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1. (a) Explain why every knot can be considered as a ribbon graph
(consisting of only one copy of S1

×[0, 1] embedded inR3 between
the planes z = 1 and z = 0.)

(b) Explain in what sense a graph is a ribbon graph (don’t try to
make this part too precise/ “functorial”).

2. (Justification of motivation from last time.) Recall that an n + 1-
dimensional cobordism between two n-manifolds is an n+1-dimensional
manifold C with ∂C = M t N. Explain how each ribbon graph gives
rise to a 1-dimensional cobordism between 0-manifolds (i.e. a collec-
tions of points).

3. (Bialgebras and Hopf algebras.) A bialgebra over a field k is a vector
space over k with multiplication and comulitplication, compatible in
an appropriate sense. More precisely, a bialgebra H is an algebra ob-
ject in the opposite category of Algk, for k a field. The bialgebra is said
to be a Hopf algebra if it equipped with a k-linear anti-homomorphism
S, called the antipode. That is, a k-linear map S : H→ H so that

S(x, y) = S(y)S(x).

(a) Explicitly specify the other data involved in the definition of
a bialgebra: multiplication, comultiplication, unit, and counit
maps. Then write out commutative diagrams that relating these
maps.

(b) If you are feeling ambitious, try to come up with a reasonable
diagram to impose on the antipode map S!

Remark 1. The antipode map is often suppressed in discussions of
specific Hopf algebras. We will discuss the antipode map in class as
needed. Intuitively, it should be thought of as a substitute for the map
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sending x to x−1 (which does not in general exist, since most elements
in a general bialgebra do not have multiplicative inverses! This idea
should help you come up with the diagram for part (b).

(c) Think of some examples of bialgebras and/or Hopf algebras.

4. Check that the “braiding” on HDCR(A) (as defined in class) does
indeed endow the category with a braided monoidal structure.

5. Check that the definition of duals, evaluation, and coevaluation (as
defined in class) does indeed make HCDR(A) into a compact, braided
monoidal category.

6. In class, we worked primarily with the case of homogeneous ribbon
graphs (those which meet the planes z = 1 and z = 0 with the “white”
side of the graph facing “up”. All constructions discussed also make
sense for non-homogeneous graphs, with a few modifications: es-
sentially, we need to keep track of which “side” is up. We define a
category CDR(A) with:

• Objects finite sequences
(
(Vi, εi, νi)

)
1≤i≤k

, where k varies. As be-
fore, Vi ∈ Λ(A), and εi ∈ {±1} correspond to orientation of cores
of ribbons. νi is also either 1 or −1, and should be thought of as
encoding a prescribed orientation at a given base (with +1 being
white and −1 being black).

• A morphism (
(Vi, εi, νi)

)
1≤i≤k

→

(
(V′i , ε

′

i , ν
′

j)
)

1≤ j≤m

is a (not necessarily homogeneous) CDR-graph Γ with associated
sequence of bottom (resp. top) colors (V1, . . . ,Vk) (resp. with m
instead of k and primes), bottom (resp. top) “core directions”
equal to (ε1, . . . , εk) (resp. with m instead of k, and primes), and
bottom (resp. top) orientations being (ν1, . . . , νk) (resp. with m
instead of k and primes).

Remark 2. Note that, pictorially, morphisms in this category go up: from
the z = 0 plane to the z = 1 plane. (Just as for HCDR(A).)

Show that, with these definitions, CDR(A) is also a strict monoidal
category, and has a compact braided structure defined analogously to
(and extending) that on HCDR(A).
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