ¢° be the Bernouille action of H,, on Ry which is determined

by:
A1) e

reX reX

Form the twisted partial crossed product of Ry by N relative to the

second cocycle pu € Z*(N,T) and the action o

MO = fRo X501 N.

Let {U(m):m € N} be the projective unitary representation of N
to My corresponding to the twisted crossed product so that

U(g)U(h) = u(g; R)U(gh), g,h € N;
U(g)aU(g)* = 0%a), a&Ry,g€ N.

g
Let o™* be the action of H,, on My determined by:
o (U(m)) = Ngmg~'i9)U(gmg™"), m e N,g € Hy;
02"“(@) = ag(a), a € Ro,g€ Hy.

Let Mo,1 be the AFD factor of type Il equipped with trace scaling
one parameter automorphism group {fs : s € R} and set

Ro,1 = Mo,1@Mp.
We then set the action a™* to be the following:
d;\’“ = em(g) X 0';\”“ on fRO’l, g€ Hy,.

Set -
R = (Ro1)".
Since the automorphism a,, = 07 ®J§‘(;“ scales the trace 7 by A\ =

e~T", the von Neumann algebra R is an AFD factor of type IL,.
Finally we define the action a™* by the following:

aMt = MM

9 o |y g€ H,

which makes sense because &, acts trivially on R.
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Theorem 1.4 (Model Action). i) The action o = a™* constructed above
has the invariants:

N =a ' (Cnt(Ry)), mod(a,)=m(g), g€ H,
x(a) = [A p] € A(Hw, L, M, T),

) = | Ploeli)

} eR/TZ, g€ N.
T

i) Let sy : G — H be a cross-section of the homomorphism g : H +—
G. Then the outer action ag’,\lj{” of G has the associated modular obstruction
S([A, ) = [, 7] € Hyo (G, N, T).

The construction of (i) and (ii) exhausts all outer actions of G on the
approximately finite dimensional factor R of type Wy up to outer conjugacy.

Proof. i) Let a denote the action aMH of Hy, on Ro,1. Since R is the fixed
point subalgebra of Ry ; under the automorphism o, the restriction o =
alg of a to R factors through the quotient group H = H,,/(Zzp). Hence «
is indeed an action of H. Since Ry ; is a factor of type I, and

T/

—m(z0)r — =T 1

TO&ZO = T°9m(z0) = e

= AT,

the fixed point subalgebra R is a factor of type Il and the pair {Ro 1, az,}
is the discrete core of the factor R. Since Ry ; is AFD, R is approximately
finite dimentsional by the grand theorem of Connes, [Cnn5]. As zj is a central
element of Hy,, a(Hy,) leaves R globally invariant and hence its restriction
to R makes sense. The inner part a(N), which is given by the projective
representation {U(g): g € N}, leaves R globally invariant, i.e., U(g),g €
N, normalizes R; thus we have the inclusion U(N) C Ug(R). Hence N =
a~1(Cnt(R)). As in (1.1), we have

mod(ap) =m(h), he H.
If g,91,90 € N and h € H, then

Ag; h) = U*(g)an(U(h™" gh));
U(g1)U(92) = M(91;92)U(9192);
Va(9) = 0a., (U(g)) = U(g)"a,(U(g)) = Ag; o)

Hence x(a) = [\ u| € A(Hw, L, M, T) as required. Finally viewing v, as
a homomorphism of N into R/TZ, we get v, € Homg(N,R/TZ) as in the
assertion of the theorem.

ii) The assertion follows from the construction of a™*. Q
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Actions and Outer Actions of Two Commuting Automorphisms on
an AFD factor R of type Il\: In this case, we have to consider the free
abelian group G = Z?2 of rank two and its extension G,, = Z3 relative to
a homomorphism m : G — R/T'Z. We fix a subgroup N of G, which is
going to represent the inverse image a~1(Cnt(M})) of the extended modular
automorphism group. We assume that N is in the diagonal form, i.e., with
a free basis {a1,az} of G the subgroup N is of the form:

N = p1Zay + p2Zas.

Of course, one can choose p; and po in such a way that 0 < p; < po and p;
divides po, but to go beyond the finite rank case, we don’t assume that p;
is a divisor of py, which might make a matter slightly more involved. In the
case that G = Z?, we have H*(G, T) = {1}, so every outer action of G' comes
from an action of G. Since H*(G, T) = T # {1}, the outer conjugacy class of
an action is bigger than the cocycle conjugacy class. To go further, we recall
the reduced modified HJR-exact sequence, [KtT3, Theorem 3.11 page 116]:

R S Inf
H2(G,T) &) A(GH’MN’T) &} HE?E(G,N,T) A Hg(GaT) = {1}3

where Qu = G /N. Here since H*(G,T) = {1}, we don’t have to consider
the resolution group H and its subgroup M. To identify the subgroup N C G
as a subgroup of G,,, we need a little care. First, set

20 = (O,T/> < Gm,

T T’
z1 = (ala a ) € Grn7 Z2 = <a27 qz_)?
P1 b2

b1 = (p1a1,0) = p121 — G120 € G, (1.8)
ba = (p2a2,0) = paza — q220 € G,
N =7Zby + Zbs C Gy, = Zzg + Zz1 + Zzo,
Qm = Gm/N.

This gives the following coordinate system in G,, and N:

: eilg) .
g=-e1n(g)b1 +ean(g)b2 €N, 1ie., ein(g) = , 1=1,2,
1,8(9)b1 + e2,n(9)b2 (9) Py (1.9)

h = éo(h)Zo + €1 (h)Zl + éz(h)Zz € Gp.

Theorem 1.6 (Invariant). Define Z and B by the following:

b:{b(i,j):i:1,27j:0’1’2}6R6: N
Z: )
p;b(i,5) —q;b(:,0) € Z,i=1,2, j=1,2
b(i,0),b(i,4) € Z,i = 1,2, }
Vs

(1.10)
B=<{beZ:
p2b(1,2) + p1b(2,1) € ged(p1, p2)Z
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and to each b € Z associate a cochain (Ay, ) € Z(Gm, N, T) by:

Ab(g; h) = exp | 27i > b fen(9)Eh) | ],

i=1,2;j=0,1,2 (1.11)
plg1ig2) =1, 9,91,92 € N, h € G,
Then the cochain (A, p) is a characteristic cocycle (M\p,1) € Z(Gm, N, T).

S
The modular obstruction cocycle (cy,vp) = 0(Mp, 1) € Z?IEE(G: N, T) corre-
sponding to (\p, 1) takes the form:

(91592 93) = Ap(nn (925 93);8(93)),  91,92,93 € Qm,

b, 3)ps([es(92)]p,3 lea (391, ) {65 (a0)1,
=exp| 27 . )
p( ( Z ' ) ) (1.12)

i=1,2;5=0,1,2 DPi

vp(g) = !T > b(i,O)ei,N(g)] €R/TZ, ge€N,
T

i=1,2

where for the notations np,, and ny we refer the definition in §3, in particular
(3.8) and (3.14), and furthermore

{eo(91)},, =€o(d1) €EZ, ¢1 € Qm.

The (i, j)-component Z(i,j) and B(i,j) of Z and B give more precise infor-
mations about the cocycles:

i) Fori=1,2, we have

Zy(i,i) = {z = (z,u) € R? : pjz — qsu € Z},

1.13
By(i,i) =Z @ Z. (1.13)

The bicharacter \v* on N x Gy, determined by:
Aot (g; h) = exp(2mi(we; n ()& (h) + uei n(g9)én(R))), (1.14)

for each pair g € N, h € Gy, gives a characteristic cocycle of Z(G,

N,T). It is a coboundary if and only if z is in By(i,i). The corre-

sponding cohomology class [\o] € Ay(i,1) has the parameterization:
[\i] € A(i, i) ~ ([pﬂ; — it ey gy Vi + uiu]Z>

(1.15)
= chd(pi,qi) D (]R/Z),

where the integers u;,v; are determined by:

piu; — q;V; = ng(pza Q'L)v 1= 17 27
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through the Fuclid algorithm. The associated modular obstruction
cohomology class ([cbt,vi']) € Hoy'y(i,4) corresponds to the class:

1 =1,2.

)

vhi(g) = [Tuei’N(g)]T eR/TZ,
i) With (i.) = (1,2),
Zb(ZaJ) = {(x,u,y,v) S R4 P — 45U € Z,pzy — q;v € Z},
pjT +piy € gcd(pi,pj)Z,} (1.16)

([pix - q'iu]gcd(pi,qi)’ [_Uix + uiu]z) € chd(pi,qi) 2 (R/Z)’}

Bb(%]) = {(x,u,y,v) € Zb(za]) :
u,v € 7

For each element z = (x,u,y,v) € Zy(i,7), the corresponding bichar-
acter A\, on N X Gp,:

A7 (g3 h) = exp(2mi(ze;, n (9)€5(h) + ye;n (9)éi(R)))

1.17
X exp(QWi(uei’N(g)éo(h) +vej7N(g)é0(h))), ( )

for each pair g € N,h € Gy, is a characteristic cocycle in Z(Hy,,
L,M,T). It is a coboundary if and only if z € By(i,j). The co-
homology class [\o7] € Ay(i,5) of . corresponds to the parameter
class:

[Yi,j (Trji +yrig) + @i j(usji + vsij)l,
[—uw;,; +vwjil,

. (5a2)/ o

(M, (@rji +yrij) — nij(ussi +vsi )l \ )
[2] =

R/Z ’
R/Z J
where the integers D(i, j), - ,w; ; are those such that:
D(Zyj):ng(pz7pj7Q17QJ)7 )
D; ; = ged(ps,p;), Eij = ged(qi, q;5),
R D B '
YDy "t Dy Y By T By (1.19)
i I N
" D(,j) " D(i,5)
qw; i+ qjw;i = Ei;, ;D +yiiEi j = D(i,7). )

The associated modular obstruction class ([c7],vi7) € H'L (i, 4)
corresponds to the pair of the classes:

e (Dézé}?/ ’

R/Z

Vid(g) = {T(aef’) +ve2;2g))L cR/TZ, g€ N.

Y
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The proof of this special case is not particularly simpler than the general
case, so that we will discuss later in the general free abelian group case, see
Theorem 4.2.

62 Asymmetrization.

Set the notations:
X:Zn+1 :Z/(n—l—l)Z, X1 :X\{l}

The signature of a permutation o is the sign of the product:

sign(o) = sign H(U(j) —o(i))

i<j
Let S be the cyclic permutation:
S=1(2,3,---,n,n+1,1) € II(X), (2.1)
whose signature is given by:
sign(S) = (—1)™. (2.2)

Each element o € II(X) is identified with the element of II(X) such that
0= (170(2)70(3)7 e ,O'(n),O'(?’L + 1)) S H(X)

This identification of an element of II(X;) with the corresponding element of
II(X) preserves the signature of o. Then the total permutation group IT(X)
is the disjoint union of the translations {S*II(X;) : 0 < k < n}, i.e.,

II(X) = U SFII(X,), disjoint union. (2.3)
k=0

DEFINITION 2.1. The asymmetrization ASE of € € C"(G, A) is defined by
the following:

(ASE) (91,92, 1gn) = Y sign(0)E(9o(1): Go(2)r"* 1 Go(m))-  (2:4)
o €Il(Zy)

Define 7, : G"*! — G™ by the following:

(91592, > Gn> Gnt1)
(92,93, s 9n>Gnt1), k=0;
=9 (91, 9k—1, 9k k41, Gkt2, 1 Gnt1), 1<k <my
(91,92, - ,gn), k=n+1

(2.5)
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The boundary operation d € Hom(Z(G™*1), Z(G™)) is then given by

d="Y (—1)Fem, (2.6)

and
o =d*¢, e C"THG,T).
We view the asymmetrization AS also as an element of End(Z(G"™)) deter-

mined by:

AS(gla g2, ;gn) = Z SigH(O') (ga(l)v 9o (2)," " 7ga(n))-
o €Il(Zn)

Lemma 2.2. The asymmetrization and the boundary operation are related
i the following way:

ASed =0 in Hom(Z(G™),Z(G™)).

Proof. Define Q € Hom(Z(G"™),Z(G™)) and R € Hom(Z(G"™1),Z(G™))
by:

n+1
R= > > (sign (59 10) 1057~ Lo + (~1)"*+sign (S o) 7rn+1Sj0'),
cEM(Xy) j=1

and
n+1
Z Z sign(S7o Z (-DfmeSiog, ge G
c€ell(Xy) j=1 k=1
So we have
ASed = Q + R.
We know
1057 o =M1 570, 1< j <y
sign(S? " to)meS? o + (—1)" T sign(S7 o) w1900
= (—1)"U Ysign(o)mS Lo + (—1)" 1 (=1)"sign(o) T, 1570
= 0.
Thus we get

Q=0.
We need the notation oy, 1 for the flip of k£ and k + 1:

oerir = (1,2, k—2k—1Lk+1,kk+2k+3,-- ,n+1) e I(X).
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Then we get
Sign (0% k+10)TkOk k+109 + sign(p)mrpg = 0,  p € I(X),1 <k <n.

Hence we come to the following:

n+1 n
R= Y > sign(¥0)) (-1)fmSio
o€ll(X,) j=1 k=1
n n+1
=3 (=D > sign(So)mSo
k=1 Jj=1o€ell(Xy)

n

(=% > sign(p)mip

1 p€EIl(X)

B
I

I
NE

(=% ) (sign(p)mip + sign(ok k410)Tk0k k41P)
1 p€lly (X)

I
o

where I1p(X) is the group of even permutations of X, i.e., the alternating
group. Therefore we conclude

ASsd=Q+ R =0.

This completes the proof. Q

Let A be a G-module with action . We recall the dimension shifting
theorem and the dimension shift map 0. First we define a new G-module A
as follows:

i) Let Map(G,.A) be the module A% of all A-valued functions on G
with pointwise addition.

ii) View the group A as the submodule of Map(G,A) of constant A-
valued functions.

iii) The action « of G on A is extended to the enlarged additive group
Map(G, A) by:

(ahf)(g) = ah(f(Qh))a f € Map(G,A), g, hed.

iv) Form the quotient G-module:

A = Map(G, .A)/A.
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Thus we obtain the following equivariant short exact sequence:

0 A Map(G, A) A 0. (2.7)

The short exact sequence (2.7) splits in the following way:
i) First, set

J(f)(g) = flg) — fle), f€Map(G,A),g€Qq,

where e € G is the neutral element of G. Then the map j is a
homomorphism of Map(G,.A) onto the subgroup Map,(G,A) of all
A-valued functions on GG vanishing at e. Then we get

Ker(j) = A C Map(G, A),

so that the map j is viewed as a bijection from A onto Map, (G, A).

ii) The map j transforms the action @ of G on A to the action, denoted
by a again, on Map,(G, A) defined by:

(anf)(g) = an(f(gh)) —an(f(R)), g,h€G, f& Mapy(G,A).

