
SUMMER 2018 TUTORIAL: CATEGORY THEORY

“Category” has been defined in order to be able to define
“functor,” and “functor” has been defined in order to be able
to define “natural transformation.”

- Mac Lane Chapter 1.

For the first part of the course, where all material is covered thoroughly
in multiple references, I’ll provide a very rough outline of what is covered
in class. The idea is that you should be able to read over the outline,
understand all the definitions and give examples of each, and have a rough
idea of how to prove the theorems.

Notational Conventions: Since we’re using a few different texts, here’s
a (probably incomplete) summary of our notational conventions.

(1) In class, we defined a “category” to refer to what some call a “locally
small category.” That is, we require arrows between any two fixed
objects to form a set. In practice, one also wants to consider cate-
gories where the arrows between two fixed objects aren’t necessarily
a set (e.g. functor categories of locally small categories), and in such
cases foundational issues can be resolved. We agree to turn a blind
eye as is necessary.

(2) I was somewhat inconsistent with my notation during lecture. To
clarify: we will use 1, 2, . . . ,n for the category associated to the
poset {0, 1, . . . , n − 1}. (So the category 2, for example, has two
objects 0 and 1 and only one nonidentity morphism from 0 to 1).
The poset {0, 1, . . . , n} is often called [n], which is confusing since
the numbering doesn’t match up.

(3) We agree that, for a category C, x ∈ C, x ∈ |C| and x ∈ ob(C)
all mean that x is an object of C. I’ll try to use x ∈ |C|, but may
occasionally use the others.

(4) Differing from Mac Lane, we use ∆+ for the category of finite linearly
ordered sets, which includes the empty set (he calls this category
∆). We write n + 1 = [n] = {0, 1, . . . , n}. Both notations have
advantages. In the world of cardinal arithmetic, n + 1 is the more
natural name for this set, since it has n + 1 elements. Moreover,
with respect to the monoidal structure on ∆+, we get the nice fact
that the linearly ordered set corresponding to the monoidal product
(“sum”) of n and m is the set corresponding to n + m. However,
in topology it’s more usual to call this set [n], since it corresponds
to an n-dimensional simplex. (Also see note (2) above for another
alternative notation... Sorry!)

We will also use ∆ for the category of finite, nonempty totally
ordered sets, since this is standard in topology.
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§1. Lecture 6/18/2018

§1.1. Summary.

• Material from Mac Lane Chapter 1, Riehl Chapter 1 and 2.1, Lein-
ster Chapter 1, 3, 4.1.
• Category, functor, natural transformation.
• Key examples:

(1) Partially ordered sets and their categories. The categories 0,1,2, . . .
associated to finite totally ordered sets.

(2) Set: the category of sets and set morphisms.
(3) Algebraic examples: Grp, the category of groups and group

homomorphisms; Ab, the category of abelian groups; Ring, the
category of unital rings and ring homomorphisms; Veck, the
category of vector spaces over a fixed field k and linear maps;
ModR, the category of modules over a fixed ring R and R-
module homomorphisms...

(4) Top, Top*: the categories of topological spaces and continuous
maps, and pointed topological spaces and basepoint-preserving
continuous maps, respectively.

(5) Functor categories.
(6) The fundamental groupoid of a topological space.
(7) The category associated to a partially ordered set.
(8) The one-object category associated to a group.
(9) The fundamental group and fundamental groupoid functors,

from Top∗ → Grp and Top→ Cat, respectively.
(10) Forgetful functors, free functors.
(11) (Co)homology functors from Top→ Ab.

§1.2. Exercises (Mostly from Mac Lane’s book, Chapter 1).

(1) Given any category C, describe what it means to give a functor
1→ C, 2→ C, and 3→ C.

(2) Show that a functor between the categories associated to two par-
tially ordered sets is equivalent to an order-preserving function be-
tween the sets.

(3) Show that there is no functor from Grp to Ab which, on objects,
takes a group to its center.

(4) Give an example of a category C and two functors F,G : C → C
which are the same on objects but different on morphisms.

(5) Given a category C and an object c ∈ |C|, the slice category or over
category C/c has as objects morphisms in C with codomain c (i.e. a
choice of x ∈ |C| and a morphism x → c in C), and as morphisms
commutative triangles: given f : x→ c and f ′ : x′ → c, a morphism
from f to f ′ in C/c is a morphism g : x→ x′ in C so that the diagram

x x′

c

g

f f ′

commutes.
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(a) Use duality (or just intuition) to define an under category c/C.
(b) Fixing a commutative ring R, what is another name for the un-

der category R/CommRing? (Here, CommRing is the category
of commutative rings.)

(6) Come up with some new examples of categories (not discussed in
class).

(7) Try to come up with a definition of “morphism between functors”
(you can of course just read the book, but the point here is really to
think about the concepts on your own.)

§2. Lecture 6/20/2018

§2.1. Summary.

• Within a category: inverse morphism, isomorphism, epimorphism,
monomorphism.
• Equivalence of categories, essentially surjective functor, faithful func-

tor, full functor.
• Universal properties (know the universal properties for key construc-

tions).
• Groupoid, monoid, discrete category.

§2.2. Exercises.

(1) Find a category with an arrow that is epic and monic, but not an
isomorphism.

(2) Prove that the composite of monics is monic, and the composite of
epis is epi.

(3) If g ◦ f is monic, then f is monic. Is the same true for g? What is
an analogous statement for epis?

(4) Prove the “analogous statement for epis” from the previous problem
using opposite categories.

(5) If a functor T is faithful and Tf is monic, then f is also monic.
Think about what similar statements might be true (or false).

(6) Let S, T : C → P be functors from a category C to a poset category
P . Show that there is a natural transformation S ⇒ T if and only
if for all c ∈ C, Sc ≤ Tc.

(7) Show that the category Veck of vector spaces over a field k is equiv-
alent to the category Matrk defined as follows: the objects of Matrk
are in bijection with the natural numbers 0, 1, 2, . . . , and for any k, l,
the morphisms from k to l are l× k matrices with entries in k. (You
might want to use (11) on this pset).

