
Worksheet 2

Problem 1. Euler characteristic of surfaces.
(a) (Gluing) Let Σ′ and Σ′′ be connected compact surfaces, each with nonempty boundary.

Choose a boundary component of Σ′ and a boundary component of Σ′′ and identify them
in any way to obtain a new connected compact surface Σ = Σ′ ∪S1 Σ′′. Draw a picture of an
example of this. Show that χ(Σ) = χ(Σ′) + χ(Σ′′).

(b) (Self-Gluing) Let Σ be a connected compact surface, with at least two boundary components.
Choose two boundary components of Σ and identify them in any way to obtain Σ′. Draw a
picture of an example of this. Show that χ(Σ′) = χ(Σ). If Σ is an annulus, which surfaces Σ′

can you obtain from this construction? Hint: There’s more than one.
(c) (Deleting a disc) Let Σ be a connected compact surface. Choose a subset D ⊂ Int(Σ) of the

interior of Σ that homeomorphic to a closed disc, and let Σ′ = Σ \ Int(D) be the complement of
the interior of D. Observe that Σ′ is a connected compact surface. Show that χ(Σ′) = χ(Σ) − 1.
Hint: Use part (a).

(d) (Connected Sum) Let Σ′ and Σ′′ be connected compact surfaces. Recall that the connected
sum Σ = Σ′#Σ′′ is obtained by deleting discs from each of Σ′ and Σ′′ and identifying the
resulting boundary components. Show that χ(Σ) = χ(Σ′) + χ(Σ′′) − 2. Hint: Use parts (a) and
(c).

Remark. It’s often helpful to try to come up with a short phrase which conceptually captures the
result of lemma or problem. Can you come up with short phrases for each of the previous results?
For example, I think of part (c) as “deleting a disc drops Euler characteristic by 1.”

Problem 2. Let Σ3 be the closed oriented surface of genus 3 (recall that a manifold is called closed if
it is compact and has no boundary).

(a) Delete six discs from S2 to obtain Σ. Show that Σ3 can be obtained from Σ by using the
self-gluing move of Problem 1 part (b) three times. Use part (c) and the fact that χ(S2) = 2 to
compute χ(Σ), and use part (b) to compute χ(Σ3).

(b) Show that the Euler characteristic of the torus is zero using the relations established in Problem
1. Show that Σ3 can be obtained by taking the connect sum of three tori. Use part (d) to
compute χ(Σ3).

Problem 3. The pair of pants is the connected compact surface obtained by deleting three discs from
S2 (why is it called the pair of pants?). A pair of pants decomposition of an oriented surface Σ is a
collection of simple closed curves on Σ with the property that by cutting the surface along the
curves one obtains a collection of pairs of pants. Two decompositions are considered the same if
there is a homeomorphism taking the first set of curves to the second.

(a) Show that every connected closed oriented surface of genus g ≥ 2 admits a pair of pants
decomposition.
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(b) Show that there must be exactly four pairs of pants in any pants decomposition of Σ3. Hint:
use Euler characteristic.

(c) Show that the torus and sphere do not admit pairs of pants decompositions.

Remark. It turns out there are exactly two pairs of pants decompositions of the closed oriented
surface of genus 2. Can you find them? How many pairs of pants decompositions of Σ3 can you
find? Pairs of pants decompositions of closed oriented surfaces are in one-to-one correspondence
with finite 3-regular graphs (allowing self-loops and multiple edges) and can be used to construct
hyperbolic structures on surfaces.

Problem 4. Choose a diagram for the figure-eight. Apply Seifert’s algorithm to the diagram to
construct a Seifert surface for the figure-eight. Compute its genus.

Problem 5. Show that the genus of the (2, q) torus knot (for q ≥ 3 odd) is at most (q − 1)/2.

Remark. Compare this with Problem 6 of Worksheet 1.

Problem 6. Let

· · · C2 C1 C0 0
∂3 ∂2 ∂1 ∂0

be a chain complex of finite-dimensional vector spaces. Explicitly, each Cn is a finite-dimensional
vector space, each ∂n : Cn → Cn−1 is a linear map, and each composite ∂n ◦ ∂n+1 is the zero map.
Furthermore, assume that there are only finitely many nonzero Cn. The homology groups Hn for
n ≥ 0 are defined to be the quotient vector spaces Hn = ker ∂n/im ∂n+1.