With the map j, we will identify A and Map,(G,.A). Thus we have a short
exact sequence:

0 A —— Map(G,A) —L— A =Map,(G,A) —— 0

Let s denote the embedding of A = Mapy (G, A) — Map(G,.A), which is a
right inverse of the map j. If & € Z"~! <G,ﬁ>, then

0= deii = j (Jos(@)),

where d; means the coboundary operator in CZ(G, Map(G,.A)), so that
we have 0gs(a) € Z)(G,A). We denote the cohomology class [(’%5(&)] €

H” (G, A) by 9[u] for each [a] € HZ™! (G,]L). It is known as the dimen-

sion shift theorem that the map 0 is an isomorphism of Hg_l (G,ZL) onto
H. (G, A).
DEFINITION 2.3. Suppose that the group G admits a torsion free central

element zp € G. A cocycle ¢ € Z)(G,A) is said to be of the standard form
(relative to the central element zj) if

i) For each ky, -k, € Z and g1,92, -+ ,gn € G,

c(z8v g1, 25mgn) = ag, (dc(kl;gz,--- 7911)) +c(g1,92, - ,9n);  (2.8)
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92,93, ,9n € G, i.e.,

dc(k +£a 92,93, 7gn)

(2.9)
= dc(k;927g37 e 7gn) + 0450 (dC(& 92,93, " agn)) .
iii) For each k € Z and ¢g1,92, - ,g9n € G, we have
(Ocde)(ki 91,92, gn)
(2.10)

= alzfo <C(glﬂ927"' ,gn)> _C<gl7g27"' 7gn)

REMARK 2.4. The cocycle identity (2.8) can be fulfilled automatically if
d. is chosen in such a way that

C<20g1, 25292, e ,Zgngn) = Qg (dc(g2,93, T 7gn)> + 6(917927 e 7971)7
<8Gdc)(917927 U agn) = Oy, <C(gl7927 o 7gn)> - 6(917927 e 7.gn)
Because d.(k; 92,93, - ,gn) can be obtained inductively by:

dc(k;925937 e 7gn>

(2.11)
= dc(g27935 U 7gn) + Uz (dc(k - 1;92793; s 0n )

In the sequel, we often write d.(g2,93, - ,gn) for the d-part of a standard
cocycle ¢ without referring to the first variable k in d.(k; g2, g3, , gn)-

Lemma 2.5. In the above context, every cocycle ¢ € Z1)(G,A) is cohomolo-
gous to a cocycle cs of the standard form.

Proof. For n = 1, the cocycle identity:
c(zgg) = ozg(c(zg)) +clg), ke€Z,gea,

shows that with d.(k) = ¢(2{) the cochain d, satisfies the condition (i). Now
we have

ot (elg)) = elg) = e(zbg) — e(+h) — clg)
= clg) + ay (c(=6) ) — e(zb) — (o)
= ay (d.(k)) = de(k)
= (%dc)(k;g),

which shows the property (ii) for ¢ and d..
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Now assume that our claim is valid for 1,--- ,n — 1 and for any G-module
{A, a}.
Choose an equivariant short exact sequence:
0 A—— M0 A 0

such that
i) Ho(G, M) ={0},n =1
ii) the cross-section s : A — M is a homomorphism of A into M, but
not equivariant,

so that the map Ogs : Z"~! (G,ﬁ) — 720 (G, A) gives rise to an isomorphism
0 : Hgfl(G,;L) — H (G, A). For a standard cocycle ¢ € ngl <G,.7l>, we

set, for each zglgl, e ,zg”’lgn_l € G,
— kl k'n—l _ - .
C\Zg 91,y 2 gn—1) = Qg 5(d6(k17927g37"' 7g’n—1))
+ 5(6(91792793; o ;gn—l))'

Since j(¢) = ¢, we have
c=0sc€ LG, A).

We then compute

k (K
o(tt01, 1567 n) = (00) (701,257 0n)
[k k k
n—1 A &
o , ,
+ Z(_l)JC(Zolglw" 2200 9570 T g1, 7%)
i=1
[k Ky —
+(_1)nc(zolglv"' aZ()n 1gn71)

= e [ogs (s(de(hai ga, - 9n))) + 202,95, om)]

- [aglgz (5(da(k1 + k23593, ,gn))) +¢c(9192, 93, ,gn)}
n—1

+ > (=1) {ozg1 (5(da(k1;gz,--- 1959541, ,gn)))
j=2

+e(g1, 1959541, ,gn))}
+ (=1)"ag, (5(d5(k1;g2793, e ,gn—1)))
+(=1)"e(g91,92,93,"** ,gn—1)
= (067) (91,92, 0n) + s (s (s(delkaigs, - .9n))))
+ag, (0/;3 (5(92,937 .o ,gn)) — (92,93, - 79n))

— o [8(de(k1; g3, ,gn)) + b3 ((de(ki ga, - ,gn)))]
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n—1
+ Z (_1)Ja91 (5(d5(k1;927 59595415 0 7971)))
j=2

+ (1) (g ((dz (k13 92, 93, , 9n-1))))
= (0c¢)(g1,92; " 1 9n)
+ag | () (92,95, 90)) = elg2, 93, 190))

— g, (ﬁ(dé(kl;g?n e agn))>
n—1

+ Z (_1)j5(d5(k1;g27 959541, 0 7gn))
i=2

+ (_1)n(5(d5(k1;92>g33 T ;gn—l))):|
= (6G6)(glag27 T 7g’ﬂ)
ki(a —E
+ agy Az 0(927937 7gn) 0(92,93” agn)

— Og(sods)(k1; 92,93, ,gn)}.

Consequently, we get

C(Z(I)Clgl"" 7Zé:ngn> = agl(dc(kl;g2ag3;"' 7gn)) +C(91792;"' 7gn)
with
0(917925 U 7gn) - (aGé)(glvg2a e agn)7

de(g2, 93, » gn) = iz (5(92,93,-~- ,gn)) —c(92,93, , 9n)
— 0(5°dz) (92,93, , gn)-

We now check the requirement (2.10) for d. and ¢:

0z (C(glaQZ»"' ,gn)) — (91,92, + 9n)
= Oy, (aGE(gltha”' 7gn)> _8G5(917927"' 7gn)
= aG (0620(5(91,92,' ce Jgn)) - 5(91,92, te 7971))

= 0g (dc(gz,gs, o+ gn) + Ogsedz(g2, g3, - ,gn)>
- aGdc(g27g37 ot 7gn)

Thus the cocycle c is standard. This completes the proof.

Q

We now state the main result on the asymmetrization which extends the

work of Olesen-Pedersen -Takesaki, [OPT]:

Theorem 2.6. Let (Q be a countable torsion free abelian group.

i) The asymmetrization AS maps the group 7" (Q,T) of T-valued n-th
cocycles onto the compact group X™(Q,T) of all asymmetric multi-characters

on n variables of Q.
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ii) The following sequence is exact for each n € N:

1 —— BYQ,T) —— Z"(Q,T) —25- X™(Q,T) —— 1.

Consequently,

m!
Tn!(mfn)! m Z n

H"(Z™,T) =2 X"(Z™,T) =

0 m<n.
More generally, if QQ is a countable torsion free abelian group, then the coho-
mology group H"(Q,T) is naturally isomorphic to the Pontrjagin - Kampen
dual of the n-th exterior power Q AQ A --- N Q of Q:

H"(Q,T) = The Pontrjagin - Kampen Dual of (QANQ A --- N\ Q).
iii) The group X™(Q,T) is a subgroup of Z"(Q,T) such that

2"(Q,T) = X™(Q,T)B"(Q, T);
X™"(Q,T)NnB"(Q,T) = Ker(Power n!),

and
ASc=c", ce X™(Q,T).

REMARK 2.7. If the group @) has torsion, then the theorem fails as seen
in the case that Q = Z, = Z/pZ,p > 2, H*(Q,T) £ Z, and X>3(Q,T) = {0}.

For the proof, we need some preparation. First, if n = 1, then our assertion
is trivially true for any abelian group () with no assumption on torsion. We
then assume that our assertion is true for cocycle dimension 1, --- ,n—1 with
n € N fixed and for any torsion free abelian group ). With this induction
hypothesis, we prepare a couple of lemmas for cocycle dimension n.

Lemma 2.8. i) If M is an abelian group such that a cocycle ¢ € Z™(M,T)
s a coboundary if and only if ASc = 1, then the same is true for the product
group QQ = M x Z.

ii) If M is an abelian group such that the asymmetrization ASc of each
cocycle ¢ € Z"(M,T) is a multi-character, then the same is true for the
product group Q = M X Z.

Proof. Let zy denote the distinguished element of () associated with the
product decomposition () = M x Z so that every element ¢ € () is written
uniquely in the form ¢ = mz§, m € M,k € Z.

i) The triviality of the asymmetrization of a coboundary was proven in
Lemma 2.2. Thus we prove the converse. Suppose that ASc = 1,¢ €
Z"(Q,T). By Lemma 2.5 the cocycle ¢ is cohomologous to a cocycle c¢q
of standard form and AScs = ASc = 1 by Lemma 2.2. So we may and do
assume that c is standard:

C(ﬁhﬁ%"' 7ﬁn) = dc(p27p37"' 7pn)£1cM(p17p27"' 7pn)
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where p; = pizg" €Q =M x7Z. As QQ does not act on T, the d-part d. is a
cocycle in Z"~H(Q, T).
We look at the asymmetrization of c:

(ASC)(ﬁhﬁ% co 7ﬁn) = H (dc (pa(2)7p0(3)7 T 7pa(n))zg(1)
oES,

sign o
X CMm (pa(1)7p0(2)7 T 7p0(”))>

£y (1ysign o
— H dC(pO’(Z)apg(S),"' ’pd(n)) (1)818
cES,
X H CM (pa(l)apg(Q), ce 7pa(n))81gn O"
oeSy
le.,
(ASC)(B1. f2r -+ Bn) = [ ] de(bo@) Poy Do) "7

ces, (2.12)
X (ASCM)(p17p27 e ;pn)

To compute the first term of the above expression, we take a closer look at
the permutation group S5,. In particular, we have to pay attention to the
fact that the first term in the variables of d. is mission. To this end, we
fix k,1 < k < n, which represents the missing term in d., and consider the
cyclic permutation:

Sno1(k)= (1,2, k—1,k+1,-- ,n)EH({1,2,~- k—1,k+1,--- ,n}).

For 0 = (k,0(2),0(3),--- ,0(n)) € Sy, define p, p and G as follows:

p= S(n—k—l—l)o_

1 2 o k=1 k k+1 --- n
_<U(n—k—|—2) on—k+3) - on) k o2 - U(n—k—kl));
o 1 2 o k=1 k41 .- n .
p_<o(n—k+2) on—k+3) - om) o2 - U(n—k:~|—1)>’
5=2S8n_1(k)* 15
:< 1 2 k=1 k+1 n )

c(2) o(3) -+ ok) ok+1) - o(n)

= (0(2)3 0(3)7 e ,O’(’I’L)) .
Then observing sign p = sign p, we compute
sign o = sign S*sign p = (=1)* "V Dgign 5

:(_1)(n—1)(k—1)sign(sn_l(k,)n—k)sig ~

n
= (=)= DE=D+m=2)(n=K)gion 5 = (—1)*Lsign &.
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Hence the first term of (2.12) becomes the following:

[T {dePoc)sPoca)s - sPa(m)} 777
oESK

g fp(—1)k—1
H { H {dc(p5(1)’p5(2)"" ,p&(n—l))}SIgn U}
k=1

&esn—l(k)

n - e (~1)F Tt
= H {(ASdC)(p17p27 y Pk apn)}
k=1

where the notation — stands for removing the corresponding variable. Thus
(2.12) is replaced by the following:

(ASc)(p1,p2,- - s Dn)
11

n {
k=1

o ek(—l)’“—l
(ASdC)(ppra"' yPky - 7pn)} (212/)

X (ASCM)(pbP% e 7pn)
The condition ASc = 1 yields that:

AScyy =1 withl, =0,k=1,...,n;
ASd. =1 withty =10, =0,k=2,...,n, p1 =e.

Hence cj; and d. are both coboundaries by the induction hypothesis. Choose
be C" (M, T) and a € C" (M, T) such that

cy = 0yb and d. = 0,a.

Then the cocycle ¢ has the form:

C(ﬁl:ﬁQf” 7]571) — dC(p27p37"' 7pn)glc(p17p2a"' 7pn)
= (8 a) (2, P35+ - 00 )™ (Ousb) (D1, D2y -+ D)

Setting

f(ﬁlaﬁQ?' o 7ﬁn—1) - a(p27p37 T 7pn—1)_£1b(p17p27 T 7pn—1)7
for p; = ziipi € Q,i =1,--- ,n — 1, we compute

(an)(ﬁhﬁQ? e 7ﬁn)

n—1

- - - - - - _1\k
= f(p25p37"' 7pn) X H f(p17 yPEPk+1," " 7pn)( b
k=1

X f(ﬁl:ﬁ% e 7ﬁn—1)(_1)n



28 OUTER ACTIONS I

- a(p37 tt 7pn)_£2a(p37 te 7pn)£1+62

n—1
_ _ k
X Ha(an"' s DkPk+1s" " sPn) A=
k=2

X a(p2,p37 e 7pn—1)_£1(_1)n

n—1
_\k
% b<p27p37“. 7pn) X H b(pl’ y PkPk+1," " 7pn)( 2
k=1
X b(p17p37"' 7pn)(71)n
n—1 .
= a(ps,- - ,pn)h H a(p2,- s PrPEa1, - ,pn)_el(_l)
k=2

X a(p27p37”' 7pn—1)_el(_1)n X (aMb)(plaan" : 7p’n)

= ((aMa)(anp?)v"' 7pn>)Z1 (8Mb)(P17P27' o ap'n,)
:C(ﬁ17ﬁ27'” 7ﬁn)~

Therefore c¢ is a coboundary. This completes the proof of the assertion (i).
ii) Fix a standard cocycle ¢ € Z"(Q, T):

C(ﬁlvﬁQW” ;ﬁn) - dC(p27p37"' 7pn)elc(p17p27"' 7pn)

with d, € Z""Y(M,T) and ¢y, € Z"(M,T). Observing that AScy; and ASd,
are both multi-characters by the assumptions, we compute with (2.13), for
~ kl
q1 = 412y,

(ASC)(ﬁlqlaﬁ27 e )ﬁn)
= (ASdc)(an U 7pn)él+k1

n = £;(—-1)3=1
X H {(ASdc)(plqlaan"' 7pja"' 7pn)}
Jj=2

X (ASeps)(p1gi,p2, -+ ,Pn)
= (ASdc)(pQu e ’pn)21

n = 2;(—-1)771
X H {(ASdc)(pl,pQ, yPjs 7pn)}

7j=2
X (ASdC)(p27 e 7pn)k1

n = £;(-1)3~1
X H {(ASdC)(qlﬂpzﬂ yPj,c apn)}
i=2

X (ASCM)(p17p27"' ,pn)(ASCM)(Q1,p2,"' 7pn)
= (ASC)(ﬁ17ﬁ27”' 7ﬁn)(ASC)(q17ﬁ27”' 7571)'

Thus ASc is indeed multiplicative on the first variable, so that it is an asym-
metric multi-character of Q = M x Z. Q
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Lemma 2.9. Suppose that ¢ € 2" (Q,T) has a trivial asymmetrization, i.e.,
ASc = 1. Assume the following:

a) M is a finitely generated subgroup of Q;
b) ag € Q but not in M;
¢) feC" N M,T) cobounds the restriction car of ¢ to M, i.e.,

8Mf =CM-.