(8) A discrete category is one where the only arrows are identity arrows.
We have a functor from Set to Cat given by considering a set as a
category with objects the elements of the set. Is this a fully faithful
functor?

(9) (a) A monoid is a category with one object. Given an example of
a monoid.

(b) A groupoid is a category where ever morphism is invertible. Give
an example of a groupoid.
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(c) Give an example of a category which is both a monoid and a
groupoid.

(10) (Challenging. This is exercise 5 in Mac Lane section 5; he gives a
good hint.) Show that, in the category of Groups, the epimorphisms
are precisely the group homomorphisms that are surjective as set
maps.

(11) (Challenging.) Show that functor is an equivalence if and only if it
is fully faithful and essentially surjective on objects. (We’ll do this
in class on Wednesday, so the idea here is just to think a bit about
why it’s true, although if you can write down a proof that’s great as
well.)

(12) Show that a functor between the one-point categories associated to
two groups G and H is “the same” as a group homomorphism. More
precisely, show that the functor Grp→ Mon sending a group to the
associated one-point category is fully faithful.

§3. Lecture 6/22/2018

§3.1. Summary.

• Constructions on categories: product categories, comma categories,
graphs, free categories, quotient categories.
• Functor categories and Yoneda functor.

§3.2. Exercises.

(1) (Revision of problem incorrectly stated in class on Wednesday.) In
class, we discussed the fundamental group functor π1 and funda-
mental groupoid functor Π1, and showed that we can consider both
as functors Top∗ → Cat . I asked you to find a natural transforma-
tion from Π1 ⇒ π1. In fact, the interesting natural transformation
goes the other way (from the fundamental group to the fundamental
groupoid). Explain how this works.

(2) Show that for G and H groups, B(G×H) = BG×BH, where the
left hand side is the one-point category of the product group G×H,
and the right hand side is the product of the one-point categories
associated to G and H.

(3) Check that given a small category C, the Yoneda embedding C →
Fun(Cop,Set) given by X 7→ hX := C(−, X) = homC(−, X) defines a
covariant functor.

(4) Given a functor F : C → D, we can consider two functors as follows:
• C(−,−) : C × Cop → Set defined on objects by 〈a, b〉 7→ C(a, b)
• D(F−, F−) : C × Cop → Set defined on objects by 〈a, b〉 7→
D(Fa, Fb).

(If you’re unclear on what happens to morphisms, work this out.
This will also clarify why we need an “op” in the domain of both
functors.) Show that maps Fa,b : C(a, b)→ D(Fa, Fb) given by con-
sidering F on morphisms define the components of a natural trans-
formation

C(−,−)⇒ D(F−, F−).
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(5) An initial object in a category C is an object i so that for any object
X ∈ C, there there is a unique arrow i→ X in C. Dually, a terminal
object is an object t so that for any object Y , there is a unique arrow
Y → t in C. If there is a single object which is both initial and
terminal, the object is called a zero object.
(a) Show that the over category C/t = (C ↓ t) is equivalent (and in

fact isomorphic) to the category C.
(b) Prove a dual statement involving initial objects.

(6) (Challenging.) In class, we showed that the data of two functors
C × 2→ D and a natural transformation between them is the same
as the data of a functor C × →D. The goal of this exercise is to
characterize natural isomorphisms of functors in an analogous way.
We can define the category J to be the two-object category with
one morphism in each hom set. (This forces the morphism from one
object to the other to be an isomorphism.)
(a) Draw a picture of the category J and understand what it means

to give a functor from J to another category.
(b) Show that giving two functors C → D and a natural isomor-

phism between them is the same as giving a functor from C ×
J → D.

(7) Given natural transformations α : F ⇒ G and β : G⇒ H for F,G,H
functors C → D, show that there is a “vertical composite” natural
transformation β · α : F ⇒ H with components (β · α)c = βc · αc for
all c ∈ ob C.

C D

F

G . α

H

β

§4. Lecture 6/25/2018

§4.1. Summary.

• Universal properties, initial and terminal objects.
• Examples of representable functors.
• Statement of Yoneda lemma.

§4.2. Exercises.

(1) The universal property of the cartesian product of two sets A and B
is often stated as follows: a product is a set C together with maps
π1 : C → A and π2 : C → B so that for any set D and any given maps
f : D → A and f ′ : D → B, there exists a unique map F : D → C so
that π1F = f and π2F = F ′.
(a) Find an auxiliary category C so the data of a product is the

same as an initial object of C.
(b) State the universal property as an isomorphism of representable

(or corepresentable) functors.
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(2) If you’ve seen some other mathematical objects defined by universal
properties (e.g. quotient group, free product of groups, tensor prod-
uct of vector spaces), try to restate these universal properties as (1)
being initial or final in an ambient category; (2) representing some
functor.

(3) Find a representing object for the forgetful functor Ring → Set
(which takes a ring to its underlying set, and a ring map R→ R′ to
itself viewed as a set map).

(4) (Challenging.) On the first day of class, we talked about a covariant
power set functor P : Set→ Set, given on objects by

X 7→ P(X)

and on morphisms by

(f : X → Y ) 7→ (a ⊂ X 7→ f(a) ⊂ Y ).

Alternatively, we can define a contravariant power set functor
P̃ : Setop → Set on objects by

X 7→ P(X)

(that is, it’s the same on objects: it takes a set and returns its power
set), and on morphisms by

(f : X → Y ) ∈ Set(X,Y ) 7→ f−1 ∈ Set(P(Y ),P(X))

where f−1 is the preimage function defined by

a ⊂ Y 7→ f−1(a) ⊂ X.
Show that the functor P̃ is corepresentable and describe a represent-
ing object.

(5) Show that a representable functor F : C → Set preserve monomor-
phisms in the following sense: if f : a→ b is a monomorphism in C,
then Ff is a monomorphism in Set. Use the contrapositive to give
examples of functors that are not representable.

