Worksheet 9

July 22, 2019

- 1. (a) Explain why every knot can be considered as a ribbon graph (consisting of only one copy of $S^1 \times [0, 1]$ embedded in \mathbb{R}^3 between the planes z = 1 and z = 0.)
 - (b) Explain in what sense a graph is a ribbon graph (don't try to make this part too precise/ "functorial").
- 2. (Justification of motivation from last time.) Recall that an n + 1dimensional cobordism between two *n*-manifolds is an n+1-dimensional manifold *C* with $\partial C = M \sqcup N$. Explain how each ribbon graph gives rise to a 1-dimensional cobordism between 0-manifolds (i.e. a collections of points).
- 3. (Bialgebras and Hopf algebras.) A bialgebra over a field *k* is a vector space over *k* with multiplication and comulitplication, compatible in an appropriate sense. More precisely, a **bialgebra** *H* is an algebra object in the opposite category of Alg_k , for *k* a field. The bialgebra is said to be a **Hopf algebra** if it equipped with a *k*-linear anti-homomorphism *S*, called the **antipode**. That is, a *k*-linear map $S: H \rightarrow H$ so that

$$S(x, y) = S(y)S(x).$$

- (a) Explicitly specify the other data involved in the definition of a bialgebra: multiplication, comultiplication, unit, and counit maps. Then write out commutative diagrams that relating these maps.
- (b) If you are feeling ambitious, try to come up with a reasonable diagram to impose on the antipode map *S*!

REMARK 1. The antipode map is often suppressed in discussions of specific Hopf algebras. We will discuss the antipode map in class as needed. Intuitively, it should be thought of as a substitute for the map

sending x to x^{-1} (which does not in general exist, since most elements in a general bialgebra do not have multiplicative inverses! This idea should help you come up with the diagram for part (b).

- (c) Think of some examples of bialgebras and/or Hopf algebras.
- 4. Check that the "braiding" on *HDCR*(*A*) (as defined in class) does indeed endow the category with a braided monoidal structure.
- 5. Check that the definition of duals, evaluation, and coevaluation (as defined in class) does indeed make *HCDR*(*A*) into a compact, braided monoidal category.
- 6. In class, we worked primarily with the case of **homogeneous** ribbon graphs (those which meet the planes *z* = 1 and *z* = 0 with the "white" side of the graph facing "up". All constructions discussed also make sense for non-homogeneous graphs, with a few modifications: essentially, we need to keep track of which "side" is up. We define a category *CDR*(*A*) with:
 - Objects finite sequences $((V_i, \epsilon_i, v_i))_{1 \le i \le k'}$ where *k* varies. As before, $V_i \in \Lambda(A)$, and $\epsilon_i \in \{\pm 1\}$ correspond to orientation of cores of ribbons. v_i is also either 1 or -1, and should be thought of as encoding a prescribed orientation at a given base (with +1 being white and -1 being black).
 - A morphism

$$\left((V_i,\epsilon_i,v_i)\right)_{1\leq i\leq k}\to \left((V_i',\epsilon_i',v_j')\right)_{1\leq j\leq m}$$

is a (not necessarily homogeneous) CDR-graph Γ with associated sequence of bottom (resp. top) colors (V_1, \ldots, V_k) (resp. with *m* instead of *k* and primes), bottom (resp. top) "core directions" equal to $(\epsilon_1, \ldots, \epsilon_k)$ (resp. with *m* instead of *k*, and primes), and bottom (resp. top) orientations being (v_1, \ldots, v_k) (resp. with *m* instead of *k* and primes).

REMARK 2. Note that, pictorially, morphisms in this category go up: from the z = 0 plane to the z = 1 plane. (Just as for HCDR(A).)

Show that, with these definitions, CDR(A) is also a strict monoidal category, and has a compact braided structure defined analogously to (and extending) that on HCDR(A).