Show that
∞∑

n=0

(−1)n dim Cn =

∞∑
n=0

(−1)n dim Hn.

This integer is referred to as the Euler characteristic of the chain complex, and the above equality is
often phrased as “Euler characteristic can be computed at either the chain level or at the level of
homology.”

Problem 7. The first homology group H1(X) of a path-connected space X is isomorphic to the
abelianization of its fundamental group π1(X). Concretely, if we have a presentation for π1(X), we
obtain a presentation for H1(X) by adding the commutator aba−1b−1 as a relation for each pair of
generators a, b in the presentation. This forces every pair of elements to commute.

Using the Wirtinger presentation, show that the first homology group of the complement of a
knot is Z. What is the first homology group of the complement of a link with ` components?

Problem 8. Completely optional. Euler characteristic of 3-manifolds. Let M be a closed oriented
connected 3-manifold. We will see that χ(M) = 0 in this exercise, citing various results in algebraic
topology.

Poincaré duality (PD) implies that the following homology and cohomology groups of M are
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isomorphic:

H3(M) H3(M; Z)

H2(M) H2(M; Z)

H1(M) H1(M; Z)

H0(M) H0(M; Z)

or explicitly

H0(M) � H3(M; Z) H1(M) � H2(M; Z) H2(M) � H1(M; Z) H3(M) � H0(M; Z).

(a) Using the fact that H0(M) � Zk � H0(M; Z) where k is the number of components of M,
compute as many of the homology and cohomology groups of M as you can. Hint: You
should be able to deduce the isomorphism type of four of the above eight groups.

Each of Hn(M) and Hn(M; Z) is a finitely generated abelian group. Let A be any finitely generated
abelian group. Let tor(A) denote the subgroup of elements a ∈ A for which there exists a positive
integer n for which n · a = a + a + · · · + a = 0 (where the group operation in A is written additively).
The subgroup tor(A) is the torsion subgroup of A and it is a finite abelian group.

(b) Show that tor(A) is a subgroup.

The structure theorem of finitely generated abelian groups implies that A is isomorphic to Zk
⊕ tor(A) for

some nonnegative integer k. The integer k is called the rank of A, denoted rk(A).
The Universal Coefficients Theorem (UCT) implies that for all m ≥ 0, the rank of Hm(M; Z) is

equal to the rank of Hm(M) and that the torsion subgroup of Hm(M; Z) is isomorphic to the torsion
subgroup of Hm−1(M).

(c) Show that H1(M; Z) has trivial torsion subgroup.

(d) Show that H2(M) has trivial torsion subgroup (use PD, but also show this using part (a) and
UCT).

If you know the homology groups of M, then UCT says that you can obtain the isomorphism types
of the cohomology groups in the following way: the free parts, i.e. the Zk parts, are the same as the
homology groups, but you push the torsion parts up one degree. PD then gives large constraints
on the possibilities of what the original homology groups can be. If you know partial information
about the homology and cohomology groups, you can often figure out all of them using PD and
UCT. A friend jokingly refers to this process as “sudoku”.

(e) Suppose H1(M) � Zk
⊕ T where T is a finite abelian group, and recall that M is connected.

Compute all of the homology and cohomology groups of M using PD and UCT.

Remark. Since H1(M) is the abelianization of π1(M), the fundamental group π1(M) determines all of
the homology and cohomology groups of M. There are many 3-manifolds with the same homology
and cohomology groups, but it is a deep theorem in low-dimensional topology, that I won’t state
here precisely, that the fundamental group is pretty much a perfect invariant of closed connected
oriented 3-manifolds.
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Recall that the Euler characteristic can be computed as

χ(M) =

3∑
m=0

(−1)m rk(Hm(M)) = rk(H0) − rk(H1) + rk(H2) − rk(H3).

(f) Show that χ(M) = 0.

Remark. Although Euler characteristic is a great invariant of surfaces (it is a perfect invariant of
connected closed oriented 2-manifolds, and satisfies the various relations of problem 1), it is a poor
invariant of connected closed oriented 3-manifolds.

(g) Let W be a connected closed oriented n-manifold. UCT still holds true, as does the modification
of PD to Hk(W) � Hn−k(W; Z) for k ≥ 0. Show that if n is odd, then χ(W) = 0. If n = 4, does
the fundamental group of W still determine all of the homology and cohomology groups?
If n = 4 and the fundamental group is trivial, what can you say about the homology and
cohomology groups of W?

4