(6) (Understanding the statement of the Yoneda lemma). We’ll do this
in class on Wednesday, but it’s worthwhile to work it out for yourself.
(a) Write down explicitly the “naturality” part of the statement of

the Yoneda lemma given in class today.
(b) Write down a contravariant version of the Yoneda lemma (i.e.

a statement for functors Cop → Set).

§5. Lecture 6/27/2018

§5.1. Summary.

• Yoneda lemma and proof, continued.
• Corollaries and examples.
• Category of elements: going between “initial objects” and represent-

ing functors.
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§5.2. Exercises.

(1) Prove the Yoneda lemma. We sketched this in class, so you should
write down all the details explicitly:
(a) Show that the map Nat(C(c,−), F )→ Fc given by

(α : C(c,−)⇒ F ) 7→ αc(Idc)

is a bijection by constructing a map in the other direction and
checking the constructions are mutually inverse.

(b) Show that the correspondence is natural in c ∈ C and F ∈
Fun(C, Set).

If this is too easy for you, try to work out the contravariant version
(i.e. the version for functors Cop → Set . If you’re finding this hard,
try to do 6(a) from the previous exercise set.

(2) Explicitly describe the category of elements for the functor C → Set
which sends every object of C to a fixed one-object set and every ar-
row to the identity of that set. Describe initial and terminal objects
in the category of elements.

(3) Describe a universal property of the cartesian product of two sets,
in the sense we described in class today: a universal property of an
object c ∈ C is a functor F : C → Set (or F : Cop → Set) together
with x ∈ Fc so that x gives a natural isomorphism of C(c,−) with
F via the construction of the Yoneda lemma (or, in the case of
F : Cop → Set, x gives a natural isomorphism of C(−, c) with F ).

(4) Come up with a functor F : Vectk → Set which is represented by the
tensor product V ⊗k V ′ of two fixed vector spaces V and V ′. That
is, you want that

F (W ) ' HomVect(V ⊗k V ′,W )

naturally in W ∈ Vectk . Use this to derive a universal property of
the tensor product, and rephrase it to assert that V ⊗k V ′ together
with some auxiliary data (determined by the functor you use) is an
initial object of an auxiliary category.

(5) Recall that the category 2 represents the functor F : Cat → Set
which takes a small category to its set of morphisms. Rephrase
this representability as the statement that 2 satisfies a universal
property. That is, come up with an element x ∈ F (2) which, via
the construction of the Yoneda lemma, gives a natural isomorphism
Cat(2, C) ' mor(C).

§6. Lecture 6/29/2018

§6.1. Summary.

• Examples of universal properties and associated representable func-
tors.
• Diagrams in categories.
• Limits and colimits of diagrams.
• Examples (especially in Set).
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§6.2. Exercises.

(1) Describe what it means to be a limit of a diagram indexed by the
empty category (you should get something familiar!), either in an
arbitrary category or in the category of sets.

(2) Explicitly describe morphisms in the category of cones over a di-
agram D : J → C. (We talked about this category, but I wasn’t
careful about describing its arrows). Do the same for the category
of cocones.

(3) Go through the process of dualizing the definition of a limit to see
that a colimit of a diagram is a initial object in the category of
cocones on the diagram. (It might be helpful to observe that a
cocone on a diagram D : J → C is a cone the associated diagram
Dop : Jop → Cop.)

(4) Explicitly compute the limit of a Z-indexed diagram in the category
of sets. (Start by understanding what it means to give a functor
from the category associated to the poset Z to Set; then understand
limits of such a diagrams.)

(5) Rephrase being a limit of a diagram D : J → C as representing a
functor from C → Set . (Hint: we’ve already described the “category
of elements” of the functor we want to represent.)

(6) Describe limits and colimits of diagrams indexed by arbitrary dis-
crete (small) categories (categories with only identity morphisms)
in the category of sets. (We did the case for a two-object discrete
category.)

(7) As we’ve seen, certain indexing categories come up a lot, so limits
over diagrams of these shapes get special names. Another “special”
example of a shape for a diagram is

· ·

I.e. a category J with two object and two nontrivial parallel
morphisms from one object to the other. Limits of this diagram are
called equalizers, and colimits are called coequalizers.
(a) Compute the equalizer and coequalizer of an arbitrary diagram

of shape J (defined above) the category of sets.
(b) Compute the equalizer and coequalizer of the diagram in the

category of groups which takes both objects to Z, one morphism
to the zero homomorphism, and the other to multiplication by
n.

§7. Lecture 7/2/2018

§7.1. Summary.

• A bit more on colimits. Proofs from last time.
• Adjunctions. Key properties. Units and counits.
• Key examples.

§7.2. Exercises.
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(1) (Details of example from class.) Fix f : S → R a ring map. We
have a map Rf : ModR → ModS called restriction of scalars, which
on objects takes an R-module M to the S-module M with the same
underlying group structure, and S-action given by s ·m = f(s) ·m
for m ∈M , s ∈ S (note f(s) ∈ R, so f(s) ·m is already defined since
M is an R-module).

We can also consider extension of scalars Ef : ModS → ModR
which is given on objects and morphisms by applying the functor
−⊗S R (noting that f gives R and S-module structure). Show that
Ef is left adjoint to Rf .

(2) (Generalization of 1). Given unital (not necessarily commutative)
rings R and S and an (R,S)-bimodule X, show that the functor
HomS(X,−) : ModS → ModR is right adjoint to −⊗RX : ModR →
ModS . Explicitly, that there is a natural bijection

HomS(Y ⊗R X,Z) ' HomR(Y,HomS(X,Z)),

natural in Y ∈ |ModR | and Z ∈ |ModS |.
(3) For any category C, we can consider the functor C → 1 which takes

every object to the unique object of 1 and every morphism to the
identity. (Recall the category 1 has one object and only the identity
morhpism.) Assuming that this functor has right and left adjoints,
describe them in terms of familiar definitions.

(4) Assume C has pullbacks and pushouts, which are limits and colimits,
respectively, of diagrams indexed by

J=

·

· ·
Describe the unit and counit of the left and right adjoint of the map
∆: C → Fun(J, C) which takes an object c to the constant functor
with value c.