Then the cochain f has an extension to the subgroup N = (M, ag) generated
by M and ag such that
8Nf = CN,

where cy is the restriction of ¢ to the subgroup N.

Proof. To apply the structure theory of abelian groups, we use the additive
group operation in the group ). From the general theory of abelian groups,
it follows that M and N are both free abelian groups and there exists a
free basis {21, 22, -+ , 2, } of N and non-negative integers {p1,p2, -+ ,pr} C
Z+,1 <r <m, such that

N = (21,22, ,2m), M ={(piz1, - ,przr).

With the assumption for n— 1, every (n—1)-cocycle u € Z" (M, T) is coho-
mologous to an asymmetric multi-character p,, i.e., there exist a;, 4, ... 5, € R
such that

,ua(glvg% e 7.971—1)

= exp [271'1 E Qi ig, o i1

7‘36{1’25 ,’I”}
1<i1 <t < <tp_1<n—1

X (611,M Nejy N+ A ein,l,M)(ghgz, o Gn—1)

where {e; pr 2 1 <i <r} is the coordinate sysem of M relative to the basis
{p121,- -+ ,pr2r}. Setting

Va(917927 to 7g’rl—1)

_ : a'i17i27"' yin—1
= exp 4 27
ije{l,Q,"','f} pzlpm p2n71
1<i1 <2< <tp_1<n—1

X <€¢1 ANV AERA ein,1>(91,g2, e 7gn—l)}

where {e; : 1 <i <m} is the coordinate system of N relative to the basis
{z1,--+,2n}, we obtain an extension v of u,. Choose ¢ € C" ?(M,T)
so that p = (048&)pa and extends € to a cochain ¢ € C"?(N,T). Then
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the second cocycle (Oy&)v gives an extension of the original (n — 1)-cocycle
W e Z”_l(M ,T). Thus we obtain the surjectivity of the restriction map
res: p € Z" (N, T) = pp € Z" (M, T), i.e. the exactness of the sequence:

Z" YN, T) —=— 72" (M, T) —— 1.

By induction on generators, Lemma 2.9 yields that the restriction cy
of ¢ to N is a coboundary. Hence there exists & € C" (N, T) such that
cy = Ox&. Then we have 0,,f = ¢y = 0y &, so that we obtain uy, =
f&lf ezt (M, T). By the first arguments, we can extend pps to an element
v e 7" YN,T). Set

f=vée C"HN,T),

and the newly defined cochain f on N extends the original f € C" ' (M, T)
and cobounds the cocycle cy:

Onf = (OnV)(OxE) = OnE =N

This completes the proof. Q@

We are now ready to complete the proof of Theorem 2.6, proceeding from
cocycle dimension 1,--- ,n — 1 to the cocycle dimension n.

Proof of Theorem 2.6. Suppose that ¢ € Z"(Q,T) and ASc = 1. Let {z :
k € N} be a sequence of generators of ) and let

M,, = (z1,22,* ,2m), m€EN.

The sequence {M,,} is then increasing and @ = |J M,,. The triviality as-
sumption ASc = 1 and Lemma 2.8 (i) yield that the restriction ¢,, of the
cocycle ¢ to each M,, is a coboundary, so that there exists f,, € C" (M, T)
such that

Cm = 6Mmfm-

The last lemma however allows us to choose the sequence {f,,} in such a
way that each f,, is an extension of the previous f,,_1. Hence the sequence
{fm} gives a cochain f € C""1(Q,T) such that f|r;,, = fm,m € N, and
therefore

Oof =c.

Thus we conclude that Ker(AS) C B"(Q,T). The inclusion, Ker(AS) D
B"(Q,T), was proven in Lemma 2.2. Hence Ker(AS) = B"(Q,T).

Lemma 2.8 (ii) for {M,,}men yields that the asymmetrization ASc of
every ¢ € Z"(Q,T) is a multi-character.

Set ¢, = ASc for an arbitrary cocycle ¢ € Z"(Q,T). Then ¢, € X™(Q,T).
Since @ is torsion free, the group X™(Q, T) is indefinitely divisible. So the
n!-th power mapping: £ € X™(Q,T) — & € X"(Q, T) is surjective. But the
asymmetrization AS on X™(Q, T) is precisely the n!-th power. Hence there
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exists £ € X™(Q,T) such that AS¢ = ™ = ¢,. Now we have AS(¢71c) =
¢ "¢, = 1. Thus ¢ 'c € B"(Q,T). Consequently, we conclude

Z2"(Q,T) =X"(Q,T)B"(Q,T);
X"(Q,T)NB™Q,T) = X"*(Q, T) NKer(AS)

={ce X"(Q,T): ™ =1}.

This completes the proof. Q@

Corollary 2.10. If G s a discrete abelian group, then the asymmetrization
of every n-cocycle ¢ € 7" (G, T) is a multi-character, i.e., ASc € X"(G,T).

Proof. Let F be a large enough free abelian group so that there exists a
surjective homomorphism 7: F' — G. Consider the pullback 7*(c¢) and its
asymmetrization, AS7*(¢) = 7*(ASc). It follows from Theorem 2.6 that
the pull back 7*(ASc) is a multi-character of F', consequently the original
asymmetrization ASc is a multi-character of G. Q@

83. Universal Resolution for a
Countable Discrete Abelian Group.

We discuss a universal resolution group for a countable discrete abelian
group. We consider only the case that the abelian group under consideration
has an infinitely many generators since the finitely generated case can be
covered by the infinite generator case. Let G = Z<N be the free abelian
group of a finite sequences of integers, i.e., every element g € G is of the
form:

92(917927"'7gi7"'79570707”')7 g’LGZ7
with £ = £(g) € N, the last non-zero term of g € Z<N. With

i
a; = (0,0,---,0,1,0,0---), (3.1)

every element g € Z<N is written uniquely

9="> eilg)a:. (3.2)

ieN

We call {a; : i € N} the standard basis of Z<N. We also fix a subgroup N of
G which is generated by a sequence {p;a; : i € N} with p; € Z,i € N. We
will use the matrix:

pr 0 O

0 po 0O -
P=|o 0 p ... | N=PZM
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Let M be the additive group of integer coefficient upper triangular matri-

ces:
0 mi2 Mmiz mis

0 0 ma3 M4

M=<m= 0 0 0 :miijZ

and set
ejx(m) =mjg, Jj<k, meM.
Let a; A aj,t < j, be the element of M such that
ere(a; N aj) = 0irdjy,
i.e., the matrix with only (7, j)-component 1 and all others 0, equivalently

a; A\ aj,i < j,is the (4, j)-matrix unit of M. Let n,, be the M-valued second
cocycle of G defined by:

ejk(mdgi h)) = ej(glex(h), g,heG, 1<j<k;
0 ei(g)ea(h) ei(g)es(h) ei(g)ea(h)
0 0 ez2(g)es(h) ea(glea(h) - (3.3)
nM(g;h) = 0 0 63(9)64(h)

Let H be the group extension of G associated with n, € Z*(G, M):
H=MXy,G and L=M Xy, N.
The group operation in H is given by:
(m,g)(n,h) = (m+n+mnmlg;h),g+h), (m,g),(nh)eH.
lis given by:

(m,g)~" = (—m + (g, —9), —9)

The inverse (m, g)~

because
(0,0) = (m, g)(m, ¢') = (m +m' +nulg:9'),9+ )
g'=-g, m'=-m+ngg)
To determine the commutater subgroup [H, H|, we compute the commutator:
(m, g)(n, h)(m,g)~ " (n,h) "1, (m,g), (n,h) € H,
= (m, g)(n, h)(=m +m.(g; 9), —g)(—n + m(h; h); —h)
= (m+n-+mn,g,h),g+h)
x (=m —n+mg;9) + mh; h) + mg; h), —g — h)
= (mug; ) +milg; 9) + m(hs h) + mu(g; B) + g + h; —(g + R)),0)
= (m(g; h) — mu(h; g),0)

= | Y (es(9)ex(h) — ej(h)er(9))(a; A ar),0

i<k
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This shows immediately the following:
Lemma 3.1. The commutator subgroup [H, H] of H is the center M of H.

Proof. From the computation above, it follows that for each pair j < k
sr(aj)sm(ar)sm(ay) s (an) ™" = aj Aay,
with sz the cross-section of 7 : (m,g) € H — g € G given by
su(g) =(0,9) e H, geG,

so that the commutator subgroup [H, H] contains the generators a; Aag, j <
k, of M. Thus our assertion follows. Q

Theorem 3.2. The pair {H,m} is a universal resolution of the third cocycle
group Z3(G,T) of G. Consequently, if K is a countable discrete abelian
group, then for any surjective homomorphism m: Z<N +— K, the composed
map T = womg: H — K makes the pair {H,nx} a universal resolution of
the third cocycle group Z3(K, T).

Proof. Since Z<Y is a free abelian group on countably infinite generators,
there exists a surjective homomorphism from G to any countable abelian
group G. So it is sufficient to prove that

75 (Z°(G,T)) C B*(H,T).

For each triplet £, 7, ¢ € Hom(G, R), we define a multi-homomorphism, called
the tensor product and denoted by é@n®¢ € C*(G,R), as follows:

(Eon@C) (g hi k) = E(g)n(R)C(K), g, hk € G.

Then the tensor product £&n®(¢ generate the third cocycle group Z*(G,R)
up to coboundary, i.e.,

({eoma¢: €,n,¢ € Hom(G,R)}) + B (G, R) = Z*(G, R).
Now for each pair 7, € Hom(G,R) we define a cochain B, . € C'(H,R)

Byclg) = nla;)¢(ar)ejk(mo(g)), g = (mo(g),mo(g)) € H.  (3.4)

i<k
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Then we have

(0n (56 By.c) ) (915 921 93) = §(m0(92)) By, (93) — E(mo(g1) + m0(92)) By,c (9)
+ &(m0(91)) By ¢ (9293) — £(m0(91)) By ¢ (92)

= —&(m0(91)) By, (93) + &(m0(91)) (Zn(aj)C(ak)ej,k(mO(gzgs))>
i<k
—&(m0(91)) By ¢ (92)
= —&(mo(91)) B, (93)

+&(mo(g1)) (Zﬁ(aj)C(ak)(ej,k(mo(92) +mo(g3) + “SW(Q%QS)))

i<k
— &(mo(91) By ¢ (92)

= &(mo(g1)) (Z n(a;)¢(ak)e;(mo(g2))ex(mo (93))> :

i<k

Choosing &,7,¢ € Hom(G,T) to be £ =e;,n =e; and ( = ¢, for i < j <k,
we obtain
T4 (ei®e;®er) = Oy (Tei®Be, ey )-

Every third cocycle in Z*(G, T) is cohomologous to a cocycle ¢, € Z*(G,T)
of the form:

Calg1;g2:93) = exp | 271 | Y ali,j, k)ei(gr)ej(g2)en(gs) | |- (3.5)
i<j<k

So with b, € C*(H,T) defined by:

ba(g1;92) = exp| 2mi| > a(i,f, k)ei(mo(91))Bej e, (93) | | (3.6)
i<j<k
we have
ToCa = Opbg. (3.7)

Hence we get
m5(2*(G,T)) C B*(H,T),

which concludes that the pair {H,m} is a universal resolution of Z*(G,T)
and completes the proof. V)

Corollary 3.3. The p-part of every characteristic cocycle (A, ) € Z(H, M,
T) is trivial.

Proof. Since M < H is central, )\ is a bicharacter of M x H, in particular
A(m,-) is a character of H for every m € M. Hence it must vanish on
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the commutator subgroup, i.e., A(m,n) = 1 for ever m,n € M. Thus u €
Z*(M,T) is a coboundary. Q

Consider (A\,u) € Z(H,L,T) with L = M x,,, N. We may and do as-
sume the triviality puys = 1 of the restriction of p to M. We then have the
corresponding crossed extension:

1 T E 1 [ 1

The triviality of uj; means that the cross-section u is multiplicative on M,
ie., u(mn) = u(m)u(n),m,n € M. Here we use the multiplicative group
operation as M sits in the noncommutative group H.

Lemma 3.4. Ifsy is a cross-section of the quotient map mo : H — Z<N =
H/M with w, = 0sg € Z*(Z<N, M), then each characteristic cocycle in
Z(H,L,M,T) is cohomologous to the one (\,u) € Z(H, L, M,T) such that:

Mm;nsg(h)) = MNm;sg(h)), m,ne M, hezZ<N,
u(msp(g);nsu(h)) = A(n;su(9))u(su(9)isu(h)), m,ne M, g.heN.

Proof. In the crossed extension E € Xext(Hy,, L, M,T) associated with
(A, pt) € Z(Hy, L, M, T):

1 T E L 1,

we redefine the cross-section u in the following way:

u(msp(g)) = u(m)u(su(g)), m € M,geN,
so that u(m;sg(g)) = 1,m € M,g € N. We now compute, for m,n € M,h €
Z<N.
A(m;nsg (h))u(m) = ey (n)(u(m)) = u(n)asH(h)( u(m))u(n) ™!
= A(m;sg (h)u(mn)u(n) ™!
(h))u(m),

for g,h € N, we continue the computation:

= A(m;sy

p(ms(9);nsm (h))u(msw(g)nsu(h))

= u(msp(g))u(nsu(h))

= u(m)u(sm(g))u(n)u(sm(h)))
(M) s (g) (u(n))u(sr (9))ulsm (h))
(n; 51 (9))u(m)u(n)p(su(9); s (h))ulsa(g)sH(h))
(n; 51 (9))u(mn)u(sa(9); s (h))u(sm(9)sm (h))
(n;5m(9)) (s (9); 51 (h))u(msm (g)nsm (h)),

and complete the proof. @
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Groups G, Hy,, G, and @Q,: First, we fix notations. To work on the
quotient group Z/pZ = Zy,,p € N,p > 2, we set

[i], =i+pZ € Zp; i=np+{i},, 0<{i}, <p,
N : oo, +{i}, <p (3.8)
M ([Z]p’ [ﬂp) =iy + Uk, — U4 h, = { p if {z'}z - {j}z > p.

