
Worksheet 1

Problem 1. The mirror of a knot K, denoted m(K) (or K or −K), is the knot obtained by reflecting
through a plane in 3-space (if you were holding a knot K in your hand, you’d see m(K) when looking
at it in a mirror). Given a diagram of K, a diagram for m(K) is obtained by changing every crossing.

The first knot (on the left) is called the right-handed trefoil and its mirror (on the right) is called
the left-handed trefoil. It turns out that these knots are not isotopic. Show that the knot below, called
the figure-eight, is isotopic to its mirror.

Problem 2. An oriented knot is a knot equipped with a direction of travel along the knot. Typically
it is drawn with an arrow. Here’s the figure-eight equipped with an orientation.

Two oriented knots are called isotopic if there is an isotopy which takes one knot to the other so
that the orientations match up (so that the arrows point in the same direction). The reverse of an
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oriented knot is the same knot but equipped with the opposite orientation (draw the arrows in the
opposite direction). Show that the trefoils and the figure-eight are isotopic to their reverses.

Remark. The lowest crossing prime knot which is not isotopic to its reverse is 817 (see the remark
after Problem 3 for an explanation of this terminology).

Remark. The concepts of mirroring (Problem 1) and an orientation on a knot (Problem 2) are
important. Doing the visual manipulations requested in these problems is less important.

Problem 3. Show that the following two knots are isotopic:

Remark. These two knots were originally thought to be distinct. A old (but good) textbook in knot
theory called “Knots and Links” by Dale Rolfsen includes a table of prime knots which has become
known as “Rolfsen’s knot table.” It enumerates prime knots of a given crossing number which have
now become their standard names, e.g. the trefoil is 31, the figure eight is 41, and there are two
knots with crossing number five called 51 and 52. Warning: Rolfsen’s knot table does not distinguish
between mirrors and reverses, even when they are not isotopic. The knot drawn above is prime
and has crossing number 10 but is mistakenly listed twice as both 10161 and 10162. It’s now known
as the Perko pair (but really it’s just one knot).

Remark. This problem is included mostly just for mathematical culture; have some fun playing
around with this knot but don’t worry too much about actually finding an isotopy between them.
If you’d like, you can find an isotopy between them in a Math Stack Exchange post after a quick
search.

Problem 4. Determine which of the prime knots on Rolfsen’s knot table of crossing number 7 or
fewer are tricolorable (there are 15 such knots on the table).

As warned before, Rolfsen’s table does not distinguish between mirrors and reverses even when
they are distinct. Check for yourself that an oriented knot is tricolorable if and only if its reverse is
if and only if its mirror is if and only if its reverse mirror is.

Remark. Many properties if true for an oriented knot will also be true for its mirror, its reverse, and
its reverse mirror. This is why the distinction between them is often hazy.

Problem 5. Prove that the number of tricolorings is an invariant of the knot.
Hint: Associated to each knot diagram is a set of tricolorings. Given two diagrams that differ by

a Reidemeister move, and establish a bijection between their sets of tricolorings.
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Remark. You can permute the colors of a given tricoloring to produce new tricolorings. Since a
tricoloring by definition must have all three colors, each of the 6 permutations of the colors produces
a distinct tricoloring. Hence the number of tricolorings is divisble by 6 (and the set of tricolorings
can be naturally partitioned into sets of 6). Can you find a knot with more than 6 tricolorings? Hint:
There’s an example of such a knot with 6 crossings but it’s not on Rolfsen’s table.

Problem 6. Show that the (2, q) torus knot, where q ≥ 3 is odd, can be unknotted in (q − 1)/2 moves.
For example, the trefoil can be unknotted in 1 move, and the knot 51 can be unknotted in 2 moves.
Do you think it can be unknotted in fewer moves? What about the (3, q) torus knots, where 3 and q
are coprime? What about the (p, q) torus knots for p, q coprime?
Remark. Establishing upper bounds for unknotting number involves simply finding an unknotting
sequence. Finding lower bounds is often much more difficult, and it’s where interesting knot
invariants come into play. Prof Kronheimer here at Harvard along with his collaborator Prof
Mrowka at MIT managed to compute the unknotting numbers of the torus knots in full generality
in the early 1990s using gauge theory. In 2004, Jacob Rasmussen, who did his PhD at Harvard
under Prof Kronheimer, gave a more elementary proof using Khovanov homology.

Problem 7.

(a) Compute the Wirtinger presentation for the fundamental group of the unknot using a diagram
with 3 crossings, and show that the group is indeed a presentation for Z.

(b) Using the following diagram, compute the Wirtinger presentation for the fundamental group
of the complement of the knot.

Using visual manipulations, verify that this is just the unknot. Then show that the presentation
you found is indeed a presentation of the group Z.

Remark. The purpose of this exercise is to illustrate it’s often hard to work with the fundamental
group of the complement of the knot, even though we can obtain an explicit presentation for the
group.

Problem 8. Using your favorite diagrams for the trefoil and figure eight, compute presentations for
the fundamental groups of their complements. Can you show that they are distinct groups?

Problem 9. In this exercise, we’ll relate tricolorability of a knot to the fundamental group of the
complement.
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(a) Let S3 denote the third symmetric group; the group of permutations of three objects. Recall
that a transposition is a permutation that exchanges two objects but keeps all others fixed. Let
R denote the transposition (12), i.e. it exchanges the first and second objects and keeps the
third fixed. Similarly let G = (13) and B = (23). Check that if you conjugate one of these
three elements by a different one, you obtain the third one. For example: BRB−1 = G and
R−1GR = B.

(b) Given a diagram for a knot, recall that each arc of the diagram corresponds to a generator of
the Wirtinger presentation. Show that the tricoloring determines a homomorphism from the
fundamental group of complement of the knot to S3.

(c) Characterize which homomorphisms from the fundamental group of the complement of the
knot to S3 correspond to tricolorings.

Can you now solve Problem 8? Note that this exercise gives a different proof that tricolorability is
an invariant of the knot.
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