(5) Describe a left adjoint for the inclusion Ab→ Grp of abelian groups
into all groups.

(6) (Construction/ verification.) In stating the triangle identities for the
unit and counit of an adjunction, we encountered an instance of a
general procedure called whiskering, which allows us to “compose”
a natural transformation with a functor. Suppose we’re given a
diagram as follows

A B C D
F

G

H

I
α

I.e. two parallel functors G,H : B → C, a functor F : A → B, a
functor I : C → D, and a natural transformation α : G ⇒ H. Then
we can:
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(a) Whisker α on the right by F to get a natural transformation
αF : GF ⇒ HF with components defined by

(αF )A := αF (A) : GF (A)→ HF (A).

(b) Whisker α on the left by I to get a natural transformation
Iα : IG⇒ IH, with components defined by

(Iα)A := I(αA) : IG(A)→ IH(A).

Verify that both whiskerings (a) and (b) above define natural trans-
formations.

(7) Verify that the definition of an adjunction in terms of natural bi-
jections on hom sets implies the triangle identities for the unit and
counit.

(8) (Challenging.) Show that adjoints are unique up to unique isomor-
phism. That is, given F : C → D, any two right adjoints are naturally
isomorphic, and the isomorphism is unique if we require it to be com-
patible with the the adjunction. The analogous statement holds for
left adjoints.

§8. Lecture 7/6/2018

§8.1. Summary.

• Adjoint equivalences. See handout for clarification!
• (Co)eflect subcategories: examples Ab ⊂ Grp (reflective), Torsion ⊂

Ab (coreflective).
• Getting new adjoints from old – functor categories (Riehl 4.4)
• Continuous, cocontinuous functors. RAPL (right adjoints preserve

limits)/ LAPC (left adjoints preserve colimits).

§8.2. Exercises.

(1) (a) (Stated in class.) Prove that for any C and c ∈ C, the functor
C(c,−) preserves limits. Explicitly, given a diagram A of shape
J in C, give an isomorphism of sets

lim
i∈J

C(c, Ai) ' C(c, lim
i∈J

Ai),

natural in c ∈ |C|.
(b) Show that if F is naturally isomorphic to G and G preserves

limits of shape J , 1 the F also preserves limits of shape J .
(c) Conclude that all (covariant) representable functors preserve

limits.
(d) Is there an analgous statement that is true for contravariant

representable functors? (I.e. functors isomorphic to C(−, c).)
(2) (Generalities on whiskering.) Before attempting this problem, do

problem 6 from the previous exercise set! Consider a diagram

1We defined preservation of limits in general. We say that a functor preserves limits
of shape J if the limit preservation condition is held for diagrams of shape J , but not
necessarily for arbitrary small diagram shapes.
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A′ A B C D D′
F ′ F

G

H

K

I I ′
α

β

This exercise justifyies omitting of parentheses in many situations.
In this problem we denote composition of functors with ◦, vertical
composition of natural transformations with ?, and whiskering with
juxtaposition in order to avoid ambiguity. Show that:
(a) Whiskering on either side is associative: I ′(Iα) = (I ′ ◦ I)α, and

(αF )F ′ = α(F ◦ F ′).
(b) Whiskering on different sides commutes: I(αF ) = (Iα)F.
(c) Whiskering on either side is distributive: (β?α)F = (βF )?(αF )

and I(β ? α) = (Iβ) ? (Iα).
(3) (Examples: RAPL, LAPC are useful!) Verify the following state-

ments by realizing a relevant functor as a right or left adjoint, and
using RAPL or LAPC.
(a) For any sets A,B,C,

A× (B t C) ' (A×B) t (A× C),

(B × C)A ' BA × CA, 2

and

B(AtC) ' BA ×BC .

(b) For any vector spaces U, V,W,

U ⊗ (V ⊕W ) ' (U ⊗ V )⊕ (U ⊗W ).

(4) For a fixed set X, so that the functor X×− : Set→ Set cannot have
a left adjoint unless X is a one-point set.

(5) Suppose i : D ↪→ C is a reflective subcategory with reflector L : C →
D. As usual, let η and ε be the unit and counit of the adjunction.
(a) Show that ηL = Lη, and moreover that each is a natural iso-

morphism.
(b) Show that an object c ∈ |C| is in the essential image of i, mean-

ing that it is isomorphic to an object in D, if and only if ηc is
an isomorphism.

(c) Show that c is in the essential image of i if and only if for all
f : a→ b in C so that L(f) is invertible in D, the precomposition
map f∗ : C(b, c)→ C(a, c) is an isomorphism in Set .

2Here, XY = Set(Y,X) is the set of all set maps from Y into X.
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§9. Lecture 7/11/2018

§9.1. Summary.

• Completeness and cocompleteness; Set is complete and cocomplete.
(Mac Lane V.2, Riehl
• Preservation (continued), reflection, and creation of limits. (Mac

Lane V.1, V.4; Riehl 3.3).
• General adjoint functor theorem (Mac Lane calls this Freyd’s adjoint

functor theorem.)

§9.2. Exercises.

(1) Come up with an example of a category that is not complete, or not
cocomplete.

(2) (Functoriality of (co)limits.) Show that if F,G : J → C are parallel
functors, and that C has limits of shape J . Show that a natural
transformation αF ⇒ G induces a map limF ⇒ limG. Show that
if α is a natural isomorphism, then the map induced on limits is
an isomorphism in C. (We’ve implicitly used this before to replace
diagrams by “more convenient” ones.)

(3) Prove a dual statement to the result that a category with all small
limits and all equalizers of pairs of arrows is small-complete. (The
conclusion should be that under dual hypotheses, the category is
small-cocomplete, meaning it has all colimits indexed by small cat-
egories.)

(4) Show Set is small-cocomplete. (Use the previous problem, or explic-
itly construct an arbitrary small colimit.)

(5) Show that the forgetful functor V : CH → Set from compact haus-
dorff spaces to sets admits a left adjoint.