We shall call the pZ-valued cocycle n, € 72 (Zp,pZ) the Gauss cocycle, which
can be written in the following way:

W) ([P e

where [z],z € R, is the Gauss symbol, i.e., the largest integer less than or
equal to .

Given a homomorphism m of the group G to R/T'Z such that Ker(m) D
N, we consider the group extension:

Gm={(9,5) EGxR:ép =s+T'Z=m(g) € R/T'Z},

n—zy

0 Z Gm —=— G 1,

where

20 — (O,T/) S Gm.

Identifying m with memy € Hom(H,R/T'Z), we also form a group extension:

Hu = {(h,5) € H x R : m(h) = ép € R/T'Z}
={(m,g,s) € M x G xR:m(g) = s € R/T'Z},
0 7 2%, [ H 1,

where the central element
20 = (1,T’) c Hm

appears in both G,, and H,,. We hope that this abuse use of the same
notation for two distinct elements in the different groups will not cause a
headhach later: just like the zero elements in the ring theory.

By the assumption N C Ker(m), the homomophism m factors through
the quotient group Q = G/N, so that it is also viewed as a homomorphism
of Q — R/T'Z and therefore we can form the group extension @, as before,
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which sits on the following commutative diagram of exact sequences:

1
|
0 —— s (N) N 0
| | |
0 Z Gm 2 G 1
|l ol
0 z Om :“ Q 1
| | |
0 1 1

From the assumption Ker(m) D N, it follows that m(p;a;) = 0, so that
there exists an integer ¢; € Z,0 < ¢; < p; such that

a1’ (T/ )
m; = {m(a;) = e\ —7Z|,
)y = e

(3.9)

We set
zi = (a;,m;) € G, i #0, 29 = (0,T") € Gy, )

Zez (97 Zez ) g, (9)) (3'10)

1€N i€N

n(g) = Y eilgm;, geG.

1€N y

Then G, decomposes in the following way:

Gm =7z ® sm(G) = Z@sz where Ng = NU {0},\
1€Ng
g =¢o(g Z()+Z€1 )2i € Gr;
€N
9=1(9,5) = (0,é0(g,s (Zez Jai, Y &(d) ) (3.11)
1€N 1€N
= (0 60 g? +Z€Z z’La
€N
éolg.5) = %@ €z, &lg.9)=clg) i€N. )
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In particular, if g € N, we have
n
;g,) 20+ Y _eil9)z,

€N

g ::(970) - -

so that

_ n
éo(g) = _% #0 unless n(g) = Zei(g)mi =0.
i€N
We then have
m(g) = [n(g)ly € R/T'Z.
Setting
bj =pja;, jeN,

we write every g € N uniquely in the form:

0= 99y S v, (3.12)

JEN JEN
where )
eilg
e 7N(g) = J )
J D;
and also in H,,, we have
bj =pjzj —pjmjzo = pjz; — q;%o- (3.12)

REMARK. The element (a;,0) is NOT a member of Gy,.

Next we define a cross-section s, : ) — Q. in such a way that the
following diagram commutes:

G —=2— @G
- T
Qm —=—

First, we set

g=9g+NeQ=G/N, geaG, )
s(q) =) {eil@)}, a, ¢€Q;
ieN

d¢::/an(a¢), Zi::(di,nh)
bnla) = Y {ei(@},, 5 = Y _{ei@)},, (am)) (3.13)

€N 1€eN

= (q, Z{ei(Q)}pimz') ;

1€N

s(q,s) = (s(q),s) € Gm, (q,8) € Qm. |
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The cross-section s : Qu, — Gy, gives rise to an N-valued cocycle:
Ny = o5 € Z*(Qm, N), (3.14)
which is given by:

ny (G G2) = s(q1, s1) +5(q2, 52) — s(q1 + go, 51 + 52)
= (s(q1) +5(q2) — s(q1 + @2),0)

= <an,-<[67;(Q1)]pi; [61‘(612)]@)% 0)
ieN

= Z(ﬂpi([ei(ql)]pi; [ei(QZ)]pi)CLi, 0) € N =N x {0}.

1€EN

for each pair ¢1 = (q1, 1), G2 = (g2, 52) € Qm.
For each element

h=(m,g) € HA meM,ge€QG,
we write m = mg(h) and g = mg(h). Then we have
L =mYN)

and
mo(gh) = mo(g) + mo(h) + md7(9); 7e(h)), g,h € H.

For short, we write:

€ij(9) = eij(mo(g)) for g = (mo(9),9,s) € Hm,i,j €N,

With
s4(g9) = (0,9) € H for each g € G,
we have
(g h) = 8u(g) + su(h) — s:(g + h) = Ocsu(g; h), g,h € G.
With

§ = 58,

we obtain a cross-section § of myom;: H — Q = H/L, which gives rise to an
L-valued second cocycle n, € Z2(Q, L):

e (q152) = 5(01)8(g2)5(01 +a2) ™', @142 € Q,
o)t 0)

nM<5(q ;5(q ))5H(5 a1) + (g2 ) ( (@1 +CI2))_1 (3.15)
( (a1); 5 Q2>>5H<“N q152) + (@ +q2)> ( (@1 +Q2)>_1
(sl s(a2))

my(5(q1);5(q2) )l na (g3 ¢2);5(@a +q2))‘1sH(nN(q1;qz))-

I
w

I
£
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We further compute the j, k-components and k-components:
ik (mls(1):5(02)) ) = € (s(a1))en(5(a2)) ‘
={ei(a)}, {en(@)}y,
)

€j k (nM(nN(ql; q2); 5(q1 + ¢z ) = ¢j(nn(q1;92))ex(s(q1 + g2)) s (3.16)

= 1o, ([es (@), les(@2)],, ) fenlar +a2)},,
6k<5H<nN(Q1;Q2))) ::ka<

Since

lex(q1)],, ; [ek(qz)]pk>- )

H,=M Xx (nar) (ZEBZZZ ©® ZZO),

1€N

for each h = (m,g) € H, we set

sm(h) = (m,5m(g)) = (m, Za(g)zz) = <m,g,Ze¢(g)mi>, (3.17)

ieN €N
and we identify ¢ = (m, Pg) € L with (m, Pg,0) € Hy,, so that L is a
subgroup of H,,, while H is not.
§4. The Characteristic Cohomology Group A(Hpy, L, M, T).

Since H is a universal resolution group for G = Z<N, every third co-
homology class [c] € H*(G,T) is of the form [¢] = Our[), ] for some
A\, u] € A(H,M,T). So every outer action & of G on a factor M of type
Il comes from an action a of H, i.e., the outer action & is given by

dg = Qgy(g)y 9 € G. (4.1)

But the action o of H does not give rise to an action of H on the reduced
(discrete) core My. Instead, the action o of H on M gives rise naturally to
an action, denoted by the same notation «, of H, on M, where

m(h) = mod (o) € R/T'Z, h € H.

If N = & }(Cnt,(M))) C G, then L = a=}(Cnt,(M)). We make a basic
assumption on the subgroup N:

N = PG = Pz<N,

In the case that G is finitely generated free abelian group, the fundamental
structure theorem for finitely generated abelian groups guarantees that every
subgroup of G is of this form.
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We study first the characteristic cohomology group A(Hy,, L, M, T) and
modified HJR-map 6 : A(Hy,, L, M, T) — H3' (G, N, T).
We introduce a series of notations first:
Ao ={(i,j, k) €N} i < j<k}u{(i,i k) € Ng;i <k}

4.2
U{(k,i k) € N3 :i <k}, (4.2)
A=Ay NN
For each g € Hy,, let mg(g) be the M-component of g, i.e.,
mo(9) = 9su(ne(9)) ™ € M, g € Hp. (4.3)

We regard e; and e;, as functions defined on Hy, by fixing the coordinate
system:

g= ( Z ej k(g9)(aj Aag), Z éi(g)zi) € Hm, with g = mm(g) € H. (4.4)

1<j<k i€Ng

We then introduce a cochain Bj; € C'(H,,, R) defined by the following:

—ejk(mo(h)) for j < k;
Bji(h) = —W for j =k; h€ Hn. (4.5)

exr.;(mo(h)) — (ejex)(h) for j > k,
The cochain enjoys the property:
OuBji = my(e;®ey) for j, ke N. (4.6)

. . . 3
We continue to define the following cochains for each a € RYo:
Xa(i,7,k) = a(i, j, k)e; x®e; + a(j, i, k)e; x®e; + a(k, i, j)ei jQek,
Xa(i, k) = a(i i, k)e; p @ e; +alk,i,k)e; | ® ey;
Yo (3,4, k) = a(i, j, k)(Bij®ek +ex®Bj; — Bip®ej — ej®Bki)
+a(j,i, k) (Bﬂ®ek + e,®Bi; — Bju®e; — e@Bkj)
+ a(k, ivj)(Bki®ej +e;®Bik — Br;®e; — €¢®Bjk),
Ya(i, k) = a(i,i,k)(Bii ® e, + ex @ By; — Bi, ® €; — e; ® By;)
+a(k,i,k)(Bg; ® e, + e ® Bijp, — Brr, @ e; — €; @ Byr),
Z(--)(gih) =Y (- )(mo(h); 9);
Za (i, J, k) = a(i, j, k)<6j®6i,k - ek®ei,j)

+a(g,1, k) (ek®ei,j + ei®ej,k) + a(k,ivj)(ej@)ei,k - €z‘®€j,k),



42 OUTER ACTIONS I

Za(i, k) = a(i, i, k)e;Qe; . + alk,i,k)ey @ e k;
fi,j,k = 2(6i€j)®6k — 36¢®(€j6k) + €j®(eiekz)
— 2(eiek)®ej — ek®(eiej),
(G(Z}J’, E)fi ik +a(d i, k) fin+alk,i,5)fr;

- (AS(L)(Z,_], k)fz,j,k) )
Ua(i, k) = —a(i,i,k)Bi; @ e, + a(k,i, k) (Brr @ e; — e @ (esex)),
Va(i7j7 k) = Za(i7j7 k) + W*GUa(i7ja k:)7
Va(i, k) = Zo (i, k) + 75U (4, k).

Ua(ihj? k) =

S|~

The infinite summations:

Xa: Z Xa(l.7j,k)+ZXa(i,k);\
i<j<k i<k
Ya = Z Ya(i7j7 k) + ZYa(i’k);
i<j<k i<k
Us= Y Ualirj, k) + > Uali, k); (4.7)
i<j<k 1<k
Vo= > Vali,jo k) + Y Valisk);
i<j<k i<k
Za = Z Za(i7j7 k) + ZZa(i’ k)
z<3<k i<k Vs

will become all finite sums as soon as variables from M or H,, are fed in. So
no divergence problem in the infinite sums will occur.

The cochain f; j relates basic cocycles e;®e;®ey, and the asymmetric
tri-character:

detjr = (e;®e;Qe), + e;®epRe; + ep®e;®e;)
— (e;®e;®er, + €,ReRe; + epQe,;Re;)
=e; NejN\eg
in the following way:
detijk = 8Lfi,j,k + 66i®6]‘®6k, 1< g <k, (48)

which can be confirmed by a direct computation.
Let Z be the set of all pairs (a, b) of functions a: (i, j, k) € N® +— a(i, j, k) €
R and b: (i,j) € N3 — b(i, j) € R satisfying the following requirements:

a) The requirements on the parameter a is given by:

a(i,j, k) =0 for 7 > k and a(0,7,k) =0 for every j, k € Ny,
(ASCL)(’L,], k) = Q(i,j, k) - a(jaia k) + @(k,i,j)

) (4.9Z-a)
eEl——7Z|.
(ng(pzapj;pk:) >
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b) The requirements for the parameter b is given by:

(4.9Z-Db)

b(i,)p; — b(i,0)q; €Z for i,j€N,i< j,
b(0,7) =0, j € No.

Let Z, be the set of a € RN’ satisfying the above requirement (4.9Z-a) and
Zy be the set of all b € RNo with the properties of (4.9Z-b). So we have

Z =L, L.

Let B be the subgroup of Z consisting of all those (a,b) € Z such that

a) The coboundary condition on the parameter a is given by:

a(i, j, k), a(k,i,7),a(j,i,k) € Z ifi<j <k,
(i,4, k), a(k,i,5),a(j,i, k) j } (4.9B-2)

a(iyiyk) € 22 ifi<k; a(k,i,k)€2Z ifi<k,
b) The coboundary condition on the parameter b is given by:

bl ) + b5:%) € (iZ) + (iZ> = (—1 Z),i < J
Di Dy Di D; lem(p;, pj) (4.9B-b)

b(i,0) € Z, b(i,i) €Z, icN.

Respectively, let B, (resp. By) be the set of all those b € RNG satisfying the
requirement of (4.9B-a) (resp. (4.9B-b)). Thus we have

B =B, ® By.
and set

A= Aa S¥ Ab7 Aa - Za/Baa Ab - Zb/Bb7
H, = Zo/Ba, Hy= Zy/Bs,.

With D(i, 7, k) = ged(ps, pj, pi) for each triplet i < j < k,1,7,k € N, we set

1
Za(’i,j, ]{7) = {(u,v,’w) € RB U—vtwe (WZ> },
Ba(imjak) :Z@Z@Za
where u = a(i, 7, k), v =a(j,i,k), w=a(k,i,7).

For a pair ¢« < k, 7,k € N, we set

Za(i k) = {(z,y) e R’} =R@R, B,(i,k) = (2Z) & (2Z),
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where x = a(i,i, k) and y = a(k,i,k). We then naturally define:
Ao(i, 5, k) = Za(i,7,k)/Ba(i, j, k)

1 . . .
((Wz)/z) OR/ZOR/Z, i <j<k
Ao(i k) = Zo(i, k) /Ba (i, k) = R/(2Z) & R/(2Z), i< k.

Here the above second isomorphism can be seen easily by considering the
matrix:

1%

1 -1 1
A=10 1 0] esSL@,z).
0 0 1

For each ordered pair i < j,7,7 € N, we define
Zp(i, j) = {(x,u,y,v) cRY: DT — qju € Z,piy — qiv € Z};
By(3,7) = {(z,u,y,v) € Zp(3, ) : pjz + piy € D; jZ,u,v € L},
Zp(i,1) = {z = (z,u) €ER? : pjx — qu € Z}, By(i,1) =Z D Z,
Ap(i,5) = Zu(4,5)/Bo(i,7),  Au(i,9) = Zp(4,4)/Bs (4, 1),

(4.10)

where
D; j = ged(pi, pj)-
DEFINITION 4.1. To each (a,b) € Z we associate a cochain (A, p, tta)
defined by the following:

Aab(g3 h) = exp(27i((Ya + Xasa)(g; 1)) )

xexp| 2mi| D b(i,f)ein(9)E(h) | ],
€N, j€Ny

Na(g; h) = exp(27i(Ya(g; 1)),
ta(g; h) = exp (27riVa (9; h))

= )\a,b(mo(h); g) exp (27Tan(7TG<9)§ 7TG<h’))>7

for each (g,h) € L x Hy,. In the case that b = 0 (resp. a = 0) we denote the
corresponding cochains by (A4, f1q) (T€sp. Ap).

