Worksheet 7

July 3, 2019

- 1. This problem deals with duality (aka the process of adding "co-" to various definitions/ constructions).
 - (a) Show that a functor $F: J \to C$ uniquely determines a functor $F^{\text{op}}: J^{\text{op}} \to C^{\text{op}}$ which is "the same" on objects and morphisms. In particular, a diagram of shape *J* in *C* can be viewed as a diagram of shape J^{op} in C^{op} .
 - (b) Using the previous item, the colimit of a diagram of shape *J* in *C* should be the limit of the corresponding diagram of shape *J*^{op} in *C*^{op}. Write down the precise definition of a colimit in terms of universal properties, without referring to opposites.
 - (c) Define a cocone and category of cocones over a fixed diagram in *J*. What is the universal property of the colimit cocone in this auxiliary category?
- 2. Let *A*, *B*, and *C* be sets, and let × denote the cartesian product of sets (which we know also gives a categorical product). Show that there is a bijection $(A \times B) \times C \simeq A \times (B \times C)$, without explicitly defining maps between the sets.
- 3. Practice with limits and colimits.
 - (a) Determine the (binary) product and coproduct in the category of rings.
 - (b) Describe (arbitrary) small products and coproducts in the category of sets.
 - (c) Describe (arbitrary) small limits and colimits in teh category of sets in terms of your description of products and coproducts.

- 4. Consider the category of commutative, unital rings and ring homomorphisms. Fixing a ring *R*, we get a functor $R \otimes (-)$: Rng \rightarrow Rng given by $S \mapsto R \otimes_{\mathbb{Z}} S$. Show that $R \otimes (-)$ admits a right adjoint.
- 5. Verify that any category admitting finite products has a symmetric monoidal structure given by $\times: C \times C \to C$ given by sending a pair (*A*, *B*) to the categorical product $A \times B$. (The point is that you'll need to use the universal property of the product multiple times to check the axioms.)
- 6. A monoidal category is said to be **strict** if the natural transformations giving associativity of \otimes and unitality of *I* are all the identity natural transformation. Show that the braid category *B* is strict monoidal. Show that *B* is braiding is natural but not symmetric.
- 7. Given a monoidal category $\langle C, \otimes, I \rangle$ and an object *X* of *C*, we can define a functor $X \otimes (-): C \to C$ given by restricting the monoidal product $\otimes: C \times C \to C$ to the full subcategory $X \times C$. (I.e. given on objects by $Y \mapsto X \otimes Y$.)

A category *C* is said to be **closed** if the functor $X \otimes (-)$ admits a right adjoint. That is, if there is a functor [R, -] such that we get natural isomorphisms

 $\hom(R \otimes S, T) \simeq \hom(S, [R, T])$

naturally in $S, T \in ob(Rng)$.

Show that the monoidal category $\langle \operatorname{Rng}, \otimes_Z, \mathbb{Z} \rangle$ is not closed.

- Let A be a be a not necessarily commutative algebra over a field k, and consider the category Rep(A) of its finited-dimensional linear representations. That is, Rep(A) has objects left A-modules with underlying k-vector spaces finite-dimensional. Morphisms in Rep(A) are A-linear maps.
 - (a) One can define a monoidal structure on Rep(A) by "lifting" that on Vect_k: given M, N in the representation category, one must equip $M \otimes_k N$ with the structure of a left A-module. Show that this can be done.
 - (b) Can you given Rep(A) the structure of a braided monoidal category? What additional structure might be helfpul?