(6) (Computing limits of functors pointwise. Important but challeng-
ing.) Suppose B is small. Let F : A → CB = Fun(B,C) be a func-
tor. Then, for each fixed b, we can consider the functor Fb : A→ C
given on objects by a 7→ (F (a))(b). Suppose that the functors Fb
have limits Lb for each b ∈ B. Show that:
(a) If τb : Lb ⇒ Fb are the limit cones, then there is a unique func-

tor L : B → C given on objects by b 7→ Lb so that τb define
components of a limit cone L⇒ F . That is, L is a limit of the
diagram F of shape A in Fun(B,C). Less formally, this says
that if all relevant limits exist, limits in a functor category may
be computed “pointwise:” (limF )(b) = lima∈A(Fb(a)).

(b) Use the above to show that, if a category C is has limits of
shape A, so does Fun(B,C) for any category B.

(7) (Topological examples of adjoints.) (Some of these aren’t GAFT
problems. I just wanted to give some more examples from topology.)
(a) Show that the forgetful functor G : Top→ Set has a left adjoint

and a right adjoint (but the left and right are different!).
(b) Show that inclusion functor Haus → Top of Hausdorff spaces

into all spaces admits a left adjoint. (Use GAFT!) How would
you describe what this adjoint does on objects?
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(c) Consider the full subcategory Lconn ⊂ Top of locally connected
spaces. Let F : Set → Lconn map a set to the discrete space
with the set as its underlying set. Show that this functor admits
a left adjoint C which takes a space X to its set of components.
Show that C itself cannot have a left adjoint, because it does
not preserve equalizers.

§10. Lecture 7/13/2018

§10.1. Summary.

• Review lecture!

§10.2. Exercises.

(1) Send me requests for solutions to the exercises! I won’t write up
complete solutions to all of them (or even most of them), but I’ll
write up 5-10 solutions for problems so far in the course, based on
popular request.

§11. Lecture 7/16/2018

§11.1. Summary. Monads: Mac Lane VI.1-VI.4 (We’ll follow this pretty
closely. See pp. 124 for a discussion of type τ algebras, which he uses to
motivate the chapter; understanding this is not strictly necessary, but if
you’re trying to read Mac Lane somewhat linearly it’s helpful.)

• Monads in categories.
• Examples: Monads defined by adjunctions, monads for preorders.

Free group (ring, module) monads.
• Algebras for a monad.
• All monads come from adjoints. Recovering monads from their al-

gebras.

§11.2. Exercises.

(1) (Some verifications about compositions of natural transformations.)
(a) (Interchange law for horizontal and vertical compositions of nat-

ural transformations.) Given a diagram

A B C

F

F ′

F ′′

G

G′

G′′

α

α′

β

β′

Show that

(β′ · β)(α′ · α) = (βα) · (β′α′),
where · denotes vertical composition, and juxtaposition denotes
horizontal composition.

(b) (Whiskering as horizontal composition.) Show that for any
F, F ′ : B → C, any H : A → B, any G : C → D, and α : F ⇒ F ′,
that
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αH = α1H (1)

and

Gα = 1Gα, (2)

where in both equations the left-hand side denotes whiskering,
and the right-hand side denotes horizontal composition.

(2) A group is a group object in the category of sets. A group object in
the category Grp is a group G equipped with a group homomorphism
µ : G×G→ G, a group homomorphism e from the trivial group to G,
and a group homomorphism Inv : G → G so that µ(µ(−,−),−) =
µ(−, µ(−,−)), µ(e,−) = µ(−, e) = IG), and µ ◦ (Inv × I)x = e for
all x ∈ G. Show that a group object in Grp is an abelian group.

(3) (Mentioned in class without verification.) Show that, for a fixed ring
R, the functor R⊗Z− : Ab→ Ab is a monad. Show that algebras for
this monad are precisely abelian groups with the additional structure
of an R-module.

(4) (Getting R-modules in a different way). Consider the forgetful func-
tor G : R-Mod→ Set, which admits a left adjoint.
(a) Prove that the left adjoint is given on objects by sending a set

X to the set of maps X → R which are nonzero at only finitely
many elements of X. Use this to explicitly describe the monad
< TR, η, µ > of the adjunction.

(b) Show that < TR, η, µ >-modules are precisely R-modules.
(5) (a) Write down a complete definition of a category Mon(X) of mon-

ads in a fixed category X. (In particular, define the notion of
a morphism of monads as a natural transformation of functors
which is compatible with the multiplication and unit in an ap-
propriate sense.)

(b) Show that, given a natural transformation θ : T ⇒ T ′ of mon-

ads, there is a functor θ∗ : XT ′ → XT from T ′-algebras in X to
T -algebras in X.

(6) Show that, for any given monad < T, η, µ > on a category X, show
that the right adjoint functor G : XT → X (as defined in class)
creates limits.

(7) Come up with a good explanation for why a monad in a preorder is
called a “closure operation”. (David says it’s probably a discrete/
CS sort of notion. Maybe talk to him about this!)

§12. Lecture 7/18/2018

§12.1. Summary.

• Comparison functors, comparison theorems. Example: semigroups
(Mac Lane VI.4).
• Statement of Beck’s Theorem characterizing monadic adjunctions

(Mac Lane VI.7).
• Split coequalizers (Mac Lane VI.6).
• Outline of proof of Beck’s theorem.
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§12.2. Exercises.

(1) (If you run into trouble, much of this is done in Mac Lane VI.6.) In
class we defined a split coequalizer. This exercise builds some theory
around such concepts. A fork in a category C is a special name for
a cocone over a coequalizer diagram. More precisely, it is a diagram

a b c

f0

f1

e

in C so that ef0 = ef1.
(a) We say that a fork is split if there exists s : c→ b and t : b→ a

so that es = 1c, f0t = 1b, and f1t = se. Show that a split fork
is a coequalizer.

(b) Show that a split fork (which by the previous part is a coequal-
izer, and thus a split coequalizer) is an absolute coequalizer (as
defined in lecture: the coequalizer diagram remains a coequal-
izer diagram after applying any functor to any category).