(4.11)

/

Theorem 4.2. a) The cochain (Ag, ta) @s a characteristic cocycle in Z(Hy,,
L, M,T) and the correspondence a € Z, — (Mg, ) € Za gives the following
commutative diagram of exact sequences:

0
|
0 B, a € Zg —— [al€H, — 0
| | | (4.12-a)
0 Ba (Nay pra) € Za —— [Dayptd € A\g —— 1

l

0
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b) The correspondence b € Zy — Ay € Z(Hy, L, M, T) gives the following
commutative diagram of exact sequences:

0
0 By be Z, —_— [b] eH, —— 0
l l (4.12-b)
0 By ()\b; 1) cly —— [)\b] ey —— 1
0

c¢) The characteristic cohomology group
A(Hp, L, M, T) = A, ® Ay

has further fine structure:
i) The group A, has the Cartesian product decomposition:
Ao= ] Aaligik) @[] Aalih):)
1<j<k 1<j
Ao(i, 3, k) = Zpjr ©R/ZOR/Z, (4.13-a)
D(i,j, k) = ged(pi, pj, Pr);
Aq(i,j) = R/(22) ® R/(2Z).

ii) The group Ay has the fiber product decomposition into the family
{Ap(i,7) : 4,5 € N} and each group Ay(i,7) is described as follows:

Ap(i,5) = Z/(ged(pis ), 46, 4)2) © (R/Z) © (R/Z),i < j,

Ap(i,1) 2 Z/(ged(pi, ¢:)Z) & (R/Z). } (4.13-b)

The group Ay(i,7) and (resp. Ap(i,1)) is equipped with three (resp.
one) homomorphisms:

1
17 :A .7 ] . Z Z,
et (%)
w0, 5) = R/Z, w s Ao(i §) = R/Z,
mi s Ay(iy i) — R/Z,

(4.14)

such that for each z = (z,u,y,v) € Zp(i,7)

mij([A=]) = [ (@ +yrig) — nig(usji +vsij)ly,

mii(Ae]) = [ulz, 75 ([A:]) = ]z, (4.15)
mii([Az]) = [pir — Qiu]za WZ(P‘Z]) = [u]zv
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where
D(i, j) = ged(pi, pj, Gi» G5),
DZ,j = ng(pl7pj)7 EZ,] - gcd(qz, QJ)v

Di Dby q;
TZJ = ? T.777' = ’ 87'7] = ’ 8.777' = ’
D;.; D; ; E; ; E; (4.16)

e = Dii o Eij
YDGg) Y D)
Eij,  wijDij+yijEij;=D(i,j). )

QWi + qwj; =
The group Ay is the fiber product of {Ay(i,7) : i,7 € N} relative to the
maps {nyj,wij,wf 11,] € N} in the sense that Ay is the group of all
those Ay € []; jyenz Mo(i,J) such that

i i (iy )] = 7N (4, 0)] = [N (R, 4)],  d,4,k €N (4.17)

We will prove the theorem in several steps.
First, we observe that the asymmetrization of f; ; is given by:

ASfi ik = 2(eie;) Nep — 3e; A (ejer) +ej A (eiex)
— 2(ejer) Nej —ex A (eiej) (4.18)

= 3((ejek) Nep — (eiex) Nej + (eiej) A ek>.

Lemma 4.3. i) The difference of X, and Y, on M x Hy, is given by:

Xa_Ya:XASa on MXHm.

In particular if the following integers

eij(m)er(g), ejr(m)ei(g), eir(m)e;(g), ejr(m)ei(g)

are all divisible by ged(pi, p;, pr), then we have for each a € Z
Yo(i, j, k) (m; g) = Xa(i, g, k)(m;g)  mod Z, m e M,g € Hp.
Therefore, if either g € L or m € L N\ Hy,, then the following congruence

holds:
mod Z;
(4.19)

Xa(i,7,k)(m; g) = Ya(i, 4, k)(m; g)
mod Z

Xa(iajv k)(hl /\gv h2) = Ya(i7j= k)(hl /\ga h2)

for each hi,hy € Hy,.



Y. KATAYAMA AND M. TAKESAKI 47
ii) For everym € M and g € Hy, and i < k we have
Xa(i, k) (m; g) = Ya(i, k) (m; g). (4.20)

Proof. i) We simply compute for i < j < k:
(Xa(i, 5, k) = Ya(i, 4, k) (m; )
= a(i, j, k)ej(m)ei(g) + a(j, i, k)ei k(m)e;(g)
+a(k,i j)e”(m)ek g)

— ali, k) (esn(m)es(9) = i (m)en(9))
aljyis k) (eis(m)en(g) + eju(m)ei(9))
— a(k,i,5) (ein(m)e; (9) = esn(m)eilg))
- (a(i,j, k) — a(j, i, k) + alk, i,j))

x (eju(m)eslg) = ei(me;(9) + eig(mer(s)).
Thus we conclude
(X0 —Ya)(m;g) = Xasa(m;g), me M,g € Hy,.

ii) The assertion follows from an easy direct computation. Q

Lemma 4.4. If a € R® is asymmetric modulo <
that:

(ASa)(i,j,k) = a(i,j, k) —a(j,i, k) + a(k,i,j) € <

Z) in the sense
PiP;Pk

Z> (4.21)

DiD;jDk
for each triplet i < j < k, then the cochain p, of (4.11), i.e.,

palg; h) = exp(2mi(Va(g; b)), g,h € L,
is a second cocycle p, € 7Z*(L,T).

Proof. Observing
(Orpa)(915 925 93) = exp(2mi(OLVa(91;92;93))), 91,92, 93 € L,
we compute the coboundary of V:
OLVal(i, g, k) = 0L Za(i, j, k) + OLUa(i, j, k)
= a(i, J, k)(e;®e;Qer, — epQe;RQe;)
+a(j, i, k)(er®e;Qe; + e;Qe;®ex)
+ a(k,i,j)(e;®e;®e, — e;®e;®ey,)

1 o . .
+ 68L (a(lvju k)fi,j,k + CL(], 2, k)fj,i,k + Cl(k), Za.])fk,i,j

— (ASa)(4, j, k)fi,ij)
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=a(i, J, k)(e;®e;Qer, — ep®e;Qe;)
+a(j,1, k) (ex®e;®ej + e;Qe;®ey,)
+a(k,i,7)(e;@e;Qer, — e;Qe;Rex)

1
+ G (a(i,j, k)(detijk — 6€i®ej®€k)

+ a(j, 1, k)(det ;1 — 6e;®e;®ey)
+ Cl(ki, i,j)(detki]‘ — 6€k®ei®€j)

— (ASa) (i, 5, k)(detiji — 66i®ej®ek))

= —(ASa)(i, j, k) (ei®ej®ek —e;Qe; Qe + ek®ei®e]~>

=0 mod Z onLXxLXL,

since e;®e;®ey, takes values in p;pjprZ on L x L x L. Also we have

OLVal(iyk) = 0pZa (i, k) + OrU, (i, k)

=a(i,i, k)e;Qe;@er + a(k, i, k)er@e;®er — ali, i, k)e;Qe;@ey,
+ a(k,i, k) (ek®ek®ei —ep®(e;®er + ek®ei)>

=0.

Hence u, is a second cocycle on L.

Q

Lemma 4.5. i) For every (a,b) € Z, the pair {\ap, ita} i a characteristic

cocycles in Z(Hy,, L, M, T).

ii) Every characteristic cocycle (A, p) € Z(Hy,, L, M, T) is cohomologous

to some (Aq.b, fha)-

ili) The characteristic cocycle {\a.p, fta} € Z(Hm, L, M,T) is a coboundary

if and only if (a,b) € B.

Proof. i) We first check the cocycle identities for each ¢,¢1,92 € L and

h, hl, hg € Hy:

pa(h~tgih; h=tgoh)

<(3L®id) )\a,b) (91592:h) = (g1 92)
= Aa,p(92 A PR3 g1);

<<id®aHm>A“’b> (93 haihe) = Nas(g Al hi; o)

= Aab(h1 A g3 ha);

fra(h; h~'gh)
Aap(gih) = ————
(g:h) ta(g; h)

Second, we compute for g1,g9> € L and h € Hy,:
Xa(iuja k)(g2 A h7gl)

, g,helL.

=a(i,7,k)ejr(g2 AN h)ei(g1) + a(j,i,k)ei k(g2 A h)e;(g1)

+a(k,i,j)ei (g2 A h)er(gr)
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= (i, j, K)ei(gn) (€5 (92)en() = ex(ga)e; ()
+alj i k)es(on) (ex(g2)ea () = enlga)ea(h))
+ alk,i, en(gr) (€slg2)es () = e5(g2)ei (h)

_ [a(i, j. k:)ei@(ej@ek _ ek®ej) +a(j,i, l{:)ej®(ei®ei _ ek®ei>
+ a(k, i,j)ek®(ei®€j — ej®ei)] (gl;gQ; h).

On the other hand, we have

((0L®id> Yo (i, 7, k)) =a(i,j, k) (ei®ej®ek — ei®ek®ej>
+a(j,i,k) <€j®€i®6k - ej®ek®ei) (4.22)
+ a(k,i,7) (ek®ei®ej — ek®ej®ei).
Since
Xasal(i, j k)(g2 AN hyg1) =0 mod Z,

Lemma 4.3 yields, for each g1,92 € L,h € Hy,, the following:

((Or@id)Ya(i, . 1)) (913 923 h) = Xali, . k) (g2 A i 1)
=Ya(i,7,k)(g2 A h;g1) mod Z.

Similarly, we have
((OL®id)Ya(i,k))(g1, 92: h) = Ya(i, k) (92 A'h;g1)  mod Z.
Next, we have

Xa(i, g, k)(h1 A gsh2) = a(i, 5, k)ej r(h1 A g)ei(h2) )
+a(j, i, k)ei x(h1 A g)ej(ha) + a(k,i,j)eq j(h1 A g)eg(h2)
= {a(i,j, k) (€k®ej - €j®€k) ®e; + a(g, 1, k) (ek®ei - €¢®ek> ®e;
+ a(k, i,j)(e;@ei - 6i®€j)®ek} (g; hi; h2);
. - - (4.23)
(ld®aHm)Ya(1’7]? k)(g; hish2) = [a(%], k)(ek®ej®ei - €j®ek®ei)
+ a(j,i, k) (ek®ei®ej — ei®ek®ej)
+ alk,i, ) (e;@ei@er — esve;@er ) | (9513 ho)
:Xa(’i,j,k)(hl/\g;hg) /

and
(id@@Hm)XASa(z', j k) = 0.
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Hence Lemma 4.3 again yields, for each g € L, hy, hy € Hy,, that:

(10904, ) (Yalii . K) + Xssa i) ) (9 s o)

= (Ya(isji k) + Xasa(3,,%) ) (ha A g3 hy) mod Z.

Similarly, we get the following:

((ld®aHm)Ya(Z7k))(gv h17 h2) = Ya(i7k)(h1 N g; h2)7 g e L7h17 h2 € Hnm
X oo (i, k) = 0.

Thus so far we have established the formulae (a) and (b).
Now we move on to (¢). Fixing g, h € L, we compute the right hand side

of (¢):

pa(hi h™gh) _ pa(hi (g Ah)g) pa(h; 9)
1ia(g; 1) plgin) " Ly pa(g; )
pa ()5 ): malg)sul9))
= Xa(g A h;h)
pamo(@)silg): mo(h)sulh) )
= exp(2mi(Xa(g A hs ) (exp(2mi(ASVa (h: 9))))
= exp(2mi((Ya + Xas.)(g A b 1) (exp(2mi(ASVa (hi 9))).

Next we prove the following:
Aa(8:(9); 8u(h)) = Aa(g A h; h)(ASpa) (su(h); 5u(g)),  g,h € N.
First we observe that
Xasa(9;h) =0 mod Z for g,he€ L.

So for the proof of (c), the term X ,g, can be ignored. With this fact in mind,
we compute:

Xa(i,7,k)(g A hsh)
= a(ia.ja k)ejyk?(g A h)el(h) + a(jv 2 k)ei,k(g A h)ej (h)
+ a(k,i,j)ei;(g A h)er(h)

= [a(z’,j, k) <€j®(€k€i) — ek®(eje7;)>
+a(j,1i,k) (ei®(e;€ej) — ek®(eiej)>

+ a(k,i, ) <€i®(€j€k) — €j®(€iek)):| (9; h)a
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and also
Xai,k)(g A hih) = ali,i, k) (es(g)ew(h) - enlg)es(h) ) es(h)
+alk,i, k) (ealg)en(h) — exlg)es(h) )ex(h)
= a(i,i,k) (ei®(eiek) - ek®e?) (g; h)

+ a(k,i, k) (ei®ei — ek®(eiek)) (g; h).

Next we determine the asymmetrization of U, (i, j, k) based on (4.18):
ASUa(i, j, k)
= %(a(i,j, k)ASSi ik + ald, i, k)ASF; ik + alk,d, 5)AS fr i 5
— (ASa)(i, j, k)ASfi ;1)
= % (a5, 5.1 ((esen) Aei — (eier) Aej + (eses) Aer,)
+ a(jy i, k) ((eser) A es = (ejer) Aes + (eieg) Ae)
+ alky i 1) ((eies) A ex — (ejen) Aei + (esex) Aey)
— (6,5 k) = alj,i, k) + a(k, i, 5))
x ((eser) Mes = (eien) Ay + (eses) Aey) |
= % [aGii k) ((eier) Aes — (egen) Aei+ (eies) Aer)
+ a(k, i, 7)((eie;) A ex = (ejen) Aei + (eser) Aes)
+ (al i k) — alk,i, )
x ((eser) Mes = (eien) A + (eses) Aey)|

= —a(k,i,7)(ejer) ANei +a(k, i, j)(eer) Aej
+a(y, i, k)(eiej) Neg.

Hence we get
ASUa (i, 3, k) = —alk,i, 1) ((eser)®e; — esd(ejer) )
i a(k,i,j)((eiek)@)ej - ej®(eiek)) (4.24)
+ a(jy i, k) (eses)@er — ex@(eie;)).
We also check the asymmetrization of U, (i, k):
ASU, (i, k) = a(i,i, k)eg A Bi; + a(k,i,k)(Brr A e; —er A (eiex))
= M (e?@ek - ek®e?> + Lk’;’ k)

+a(k,i,k) ((eiek)®ek - ek®(eiek)>.