(2) (Equivalent conditions for being a map of adjunctions – used in the
proof of the comparison theorem.)3 Suppose we have adjunctions <
F,G, η, ε > where F : X ←→ A : G with F a G and < F ′, G′, η′, ε′ >
where F ′ : X ′ ←→ A′ : G′ with F ′ a G′. Suppose also given H : X →
X ′, K : A→ A′ so that HG = G′K, and F ′H = KF .

Show that the following are equivalent:
(a) For all x ∈ X and a ∈ A, the following diagram of sets com-

mutes:
A(Fx, a) X(x,Ga)

A′(KFx,Ka) X ′(Hx,HGa)

A′(F ′Hx,Ka) X ′(Hx,G′Ka)

'

= =

'

(b) Hη = η′H.
(c) ε′K = Kε.

If any of the above equivalent conditions hold, we say that the pair
(H,K) is a map of adjunctions.

(3) Consider the free/ forgetful adjunction between Ab and Rng4 where
the right adjoint G : Ring→ Ab forgets the multiplicative structure
and simply views R as an abelian group.
(a) Give a direct description for the associated monad T in Ab, like

we did in class for the monad in Set associated to the forgetful
functor from semigroups. Replace t by infinite direct sup of

3If you have problems with this, see p. 99 in (your shiny new copy of) Mac Lane!
However, the proof is a bit sparse – I encourage you to fill in the details.

4Mac Lane uses Rng as opposed to Ring to mean unital rings. I believe I might
previously have said that I would reserve Rng for nonunital rings; henceforth I’m following
Mac Lane’s convention. Who uses nonunital rings anyhow? (Actually not a rhetorical
question... I’d like to know!)
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abelian groups, and cartesian product by n-fold tensor product
over Z.

(b) Use this explicit description of T to describe T -algebras in Ab,
and show that the comparison functor from Rng to T -algebras
is an isomorphism.

(4) (This might be quite challenging.) Show that Beck’s theorem applies
to the forgetful functor R-Alg → R-Mod by verifying condition (2)
or (3) in the statement of Beck’s theorem from class.

§13. Lecture 7/20/2018

§13.1. Summary.

• Completing proof of Beck’s theorem (Mac Lane VI.6)

§13.2. Exercises.

(1) Verify things we didn’t check in class:
(a) (Used in the proof of (1) implies (2) for Beck’s theorem. Gen-

erally a good fact to know!) Show that coequalizers are epi-
morphisms, and equalizers are monomorphisms.5 (Hint: you
actually only have to show one of these! Why?)

(b) (Used in the proof of our Special Lemma for Beck’s theorem.)
Let F : X → B with F a G. Let b ∈ |B|. Consider the fork6

FGFGb FGb b
εb

where the parallel arrows are εFGb and FGεb (this is the “canon-
ical presentation” for b). Show that the diagram obtained by
applying G to the diagram above is a split fork. (Hint: after ap-
plying G, you can use the triangle identities for the adjunction
F a G to construct splittings.)

(2) As suggested in class, work out in detail what the “canonical presen-
tation” used in the proof of our Special Lemma for Beck’s theorem
does in the case of the free-forgetful adjunction between Ab and Set .
(See the previous problem for the definition of the canonical presen-
tation.) If you aren’t familiar with the notion of a presentation of a
group, it might be helfpul to look this up.

(3) Show that if a functorG : A→ X fits into an adjunction F a G which
is monadic (meaning that monad T associated to the adjunction
gives rise to an isomorphism A ' XT via the comparison functor),
then G reflects isomorphisms: if Gf is an isomorphism in X, then f
is an isomorphism in A.

5There’s a good way to remember this: coequalizers are like quotient maps (think
about cokernels in Grp), which are surjective, which are precisely the epimorphisms in Set
and Grp; equalizers are like inclusions (think about kernels in Grp), which are injective,
which are precisely monomorphisms in Set and Grp.

6See problem (1) in §12.2 for the definition
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(4) We can prove an analogous statement to Beck’s theorem as follows
(one might argue this is the “more natural” version of Beck’s the-
orem): Given an adjunction F a G with F : X → A, the following
are equivalent:
(a) The comparison functor K : A → XT is an equivalence of

categories.
(b) G admits, preserves, and reflects coequalizers for parallel pairs

of arrows in A so that the parallel arrows obtained by applying
G have an absolute coequalizer in X.

(c) G admits, preserves, and reflects coequalizers for parallel pairs
of arrows in A so that the parallel arrows obtained by applying
G have a split coequalizer in X.

(If you’re feeling ambitious, do this in detail. Otherwise, think about
it enough to understand how this statement is similar to the state-
ment of Beck’s theorem, and to have an idea how the proof of Beck’s
theorem must be modified.)

§14. Lecture 7/23/2018

§14.1. Summary.

• Monoidal categories. (Mac Lane VII.1,2,3)
• Examples of monoidal categories and the associated notion of monoid:

Set, Top, endofunctors, modules, Cat....
• Category of monoidal categories; monoidal functors.
• Monoids in monoidal categories (Mac Lane VII.3).

§14.2. Exercises.

(1) Verify in detail that 〈Ab,⊗Z,Z〉 is a monoidal category. How do you
produce the natural isomorphisms α, λ, ρ in this case?

(2) Let 〈B,⊗, e, α, λ, ρ〉 be a monoidal category. Use the axioms for a
monoidal category to show that for any b, c in B, the diagram

e⊗ (b⊗ c) (e⊗ b)⊗ c

b⊗ c b⊗ c

α

λ λ⊗1

=

commutes.
(a) Verify in detail that any category with finite products has a

natural monoidal structure, with monoidal product given by
the product.

(b) Verify that the opposite category of a monoidal category has a
natural monoidal structure.

(c) Show that the category MonCat of small monoidal categories
(with morphisms as defined in class) has a natural monoidal
structure.

(d) Show that for any monoidal category B, and any category C,
the functor category Fun(C,B) is a monoidal category.

(3) For a given monoidal category B, give a definition of the category
of monoid objects in B, which we denote by MonB . The objects
should be triples 〈c, µ, η〉, where c is a monoid object and µ, η, are
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chosen structure maps. 7 (So your job is to define morphisms in this
category.)

(4) Show, in detail, that monoid objects in the monoidal category 〈Ab,⊗,Z〉
are precisely rings.

(5) Prove that if a symmetric monoidal category 〈B,⊗, U〉 has finite
products, then so does the category MonB of monoid objects in B.

§15. Lecture 7/25/2018

§15.1. Summary.

• Monoids in monoidal categories continued. Remarks: choices in-
volved in giving a category with finite products a monoidal structure;
canonical isomorphisms between different “bracketings of iterates of
⊗”.
• Construction of free monoids.
• Monoid actions. (Mac Lane VII.4). Examples: monoid objects act-

ing on themselves; actions of algebras in 〈VectK ,⊗K ,K〉.
• The categories ∆ and ∆+. Classifying monoids in strict monoidal

categories (Mac Lane VII.5).

§15.2. Exercises.

(1) Let 〈T, η, µ〉 be a monoid object in the symmetric monoidal category
of endofunctors X → X (a.k.a. a monad in X). Show that an
endofunctor S : X → X is acted on by T if and only if there exists a
functor S′ : X → XT so that S = GTS′. (Where XT is the category
of algebras for the monad T in X, and GT is as defined to realize T
as the monad of an adjunction.)

(2) (a) Given a monoidal category 〈B,⊗, e〉, a monoid 〈c, µ, η〉 in B,
and a, a′ objects of B both equipped with left actions ν, ν ′ of c,
give a definition of a morphism f : 〈a, ν〉 → 〈a′, ν ′〉 of actions.
Use this to define a category LActc of objects in B upon which
C acts.

(b) The forgetful functor LActc → B has a left adjoint; take a guess
at how it is defined. (See Mac Lane VII.4 if you get stuck.)

(3) (a) Show that monomorphisms in ∆ are precisely the injective order-
preserving maps.

(b) Show that the epimorphisms are precisely the surjective ones.
(4) (a) Explicitly write down a definition for a comonad by dualizing

the definition of a monad. (Note that, if 〈B,⊗, e〉 is monoidal,
then we get a natural monoidal structure on Bop, as you showed
in (2)(b) on the previous pset.)

(b) Give a candidate category to classify comonoids in strict monoidal
categories (in the same sense that ∆ classifies monoids in strict
monoidal categories).

7Note that we don’t want the objects to be simply objects of B which admit a monoid
structure – a fixed object of B could have different monoid structures, and we want these
different structures on the same underlying object of B to give rise to different objects in
MonB .
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§16. Lecture 7/27/2018

§16.1. Summary.

• Geometric interpretation of ∆.
• Monoidal closure (Mac Lane VII.7).
• Compact generated spaces (Mac Lane VII.8).
• Loops and suspensions (Mac Lane VII.9).

§16.2. Exercises.

(1) Given a topological space X, verify that we get a functor

Sing(X) : ∆op → Set

by sending the element [n] ∈ ∆ to the set Sing(X)[n] of all continuous
maps ∆[n]→ X, where ∆[n] denotes the standard n-simplex viewed
as topological subspace of Rn+1. (In particular, you need to specify
what this functor does on morphisms!)

(2) Show that the monoidal category 〈Rng,⊗Z,Z〉 is not closed.
(3) Construct a left adjoint for Set∗(S,−) : Set∗ → Set∗, where Set∗ is

the category of sets together with a choice of element, with mor-
phisms those set maps that take the basepoint of the source to the
basepoint of the target.

(4) Show that, for 〈B,⊗, . . . 〉 a closed monoidal category, there is an
isomorphism XZ⊗Y ' (XY )Z . (Hint: this follows from properties of
adjunctions, without making use of the monoidal structure.)

(5) (CGHaus is closed. Long and somewhat in-depth, definitely chal-
lenging if you don’t know point-set topology.) A topological space
X is compactly generated when C ⊂ X is closed in X if and only
C ∩ K is closed in K for all K ⊂ X compact (so compact subsets
“detect” closed subsets).

Compactly generated Hausdorff spaces form a full subcategory
of Haus, which we’ll call CGHaus . In this exercise, you will work
through the essential ingredients in the proof that the category
CGHaus is closed, when given an appropriate monoidal structure.
(a) For a given Hausdorff space X, define a space KX as follows:

• The underlying set of X is the underlying set of KX.
• The closed sets of KX are those subsets A ⊂ X so that

for all K ⊂ X compact, A ∩K is closed.
Show that KX is a topological space, and that the natural map
(which is the identity on underlying sets) KX → X is contin-
uous. Verify that KX is compactly generated and Hausdorff.
Show that X 7→ KX defines a right adjoint to the inclusion
CGHaus ↪→ Haus, and explicitly write down a universal prop-
erty of KX → X given by the counit.

(b) Show that, for X and Y in CGHaus, the space K(X × Y )8 is a
product in the category CGHaus (hint: RAPL). Conclude that
CGHaus has a natural monoidal structure.

(c) For X,Y compactly generated Hausdorff, define Cop(Y,X) to
be the topological space with underlying set Set(Y,X), which is

8where X × Y is the product in Top, which coincides with the product in Haus
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given a topology with subbasis consisting of sets N(C,U) as C
ranges over compact subsets of Y and U over open subsets of X.
N(U,C) contains a function f : Y → X if and only if f(C) ⊂ U.
Define XY to be K(Cop(Y,X)). Show that (−)Y : X 7→ XY is
a right adjoint to −⊗ Y : Z 7→ K(Z, Y ) as follows:

(i) Show that the evaluation map e : XY × Y → X given by
(f, y) 7→ f(y) is continuous on sets of the form D × C,
where D is compact in Cop(Y,X) and C is compact in
Y . Conclude that e is continuous on compact subsets,
and hence continuous (using that all spaces involved are
compactly generated).

(ii) Show that, given a continuous map g : Z ⊗ Y → X, there
is a continous map k : Z → XY with e ◦ k ⊗ 1 = g.