(ei®ei — 6i®6i>
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We then combine these with the above computations for X, (i, j, k), paying
attention to the order of variables in the first term and the second term!:

Xa(iy g, k) (g A s h) + ASUG (4, 5, k) (su(h); $u(g))
— a(i, j, k) (ej®(ekei) - €k®(€j€i)>
+alj,i, k) (e (eres) — ex(eies) )
+ a(k,i,7) (e,i@(ejek) - €j®(eiek)>
+ (a(k:, i) (ejer) Aes —alk,i, ) (eien) Ae;
— a(j i k) (eies) ey )
= a(i, j, k) (ej®(ekei) - €k®(€j€i)>
+a(j,i, k) <€i®(€k6j) — ex®(eiej) — (eiej) N 6k>
+ alkyi ) (e (eser) — es@(eier) + (ejer) A
— (eiex) Nej)
— a(i, j, k) (ej®(ekei) _ €k®(€j€i)>
+a(j,i, k) (er®(eres) — ex®(eie;)
~ (eie;)®ex + ek®(eiej)>
+ a(k, i, ) (eZ-@(ejek) — e;®(eer)
+ (ejer)®e; — e;®(ejer)
— (eser)®e; + €j®(eiek))
= a(i, j, k) (ej®(ekei) _ ek®(€j€i)>
+al.i k) (e (enes) - (ese))e)

+a(k,i,7) ((ejek)®6¢ - (eiek)@)@j)-
and

Xa(i,k)(g A b h) + ASU, (i, k) (s(h); 8:(g) )
= a(i,i,k) (ei®(eiek) — ek®e?>

n the first term, the variables ¢ and h appear in this order, but in the second term
they appear in the opposite order.
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+ a(k,i, k) <ei®ei — ek®(eiek)>

ali,i, k) ak,i, k)
* 2 2

+a(k,i, k) <ek®(eiek) - (eiek)®ek>

1
= a(i,i, k) (ei®(eiek) -5 <ek®ef + e?@ek))

(ek®e§ — e?®ek> + (ei@ei — e@ei)

+ a(k, 1, k:)( %(eZ@ei + ei@ei) _ (eiek)®ek).
We now compare these with Y, (i, j, k):
Ya(i, 3, k) (8u(9); 8:(h))
= a(i, j, k) (€j®(€z’€k) — €k®(€z‘€j)>
+a(j,i, k) <ei®(e]~ek) — (eiej)®ek)
+ a(k,i,7) ((ejek)®ei — (ekei)®ej>

= X, (i,7,k)(g A h; h) + ASU, (i, 4, k) (s4(h); s:(g))
=Y, (i,7,k)(g A hyh) + ASU, (i, 7, k) (s:(h): 5:(9)),

and

Yo (i, k) (s:(g); s P))
= <a(z’, i,k)(Bii @ er + er ® Bii — Bij, ® e; — e; ® By;)

+a(k,i, k)(Br; @ e + ex @ Biy — Brr @ €, —e; ® Bkk))
. 1 2, .2
=a(i, i, k)| e;®(eser) — 3 ep®e; + e; ey,

1
+a(k,i, k) ( 3 <6i®ei + ei@@) - (eiek)®ek)

= Xo(i,k)(g A by h) + ASUG (4, k) (su(h); 5u(9))
= Yo (3, k)(g A s B) + ASUL (i, k) (su(h); 5(9)).-

Therefore, we have

. B . ta(Su(h); 5u(g))
Nao(u(9)i8ulh) = Dol A i h) 2L Ets

Since we have

Y. (mg;nh) = Yo(m; h) + Y, (g;n) + Ya(g; )
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for every m,n € M and g, h € Hy,, we get, for each m,n € M and g,h € N,

Aa,b(Msiu(g); nsu(h))
= Xa,b(m; 5:(h)) X b(8:(9); ) Na b (86(9) 5 5:())
_ Aap(misi(h) als )3 59))
Aab (13 8u(9)) 1a(8u(9); 8u(h))
_ Hansu(h); (nsy(h))~ msy(g)ns(h))
,ua(msH(g),nsH( )

Aap(g A b h)

This proves the cocycle identity (c). Consequently {Aq.p, itq} is a character-
istic cocycle in Z(Hy,, L, M, T).

ii) Suppose that (A, p) € Z(Hy, L, M, T). Since M is central in Hy,, the
A-part is a bicharacter on M x Hy,, so that there exists a = {a(i, j,k)} € R®
such that

A(m; h) = exp| 27 Z a(i,j,k)ejr(m)e;(h) | |, me M he Hy.
1,j<k

As [Hy, Hyn| = M, for each fixed m € M the character A\(m;-) on H,, must
vanish on M, i.e.,
A(m;n) =1, m,n € M.

Thus the restriction pps of the second cocycle pto M is a coboundary. Hence,
replacing p by a cohomologous cocycle if necessary, we may and do assume
that pps = 1. Now consider the corresponding E € Xext(Hy,, L, M, T):

1] — T E—1 L 1.

Redefining the cross-section s; as

5(ms(g)) = 8;(m)s;(su(g)), me M, g€ N,

we may and do assume that p(m;g) = 1,m € M,g € L. Now we compute
the second cocycle p with m,n € M and g,h € L:

p(mg;nh)s;(mgnh) = s;(mg)s;(ng) = s;(m)s;(g)s;(n)s;(h)
= 5;(m)A(n; g)s;(n)s;(g)s;(h)
= A(n; 9)u(g; h)sj(m)s;(n)s;(gh)
= A(n; g)u(g; h)s;(mngh) = X(n; g)u(g; h)s;(mgnh),

which gives

p(mg;nh) = X(n; g)u(g; h), m,ne€ M,g,h € L.



Y. KATAYAMA AND M. TAKESAKI 55

In particular, we have

w(g; h) = Mmo(h); 9)p(su(me(9)); su(me(h)), g, h € L,

where

mo(h) = hsu(n(h)) ™ € M.

Now with g1, g2,93 € N, we compute the coboundary:

1= (Orp)(su(91); 5u(92); 5(93)) )
11(5:(92); 5u(93) ) 11(5:(91) 3 Sl 92) 5 93) )
/~L(5H(91)5H(g2) 5:(93) ) 11(5:(91); 5 92) )
,U(5H( 2); 5:(93)) 14(5:(91); (925 93) 892 + 93)) (4.25)
(15 92)8(g1 + 92); 5u(93)) 11(8(91); 8u(92))
1(s:(g2); 5:(93) ) 11(8e( 1) 5 g2 + g93))
11(su(g1 + 92); 5:(93)) 11(80( 91 ); 5 g2) )

= Au(g2; 93); 5ul91))
Thus the cocycle ¢, € Z*(N,T) given by:

ca(913 925 93) = Mmu(92;93): 91)

—exp | 27i| Y ali, j, k)ejr(milg2; g3))ei(91)
ij<k

=exp| 2mi( Y a(i,j, k)ei(g1)e;(g2)ex(g3)
ij<k

is a coboundary in 7> (N, T). Thus we get, for every g1, 92,93 € N,

— (ASca) (91,92, 93)

= exp | 27i Za(i,j,k’) Z sign(o)e; (9001 ) €5 (9o()) €r (9o (i)

ij<k o€II(i,5,k)

=exp| 2mi| Y a(i,j, k)detijr(g1; g2: g3)
i,j<k

=exp|2mi| > (ASa)(i,j, k)detij(g1, 92, 3)
(1,5, k) EA

Therefore the coefficient a = {a(i, j, k)} € R® is asymmetric in the sense of
Lemma 4.4, so that it gives the second cocycle p, € Z*(L,T):

o = exp(2miV,).
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Then the cocycle pup;' € Z*(L,T) falls in the subgroup WZ(ZZ(N, T))
C B?(L,T) because

p(msu(g); n8u(h)) = A(n; 5u(9))11(8:(9); 5(h))

ey w(a(a): (1)
)

= ;i((s;( )> (&))) palmedg)neh)

Mo b= s ppg ) € (Zz(N T))

Thus there exists a cochain f € C*(L, T) such that

f(g)f(h)
f(gh)

Since 1 = p(m;h) = po(m;h), m € M, h € L, we have
f(mh) = f(m)f(h).

Since (01 f)(m;h) =1,m € M, h € Hy,, we have
Of (A 1) = (A, pa)-

Next we look at one of the cocycle identities:

talgs h) = p(g; h) . g,helL.

ta(g1; g2)
palh=1g1h; h=1gah)

A(g192; h) = A(g1; h)A(g2; h)

1
— —)\ ~]’L )\ ~h L h Hm7
Ag2 A h;gr) (91:)A(g2:h), 91,92 € L,h €

= A(h A g25 91)A(g15 h)A(g2; )
= exp (27Ti ( > ali, g, k)ei(gr)ej e (h A ga)) ) A(g1: h)A(g2; h),
i,7<k

which gives the following partial coboundary condition:

(0L®id)A = exp (27ri ( Z a(i, j, k)e;®(e;®@e, — ek®ej)) ) .

i<k
Another cocycle identity:
A(g; haha) = Mg; bi)A(hy ' ghasha), g € L, by, hy € Hy,
= Mg A h1; h2)A(g; h1)A(g; ha)

— exp (2m ( Z a(i, j, k)ej k(g A hl)ei(h2)> ) A(g; h1)A(g; ha)

1,j<k
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gives the second partial coboundary condition:

(id®0dy, A = exp | 27 Z a(i, j,k)(er®e; — e;®er)®e;
ij<k

Setting
Ne = exp(27i(Ya)),

we obtain, by (4.22) and (4.23),
(O @I\ = (0L, ®id)n.;  (1d®0y, A = (1d®0y, ).

Therefore the cochain 7,A = x is a bicharacter on L x Hy,. Since M =
[Hp, Hy|, the bicharacter x vanishes on L x M, i.e., A\(m;g) = n,(m;g), m €
M, g € L. Thus we get

L= A(m; 9)71, (m: 9) = exp(27i(Xa(m3 g) = Ya(ms 9))
= exp(2m(Xasa(m; 9))) = Aasa(m; g),

which is equivalent to the following fact:

(ASa)(i, j, k) € (—gcd(pi,pj,pk)z)'

Thus we conclude the cocycle condition (4.9Z-a) on the parameter {a(i, j, k) }.
Therefore the coefficient a € R? satisfies the requirement for the element
(a,0) € Z. Therefore it follows from (i) that (Aa 0, ita) € Z(Hm, L, M,T).
Then the cocycle identity (c) for (A4 0, ito) yields that

oh; h=1gh)

Mgih) =& ) Aa0(g;h) =na(g; h), g,h € L.

Thus the bicharacter x = §,\ on L x H,, vanishes on L x L. Since Lemma
4.3(i) yields for each m € M, h € Hy, that

x(m; h) = X(m; h)7j, (m; h) = Xa(m; )7, (m; h)

= Masa(m;h) =exp( 2mi| Y (ASa)(i, 4, k)ejr(m)ei(h) | |,

ij<k

we conclude that y is of the form:

X(g; 1) = Xo(7el9); mel(h)Jexp | 27 Y (ASa)(i, j, k)ejr(g)es(h)

1<j<k
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for g € L,h € Hy, where Y, is a bicharacter on N x Gy, and ng: Hy, — Gy
the quotient map with M = Ker(n;). We choose b(7, j) € R so that

exp(2i(b(i, ) = Xo(bii 27),1 € N, j € No.
Then we must have
1= xo(bi; bj) = xo(bi; pjzj — gj20) = exp(2mi(b(i, j)p; — b(i,0)q;)),
so that b(7,j) € R,i € N, j € Ny, satisfies the following condition:
b(i,j)p; = b(i,0)¢; mod Z, i,j€N.

Hence x, is written in the form:

Xo(g; h) = exp (27Ti< Z b(i, j)es, n(9)e;(h) + Zb(@ 0)61',1\1(9)@0(;1)) )

4,JEN 1€EN

for each pair ¢ € N and h € H,,, where the coefficients b(i,j) satisfies the
requirements:

b(i, j)p; — b(i,0)q; € Z, i,j €N, b(0,i) =0, i€ No.

Consequently the pair (a,b) is a member of Z and we conclude that (A, p) is
cohomologous to the characteristic cocycle (Ag b, fta) € Z(Hm, L, M, T).

iii) Suppose (A, 1) = (Map, pta) = Of with f € CY(L,T). Since pp = 1
and po(m;g) =1,m € M, g € L, we have

f(mg) = f(m)f(g), meM.gel,
so that the restriction f|y; of f to M is of the form:
fe(m) = exp| 27 Z c(i,j)eij(m) | |, meM.
1<i<j
Since M is central in Hy,, we have for every pair (m,g) € M x Hy,

_ felg~tmyg)

1= T m) = A(m;g) = exp | 2mi Z a(i, j, k)ejx(m)ei(g) )

1,j<k
which yields the integrality condition on a:

a(i,j, k) € Z for every (i,j,k) € A.
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Hence Y, (i, j, k) and X,(1, j, k) are both integer valued, so that

Aa(m;h) =1, mée M,h € Hy,.
Since x =1 on L x L, for every g, h € L we have

1= Xo,(g5 1) = Aa(mo(g); h)Aob(8ulg); ) = Algs )

_ f(h7lgh) ,
c(i, j) € ( L Z), i,j € N.
DiDj

This computation also shows that
Xop(g;ih) = felgnh), g€ L,heHn
Furthermore, we have for each m,n € M and g,h € L
ta(mg; nh) = Xap(1; 9)palg; ) = palg; h),
so that i, is of the form: u,= 7(f) with

fia(g; h) = exp(27i(Ua (g5 h))), g,h € N.

Since Ao (Mi(g2;93)i91) = 1, g1,92,93 € Hum, we have fi, € Z*(N,T) by
(4.25). We first compute for each g, h € L:

v flg)f(h) f(hg)  f(hgh™'h) _
(ASud(g:h) = =eCny Floprn — fgny o=t

Since ASU, (i, j, k) is also integer valued, we have

ASp, = exp (2%1 (ZASUa(i, k)) )

i<k
. (i7i7k7) 2 2
= exp| 27i (a— e; ey, — epRe; )))
X exp (27ri (;M (ei®ei — ei@e»))

Thus we get

a(i,i k), a(k,i,k) € 2Z, and Ug(i,k) =0 mod Z.
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Consequently, [la_is a coboundary as a member of Z2(N ,T). Hence there
exists a cochain f € C*(N,T) such that

FOFh) oy o o) :f(ﬁc(g))f(wc(h))
“Hgh) pa(g; h) = fia(7(g); 7)) Fodgh))

Thus f is of the form:

£(9) = fo(mo(9)) f(s:(9)) = x(9) f(n(9)), g € L
fe(m) =x(m), m e M.

where x € Hom(L, T). Since
L/[L,L]= M/PMP& N,
the homomorphism Y is of the form:
x(g) = exp | 2mi( > c(j, k)ejn(g) + D> c(k)ér(g) | |, g€,
j<k keNo

where
1

c(i,jg) € (
pipPj

Since Y, is integer valued, the A-part becomes the following;:

)‘<g; h) = exp (27”( Z b(.77 k)ej,N<g)ék<h)) ) y g€ Nv h e Hmv

Z),i<j, and c(k) € R.

JeNkeN
_ f(hlgh)  f(gnh)g)
=T g ln
=exp| 27 Z (g, k)ej,k(g/\h)>)
1<j<k

= exp | 2ni Z c(j, k) (ej (9)er(h) — ek(g)ej(h)>))

—exp| 27| D7 eli k) (piesn(9)en(h) pkek,N(g)ej(h))».

1<j<k
Hence we conclude that for j < k£ and ¢ € Ny
b(i,0) € Z, b(i,i) € Z, i €N;
b(j, k) = c(j, k)pj, b(k,j) = —c(j, k)pry mod Z, j<k.
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Thus we have for ¢ < j
b(i,5) = c(i,7)pi +mi; with some m; ; € Z;
b(j,i) = —c(i,j)p; +m;,; with some m;; € Z;

b(z, 7 b(q,1 i » 1 1 1
(Z,J) + (.772) — YN + mj, c (—Z) + <_Z) = <7Z>
Di Dj Di Dj Di Dj lem(p;, p;)

Conversely suppose (a,b) € B, i.e.,

a(i,j, k) € Z for i< j<k;
a(iyi, k), a(k,i, k) € 2Z for i<k,

and

b(i,5) | b0,9) ( Z) and  b(i,7) € Z;
b(i,0) €Z, i€eN.

So we can write

b(i,j b(7,1 i j i .
(7'7.7) 4 (]72) :mJ +m]a Wlth mi,j;mj,i€Z~

Di Dj Di Dj
Set oy
i) = XD i (i i) = b 0),
bi pi
so that oy
D0 i gy + ™t
Dj Dj
Then we have
> bl fein(g)e;(h)
i,jEN
= cli,j) <pi€i,N(g)6j(h) - pjej,N(g)ei(h)) mod Z,
i<j
= cli,f)ei (g Ah).
i<j
Thus with

folg) =exp( 2mi| > c(i,f)eii(9) | | g€,
1<i<y

we have

exp | 2 Zb(z‘,j)ei,N(g)ej(h) :%zaﬁc(g;h),
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where e; y(g) means e; yom,. We then compute the coboundary of f:

(00:) (g5h) = f](tzf() TADI) e,
= exp (271 (Zc(ivj)(ei,j (9) +eij(h) —eij (gh))> )

= exp (27riZc(z’,j)ei(g)ej(h)> =1,
i<j
because e;(g) € p;Z and e;(h) € p;Z if g,h € L and
pic(i, 3)p; = b(i,5)p; — mijp; =0(3,0)g; =0 mod Z.
As a(i, j, k) € Z for every triplet (3,7, k) € A, we get trivially
Mo =1, fia=54,€Z*(N,T), and po=7jta)-
Since Oy U, (3,74, k),1 < j < k, is integer valued, the cochain
fi* = exp(2mi(Ua(i, 5, k)))
belongs to Z*(N, T). Since ASU, (i, j, k) is integer valued by (4.24), ASji7* =
1 and therefore i7* € B*(N,T). In view of the fact that

[k = exp(2mi(Uy (i, k) =1, i <k,

we conclude that i, € B*(N,T). Thus there exists a cochain f € C*(N,T)
such that

,aa - aNf
Define a cochain f € C'(L, T) by
= (ng)fc
Then we get for each pair g € L,h € Hy,
f(h'gh) _ f(n(h"gh)) fe(h"" gh)

81 3 = = =
(Ou)g:h) = =575 Tl ) £-(9)
_ fe(h'gh)
- fc() )‘ (gah)a
Fred ) £o(9) F ())fc()
82 7h - ) >h L7
SO fdgmya, " e
Lfc ga ( f)

= [ia(7e(9); m(h)) = ( ).

Therefore we conclude
6f - {)\a,b; ,ua} € B(Hm; L7 M7 T)
This completes the proof. Q
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Lemma 4.6. The cocycle \, corresponding to b € Z, does not depend on
the M -component, i.e.,

Ap(mg;nh) = Mp(g;h), m,n€ M, g€ L he Hy.

we will view Ay as a bicharacter on N x Gy, rather than on L x Hy,.
i) Fori € Z, set

Zy(i,i) = {z = (z,u) € R® : p;x — qu € Z}, By(i,i) =Z @ Z.
The bicharacter \u* on N x Gy, determined by:
Aot (g; h) = exp(2mi(we; n ()€ (h) + uein(9)éo(R))), g € N, h € G,
gives a characteristic cocycle of Z(Hy,, L, M, T). It is a coboundary if and

only if z is in By(i,1). The corresponding cohomology class [\o*] € Ay(4,1) is
given by:

[)\2272] = <[p2x - Qiu]gcd(pi,qiw [—UZ‘ZL’ + ulu]Z) S Zng(Pi,Qi) D (R/Z)’
where the integers u;,v; are determined by:

Pty — q;v; = ng(Pi, Qi)

through the Euclid algorithm.
i) Fiz a pairi,j € N of indices and set

Zo(i,j) = {(z,u,y,v) € R* : pjw — qju € Z, p;y — qiv € Z};
Bb(Z,]) = {(flfa%yﬂf) € Zb(zvj) pjaj +ply € ng(piapj)Zvu7/U € Z}

To each element z = (x,u,y,v) € Zy(i,7), there corresponds a bicharacter A,
on N x Gy, determined by:

A2 (g5 h) = exp(2mi(ze; n(9)€;(h) + yej v (9)éi(h)))
. - _ g€ N,h e Gy,
x exp(2mi(ue; N (9)éo(h) + vejn(g)éo(h))),
which is a characteristic cocycle in Z(Hy, L, M, T). It is a coboundary if and
only if z € By(i, 7). The cohomology class [\o7] € Ay(i,7) of . corresponds
to the parameter class:

1
[mi j(orji +yrij) — nij(usj +vsijz)ly, <D(i 7 Z)/Z
[2] = (i i(xr;i +yri ;) + i j(usji + USi,j)]Z € ,R/Z ,

[—uwi,j + ijyi]z R/Z
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where D(i,7), -+ ,w;; are given in (4.17) of Theorem 4.2.
Proof. 1) Set
Di 4i

D; =ged(piy i), Ti= =, Si=—,
ged(pi, qi), D %D

and choose integers u;,v; € Z so that
Ty — 8iv; = 1,

where such a pair (u;,v;) € Z? can be determined through the Euclid algo-
rithm. Next we set

€1 = (1,0), € = (O, 1),
fi = ujer +viea, e =rif1 —v;fo,

fo =sier +riea, ex = —s;f1 +u;fa.

Then Z(i,1) is given by the following:

Z(i,1) = (D%Z> fi +Rf,

and
Bb(Z,Z) = Zel + Zeg = Zfl + Zfz,

so that
M) = 2oi)/Bulin i) = ( 5.2/ 2) oo R2) o

where the dotted elements indicate the corresponding elements in the quo-
tient group Ay(i,7). Now we chase the parameter:

z =zey +ues = x(r;fr —vifa) + u(—s;f1 +u;fa)
= (riz — su) fr + (—viz + wu) fo;
b= [riz — sl fi + [—viz + ugu], fo.

Aot (g; h) = exp <2Wi((xez‘,zv(9)€i(ﬁ> + “ei:N(g)BO(ﬁ)»)

for each pair g € N and h € Gp,.
ii) First we fix the standard basis {e1,--- ,e4} of R* and set

go =T j€1 —Tji€3, g1 = Uj;e1 + U; jes,
where we choose u; j,u;; € Z so that

Ti Ui+ Tyt = 1
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Since
e1 = Ui 90 + 7591, €2 = —Uj;90 + Ti 91,

we have
Z61 + Zeg = Zgo =+ Zgl

Also we have
By (i,7) + Rgo = Rgo + Zg1 + Zey + Zey.

Consider an integer 3 x 4-matrix:

Mi,jT5i  —NijSja MigTig  —N6ijSij
T=\ Y%;rji TijSii  YigTij — TijSij
0 W, 0 Wy

We claim that

T(Zo(i,7) + Rgo) = ( Z) OROR.

D(i, j)
To prove the claim, for each vector

z = xe1 + ues + yes +vey € ]R4,

we simply compute,

Tgo =0,
x
MV —NijSja MigTig  —NijSij u
Tz=\ YijTi TijSji  YijTij  TijSi;
0 —W;,j 0 Wij.4 z

i (@75, 4+ yrig) — nig(usjq + vsi;)
= Yi,j (:L'?“j7i + ym,j) + x5 (usj,fi + USiJ‘)
—UW; j + VWj;

Suppose

D(i, j) D(i, j)

Then we have

k= (mi,j (QS'Tj’i + yrm) — niyj(usj,i —+ ’US@j))D(i,j)
= (xp; — uq;) + (ypi — vq;)
= ((x +trij)p; — ug;) + ((y — trj,)pi — vas).

1
~ = my j(zrji +yrij) —nij(usj; +vsj) € ( — )Z

65
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A choice of t € R, such that (x +tr; j)p; — ug; is an integer, yields the
integrality of the other term (y — tr;;)p; — vg;, so that

Z+ tg() € Zb(l,])
Now we prove that
T~'7% = By(i, j) + Ryo.

Since T is a matrix with integer coefficients and the generators gi,es, ey
are all integer vectors, we have T'(By(i,7)) C Z3. Conversely suppose that
Tz € Z3. Then we have

k= mig(xryq+yrig) —nig(us;i+vsi;) € Z,
C=yij(@rj: +yrig) +zi(usji +vs; ;) € Z,
m = —uw; ; + vwj; € 2.
Hence we get
TTj. -+ Yri; = LL’Z"j]C +4 ni,jﬁ - Z, n = Uus;j; + V83,5 = _yi,jk + mi,jﬁ < Z,
u=nw;; —ms;; €L, v=nw;;+ms;; €L,
xp; + ypi = (w1 + yri ;) Dij € D; ;2.

Therefore z € By(i,7) + Rgo.
Consequently, we conclude

1
D(i, j)
in the sense that the cohomology class [)\i’j } € Ay(i,j) corresponds to the
following;:

M) = 2000, 0)/Bo(i.0) = ( (g 72) [ 2) @ ®R/2) 0 (R/2),

[mij (g +yrig) — nij(usgi +vsi)ly (ﬁz) / Z
[Z] = [yi,j (a;rj,i + ym,j) + i (qu’i + ’()Si,j)]z € R/Z
[—uw; j + vw; ), R/Z

For each i,j € N, define maps 7! : Ay(i,i) — R/Z, ijj : Ap(3,7) — R/Z,
wg’j :Ap(3,4) — R/Z and 75 : Ap(i,j) — (ﬁZ)/Z by the following:

T ((A]) = [ulz € R/Z,

rii (V1)) = [ams — usi), € (Diiz> / Z

for each z = (z,u) € Zy(i,i), and

i (N]) = lulz € R/Z, =] ;(IN]) = [v]z € R/Z,

/L‘ : 1
mj([)\z’f]) = [my (27 +yrij) — nij(usji +vsij)l, € <mZ)/Z
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for each z = (z,u,y,v) € Zp(i,j). The above maps 7rf7j and ng are both

well-defined because the coboundary condition on z implies theﬁntegrality
of u and v.
Let Ay be the set of all those

Ao = {0 (,9), M (6, 5) € [T Aw(i6) x T Aol 5)
i€N i<j
i,j€EN
such that
T (No(i,4)) = m; ;N6 5)) = mhs (A (k,4)) - for all i, 5,k € N.
Finally we have
A(Hy, L, M, T) = A, ® Ay.

This completes the proof. @

REMARK 4.6. The direct sum homomorphism m;; @ 7rlZ ;® 7rf ; 1s a homo-
morphism of A, (4, 7) onto the direct sum group:

Ay(i, ) —amaOTs, ((D(;j)z)/@ ® (R/Z) ® (R/Z).

i) By multiplying D; to m;;(A.) we get
Dimii([A:]) = [wpi — uailp,y € Z/(DiZ);
Similarly, we have
D(i, j)mig (M) = [(apy + upe) — (ugs +v40)] s ) € Z/(D(6, 1)),
ii) The kernel of 7;; ® Wf,j S Wf ; 1s given by the following:

{0}

. . 1
Ker(wij@ﬂj@ng) = ( Z)/Z
’ ’ mi,;

{0}

At the parameter level, the kernel is described as follows:

[A:] € Ker(wij - Wf,j @ Wf"j) < ap; +ypi € D(3,j)Z,u,v € L.
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§5. The Reduced Modified HJR-Sequence.