(iii) Use the fact that, on in the category of sets, Set(Z ×
Y,X) ' Set(Z,Set(Y,X)) to conclude that this estab-
lishes a adjunction CGHaus(Z⊗Y,X) ' CGHaus(Z,XY )
(use that the underlying set of XY is that of Set(Y,X),
and that of Z ⊗ Y is Z × Y to conclude that k from the
previous problem is uniquely determined, and that g 7→ k
established a natural bijection).

(6) Show for Y Hausdorff, the compactly generated Hausdorff space KY
defined in the previously problem is precisely the colimit in Haus of
all compact subspaces of Y , ordered by inclusion.

(7) Show that CGHaus ↪→ Haus creates colimits.
(8) Show that the category CGHaus is equivalent to the category which

has as objects all Hausdorff spaces (not necessarily compactly gen-
erated), and as morphisms all set maps f : X → Y (not necessarily
continuous on all of X) which are continuous when restricted to com-
pact subsets of X. (Define a functor and show it is fully faithful and
essentially surjective on objects.)

(9) Show that the smash product ∧ : CGHaus∗×CGHaus∗ → CGHaus∗
is commutative and associative up to natural isomorphism, making
CGHaus∗ a symmetric monoidal category. What is the monoidal
unit?

§17. Lecture 7/30/2018

§17.1. Summary.

• Since this is a short lecture, the idea is to go over some facts about
limits and colimits that are pretty useful in various practical (math-
ematical) settings.
• Filtered categories. Filtered (co)limits (IX.1).
• Commuting limits and colimits (IX.2).
• Final functors for computing colimits (IX.3).

§17.2. Exercises.

(1) Precisely formulate the dual statement to the assertion that filtered
colimits commute with finite limits. Think about how to “dualize
the proof.”
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(2) Show that (finite) coproducts commute with pullbacks in Set . (This
is in contrast to the fact, stated in class, the coproducts and prod-
ucts in set do not in general commute.) Dually, show that (finite)
products commute with pushouts in Set .

(3) (Challenging.) Show that the forgetful functor Grp → Set creates
filtered colimits. 9

(4) (Final functors.) A functor L : J ′ → J is final if, for every element
k ∈ J , the comma category (k ↓ L) is non-empty and connected,
meaning that the underlying (undirected) graph of the comma cate-
gory is nonempty and connected in the sense of graph theory (having
exactly one component). That is, there is a way to “get from any
object to the other,” if you don’t care about direction of arrows.
Final functors are useful because of the following

17.1. Theorem. If L : J → J ′ is final and F : J → X is a func-
tor such that colimFL exists, then so does colimF and moreover
colimF = colimFL.

In this exercise, you will get a sense for what it means to be a
final functor, and you’ll see why this result is useful.
(a) Show by hand (i.e. using the structure of colimits in Set) that,

in the category of sets, a colimit indexed by N is equal to a
colimit calculated over any infinite subset.

(b) Show that the inclusion of any infinite subset into N is final. Us-
ing the theorem, this gives an alternative proof of the previous
part.

(c) Prove that the composite of two final functors is final.
(d) Suppose that L : J ′ → J , and that for every F : J → C the nat-

ural functor colimFL→ colimF is an isomorphism. Show that
L must be a final functor. (Hint: take F to be a representable
functor and use the hypothesis.)

(e) Let j ∈ J and write {j} for the discrete subcategory of J con-
sisting of the element j. Show that {j} → J is final if and only
if j is a terminal object in J . What does this tell you about
computing the colimit of a diagram indexed by a category with
a terminal object? Also dualize this statement to obtain an
analogous result for limits (“final” will no longer be the correct
condition).

9This is Proposition 2 in MacLane IX.1 if you get stuck, but I’d suggest you think
about it on your own a bit first – it will require you to understand coproducts/ colimits
in Grp (which are different from those in Ab) and work explicitly with the definition of
creation of limits which I get the sense is (understandably) still a bit murky.



22 SUMMER 2018 TUTORIAL: CATEGORY THEORY

§18. Lecture 8/1/2018

§18.1. Summary.

• Symmetry in monoidal categories.
• Strictness and coherence; braidings in monoidal categories.
• The Artin braid group Bn and braid category B.
• Braided monoidal categories and B. “Representability result:” re-

covering the underlying category using B; implies coherence “up to
braids” in braided monoidal categories.
• A bit about knot invariants and braided monoidal categories. (Ref-

erence: Kassel, “Quantum Groups.” Available through Hollis.)

§18.2. Exercises.

(1) Convince yourself that the relations σiσi+1σi = σi+1σiσi+1 and σiσj =
σjσi for |i−j| > 1 hold in Bn. Show that there are no other relations.
(Level of rigor up to you.)

(2) (Not really related to the class.) Try to come up with a way of
uniquely representing elements in Bn that makes it easy to distin-
guish elements (e.g. something similar to cycle notation for Sn, or
a statement that there is a “canonical” way to write every element
as a product of σi’s). Disclaimer: I don’t know the answer to this/
if there’s even a nice answer! If it ends up being very difficult you
might do some googling. Just looking up “braid group presenta-
tions” or something like this might be a good place to start. Let me
know if you come up with a nice answer!

(3) Carefully work out the correspondence between π1(Tn) and Bn as
defined geomtrically in terms of “concatenation of braids.” (Where
Tn is the space of n distinct, unordered points in Rn, and Bn is the
Artin braid group of braids on n strands, both as defined in class/
Mac Lane chapter XI.)

(4) Show that the braid category B is strict monoidal. Show that B is
braided but not symmetric by verifying that the braiding defined in
the e-mail after class is natural, but is not symmetric. Write down
an algebraic formula for the braiding in terms of σi’s.

(5) Show that, if 〈M,⊗, e, γ〉 is a symmetric monoidal category, then
commutative of either of the two hexagon diagrams for a braiding γ
implies commutativity of the other.

(6) Show that the category of strong braided monoidal functors between
two strict monoidal categories with braidings is equivalent to the cat-
egory of strict braided monoidal functors, via the obvious inclusion
of strict functors into strong functors.