We are now going to investigate the reduced modified HJR-exact sequence:

J i

HQ(}[7 T) — HQ(H, T)
Resl resl
A(Hp, L, M, T) —<— A(H, M,T) (5.1)

| -

HOM (G, N,T) —2°ms H3(G,T)

Infl infl
H*(H,T) —— H)H,T)
We refer to [KtT3: page 116] for detail. So we first discuss the second co-

homology group ZQ(H , T) and the restriction map Res. Each second cocycle
e Z2(H , T) gives rise to a group extension equipped with a cross-section:

1 T E—1 . H 1
such that
s5;(g)s;j(h) = u(g; h)s;(gh), g,h € H.
With s gt
p(h;h~1g
Ao(g:h) =202 T o heH,
ulgih) p(g; h)

we obtain a characteristic cocycle (A, 1) € Z(H, H, T). This corresponds to
the case that P = 1 in the previous section. So we set

72 — {a eRY - a(i,j,k) = 0if j > k, (ASa)(i, j, k) € Z} : 52)

B® ={a€Z”:a(i,j,k) € Z,a(i,i,k),a(k,i, k) € 2Z} .
Theorem 5.1. i) Each element a € Z* gives rise to a cocycle o € Z*(H,T):
pta = exp(2miV,) € Z*(H,T), a € Z, (5.3)

and the following diagram describes the second cohomology HZ(H, T):

1— B2 —— @q€Z? ——— [geH? — 1

! | H

1 — BX(H,T) —— pa€ Z2(H,T) ——— [A\o] € H2(H,T) ——— 1
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More precisely, with
Z2(i,j, k) = {(z,y,2) ER®* :x —y + 2 € Z}, B*(i,j,k) = Z°,
7°(i, k) =R%,  B?(i,k) = (2Z)?, (5.4)
H%(i, 5, k) = 2%(3, 5, k) /B (i, 4, k), H?(i,k) = Z*(i, k) /B> (i, k)
for each triplet i < j < k (resp. pair i < k) and
a(i,j k) =z, a(j,i,k)=1vy, a(k,i,j) =z,
(resp. a(i i, k) =z, a(k,i,k)=1y),

we set N
p* = exp(2mi(Va(i, 4, k))) € Z*(H, T);

pik = exp(27i(V, (i, k))) € Z%(H,T).
Then we have

72(H,T)= [[ 2°G.5k x [[Z°G.k),

i<j<k i<k
B*(H,T)= [] B*G.j.k) x [ B, k),
i<j<k i<k
pa=| ] wi?* (Hui"’) € Z*(H,T),
i<j<k i<k

H(H,T) = [] ®(i,4. k) x [[H°(, k),
i<j<k i<k
lud = ([i*], [uiF] i< j < k and i < k) € H*(H,T).
Each H?(i,j,k),i < j < k, (resp. H*(i,k),i < k), is given by:
H2(i,j,k) = (R/Z) @ (R/Z),
(resp. H?(i,k) = (R/2Z) @ (R/2Z)).
Proof. Most of the claims have been proved already except the claim for the

structure of H?(i, j, k). To prove the assertion on H?(i, j, k), it is convenient
to introduce a matrix A € SL(3,7Z):

1 -1 1 1 1 -1
A=[0 1 0]esL3,z), At=(0 1 0
0 0 1 0 0 1

We then observe that
AZ%(i,j, k) = (ZoR®R), AB*=173,

and conclude
H2(i, 5, k) = {0} @ (R/Z) ® (R/Z).
This completes the proof. Q
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Theorem 5.2. i) Each second cocycle u, € Z2(H,T), a € Z*, gives the
corresponding characteristic cocycle:

Res(ua) = ()\cmua) = W;()\a‘Lmey,Ua‘L) € Z(Hm7 L, M, T)
The image RGS(ZQ(H, ']I‘)) is therefore given by:
Res(Z*(H,T)) = {(Xas pta) : @ € Zq, (ASa)(i, 5, k) € Z,i < j < k}.

The (i, j, k)-component Res(i, j, k) of the restriction map Res gives rise to
the following commutative diagram of short exact sequences:

1 1
B2(i, j, k) = 73 Xa(i,4,k) —Xa(i,5,k) Ba (i, j, k) = 73

l l

Z2(i,j, k) = A—l(Z ® R2) X (4,5,k)— Xq (4,5,k) Za(i,j, k) = A-1 (%Z ® R2>

| |

H2(i, j, k) = {0} & T2 Res(ik), Aaliyj k) = Zp ® T
| |
1 0

where D = D(i,j, k) = ged (pi, pj, pr). Also the restriction map Res, (i, k) :
H?(i, k) — Ag(i, k) is given by

1 1

B2(i, k) = (22)? 2RO, g (k) = (22)2

72(i k) =R? 2R TX OB g gy R?

H2(i, k) = (R/22)° 2SO k) = (R/22)?

1 1
Consequently, we get
Aa(i, j, k) /Res(i, j, k) (H (i, j, k)) = Z/(DZ),
A, (i, k) /Res(i, k) (H?(i, k)) = {0}.



Y. KATAYAMA AND M. TAKESAKI 71

ii) The modified HIR-map 6 : A(Hy, L, M, T) — H?r‘fts (G, N, T) enjoys the
following properties:
a) The (i, j, k)-component and (i, k)-component of Ker(d) are given by:
Ker(6)ijx = {0} ® (R/Z) @ (R/Z),
Ker(0);x = (R/2Z) ® (R/2Z) = Ay (i, k).

b) The image 6([Aa, pud) € Hono(G,N,T),a € Z,, depends only on the
asymmetrization ASa, i.e.,

0([Aas ) = 6([Aa, 1)

where

1
ali,4, k) = (ASa)(i,j k) € (Ez), i< i<k

a(j,i k) =a(k,i,7) = a(i,i,k) =a(i,j,5) = a(k,i, k) = 0.

(5.5)

c) Set
Zs = {a € Z, : a satisfies the requirement (5.5)}.

If a € Zg, then the image cq = 0(Ng,1) € Z°" (G, N, T) under the
modified HIR-map § is in the pull back m}, (H?’(Q,T)) and given by:

ca(q1,42,G3) = ca(q1,q2,q3)

:exp(zm( ) a(z',j,k){equ)}pi{ej(@)}pj{ek<q3>}pk)) (56)

i<j<k

for each ¢1 = (q1,51), 42 = (q2,52), 43 = (g3,53) € Qm.
d) The modified HIR-map Oy is injective on Ay and Ker(0) is precisely
the connected component of A(Hy, L, M,T). If b € Zy, then

ey, ve) = 6(Np, 1) € Z5y'o (G, N, T)
18 given by:
Cb(q‘17q~2aq3) = exp (27T1( Z b(za‘])el,N(nN([Ié?63))éj(5(ql)))) (5'7)
1€N,jENg

where

npi<[€i(q2)]pi; [61‘(%)]]01,)

ei, Ny (G2; G3)) = i ) (5.8)

€i(s(q1)) = {ei(qu)},, fori=1, éo(s(q)) = éolq).
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The d-part d., of cp is given by vy:

p\ [€5(a2)], ;ej(g3)],. )
de,(q2; q3) = exp | 27i Zb(j,())n < q pj' q J)
jeN j

— oxp (M({Vb(nw(?ﬁ; QB))}T)) ,

v(g) =mr | T b(j,00e;n(9) | ER/TZ, g€ N,
JeN y,

where mp : s € R sp =s+TZ € R/TZ is the quotient map.
The modular obstruction group HS&E(G,N, T) looks like the following:

HO' (G, N,T) = HJ" @ H™*, Hp"* = A, )
1
6([>\a;ﬂva]) = [CASa] c H ( (—Z)/Z>7 a € Zg,
icjen N \eed (piypj, pr)

[co, vb] = 0([Xb,1]), vb € Hom(N,R/T'Z),
] = (Ipibli.5) = b(i. 0)] . [—0ib(d ) + wib(i,0)], )
€ Z/(DiZ) ®R/Z,
} ( [mi j (b(i, 5)7j,: + b(F,9)7i,5) — i j(b(3,0)s5,: + b(4, O)Si,j)]z)

[Ci’j = | (¥, (b(&, 9)rj,0 + 0(4, 0)r3,5) + @i,5(b(4,0)s5,i + b(7, 0)si ;)]
[=b(i, 0)wi,;j + b(j; 0)wj,ily

1
—7 Z
€ (D(Z’]Rg}z>/ , D(i,5) = ged(pi, pj, qir q5)-
R/Z )

(5.9)

(5.10)

iii) The map Oq,, : HAt(G,N,T) — H*(G,T) in the modified HIR-ezact

sequence is given by:

90, ([calles]) = [¢§] € H*(G,T) = X*(G,T),a € Za

a

¢ =exp|2mi| > (ASa)(i,j, k)ei®e;@e | |,
1<j<k
00.,(H's (G, N, T)) = 7, (H*(Q, T)). )

Proof. i) The assertion has been already proven.
ii) For each i < j < k, let

D(ia.jv k) = ng(piapjapk:) € Z.

(5.11)
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Fix a € Zg, i.e., a € R® such that

(ASa)(i,j, k) = a(i, j, k) — a(j, i, k) + a(k,i,j) € <mz)

a(i,jk)=0 if j>k.

Set
a(i, 5, k) (s52)
zalisjik) = [ a(ik) | €2, = A7 R
a(k,i,j) R
Then we get
(ASa)(i, j, k) 2
Aza(i,go k) = | a(jik) | € R
a(k,i, j) R
ABa(iajv k) - Zg,
so that
(1S Rk (odmE)
[)\QC’L’J’ 7/1/31] j| ~ [a(]7@'7 k)]Z & R/Z
k.. )l R)Z

If (ASa)(i, j, k) € Z, the second cocycle pi7* extends to a second cocycle on H
which gives (AL7%, ub3F) = Res(piz7F). Since Range(Res) = Ker(d), the im-
age §(ALIF 143k depends only on the first term (ASa)(i, j, k) of Az, (i, j, k).
Hence we conclude 0([Aq, p1d) = 6([Ng], 1). For A, (i, k), we have

A (i, k) = Res(i, k) (H?(i, k)),

so that the map 9§ kills the entire A, (7, k). This completes the proof of (iia)
and (iib).

iic) Set ¢, = 0(Aa, o) With a € Z;. We then look at the crossed extension
B, v, € Xext(Hy, L, M, T)

1 T E—1 L 1.
As
a(i,j, k) € (—Z) and e;(g) € piZ, g€ L,
( ) ged(pi, pj, Pk) (9)

we have p, = 1. Hence observing that A\,(g; h) = 1 for every g € L A Hy,, and
h € Hy,, we get from (3.15) and (3.16) the following:
ca(G1, G2, 43) = gy (55 (nL(G2: G3)))s; (nL(q1; G243))
X {5;(n2(G15 G2))s; (n(G1G2; G3))}
(5((11)%((72;63)5((11)_1;5((11))
((5(q1) Ane(d2;3))ne(d2; 43); 5(q1))

Aa
Aa
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Aa(8(q1) Ann(d2;5G3)55(G1)) Ma(ne(G2;5G3)55(q1))
a(n(q2;G3);5(q1))

exp | 2mi | > ali, g k)ejr(n(G; Gs))es(s(dr))
i<j<k

=exp| 2mi| D a(i,j. k) {ei(dn)}, {e; (@)}, {en(@)},

1<j<k

= exp | 27i Z a(i, j, k){ei(q1)}, {ei(a2)}, {ex(as)},

1<j<k
= ca(q1; q2; q3)

for each ¢1 = (q1,51),42 = (G2, 52),q3 = (g3, 53) € Qm. Thus the assertion
(iic) follows.

iid) Since Res(H?(H, T)) N Ay = {0}, the modified HJR-map  is injective
on Ay. Now fix b € Zy. Since pp = 1 and A\y(m;h) = {1} for every pair
m € M,h € Hy,, we have, as in (iic), the following:

cy(q15 G2 G3) = Av(na (25 93)58(G1))

= exp | 27 Z b(i,7)ei,n(nn(g2;93))€5(5(q1))
1€N,jE€Ng

= exp | 27 Zb(i,j)ei,N(ﬂN(QQ;QB))ej(5(91))
i,jEN

X exp (27ri <Zb(i, 0)ei, n(nn(go; Q3))éo(q~1)> )

1€EN

where e; ny(ny(g2;¢3)) is given by (5.8). Also we compute

Vb(nN(qQ;qs))»

de, (q2593) = Mp(nn(g2;q3); 20) = exp (27Ti< T

= exp (27ri (Zb(i, 0)ei, N (ny(ge; QS))> ) )

1€N
vy(g) = mr <T2b<z', o>e¢,N<g>> €R/TZ, g€ N,
i€EN

with 77 : s € R — sp = s+ T7Z € R/TZ the quotient map.
The last assertion, (5.10), on Hp)'y (G, N, T) follows almost automatically
from the above computations and Lemma 4.6 in the last section.



Y. KATAYAMA AND M. TAKESAKI 75
iii) We now compute the map
Or  HO(G,N,T) — H?(G,T).

We continue to work on the cocycle (Aqp,1) for a € Z; whose restriction to
{Hn, K} gives rise to the crossed extension U € Xext(Hy,, K, T):

] — T U — K 1

J

where the group K is given by the following:

1€N

K = Ker(vpomg) = {g €L: Zb(j, 0)e; n(g) € Z}.

Then the following third cocycle ¢ € Z*(G, T):

ca (913 925 93) = Q) <5j (il g2; 93)>5j (mdg15 9293))

< (s 1302015 (nlongoig0)))
= Aab(Mi92; 93); 91) = Aa(m(g2; 93); 91)

=exp| 2mi| Y a(i,j, k)ei(g1)e;(g2)en(gs)
i<j<k

=cS(g1592;93), 91,9293 € G,

is precisely the image Ox,_ °0(Agp, 1). Q

§6. Concluding Remark.

The history of cocycle (resp. outer) conjugacy analysis of group actions
and group outer actions on an AFD factor goes back to the grand work of
Connes, [Cnn3, 4], in the mid 1970’s. Since then, the steady progress was
accomplished by several hands through the three decades following Connes
work, the works of V.F.R. Jone and A. Ocneanu are noteworthy, [Jn, Ocn].

We have now computed the invariants, which determine the outer conju-
gacy class, of an outer action of a countable discrete abelian group on an
AFD factor of type Iy, 0 < A < 1. The reduction of outer conjugacy anal-
ysis of an outer action of a countable discrete amenable group on an AFD
factor of type I, down to the associated complete invariants was successfully
carried out in our previous work, [KtT1,2,3]. As we have demonstrated in
this paper, the computation of invariants is doable as soon as the group in
question is specified, except the case of type Il,.
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Toward One Parameter Automorphism Group: After the comple-
tion of cocycle (resp. outer) conjugacy classification of countable discrete
amenable group (resp. outer) actions on an AFD factor, it is only natural to
consider the same problem for a continuous group. The first step to this goal
is obviously the study of one parameter automorphism group {«; : t € R}
of an approximately finite dimensional factor Ry of type II;. The first steps
were already taken by Y. Kawahigashi, [Kwl, 2, 3, 4], who classified, up
to cocycle (or stable) conjugacy, the most of one parameter automorphism
groups of Ry constructed from concrete data, which was extended to the case
of type I by U-K. Hui, [Hu]. But the general ones with full Connes spec-
trum are left untouched. One of difficulties is the lack of technique which
allows us to create a one cocycle {us : s € R} for a projection p € Proj(Rp) so
that the perturbed one parameter automorphism group {Ad(us)eay : t € R}
leaves the projection p invariant which allows us to localize the analysis of
the action. If a projection p € Proj(Ry) is differentiable relative to «, then
the derivation d,, associated with « generates a desired cocycle. But we don’t
know the answer to the following basic question:

Question: Does the C*-algebra:
A= {x € Ro : lim |l — oy (@)]] = o}

contain a non-trivial projection?

If p € Proj(A), then for each smooth function f € C°(R) with compact
support the element:

p(f) = as(p) = / F(Has(p)dt

is smooth and one can choose f such a way that ||p — p(f)|| is arbitrarily
small so that Sp(p(f)) is concentrated on a neighborhood of the two points
{0,1}, which allows us to generate a non trivial differentiable projection ¢
near p via contour integral:

q= L (z —p(f)) de.

2mi |z—1|=r

On the other hand, thanks to the exponential functional calculus, one can
generate plenty of differentiable unitaries. For example, if h € Ag.,, then
for a real valued smooth function f, we get a differentiable unitary element
exp (if(h)) of A which can stay near the unitary exp(ih) in norm. Hence the
group of differentiable unitaries is o*-strongly dense in the unitary group
U(Rp).
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