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• Develop approaches that can integrate the geometry of
function space and geometry of data in learning

• Loss functions, optimization, and regularization techniques
based on Information Geometry and Wasserstein Geometry

Wuchen Li Alex Tong Lin Yonatan Dukler
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Motivation

• Information geometry derives geometric structures on the
parameter space of a statistical model by pulling back
structures from the space of probability distributions. The
methods of information geometry have been successful in
statistics and machine learning. However, in their current
form they do not incorporate the geometry of sample space.

• Wasserstein geometry incorporates the geometry of sample
space. Has been useful in specific applications, such as image
retrieval and implicit generative models. However, current
approaches do not integrate differential structures and natural
gradients for parametrized models. Full potential in machine
learning has yet to be developed.

• Wasserstein Information Geometry is about developing
synergies between the two fields!
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What is learning / from data?

• Learning: Try to obtain a general behavior based on data /
examples

• Design: Try to obtain a general behavior based on expert
knowledge

Data → Knowledge → Specifications → Hypotheses
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“If you show a picture to a 3 yr and ask if there is a tree in it, you will likely
get the correct answer. If you ask a 30 yr for the definition of a tree, you will
likely get an inconclusive answer.” [AMMIL12]
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Consider the problem of classifying handwritten 1s and 5s.

• We could try to write a list of properties characterizing a 1
(e.g., symmetric, straight, vertical), and try to obtain a
classifier analytically.

• Obtaining such specifications may be very difficult in general,
making the design approach unfeasible.

• However, data / examples should reveal a lot about this, and
we might be able to obtain a good empirical solution.

• By learning from data, we can take an “end to end” approach
that automatically selects the task relevant aspects.
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• Nonetheless, the more meaningful priors we can incorporate,
the faster and better we can expect to solve the problem.

E.g., compositionality in deep nets / convolutional networks
(model selection) / pre-trained filters (transfer learning) /
implicit regularization / parametrization (resnet, centering
tricks) / optimization methods (SGD, batch norm)

• At this, the geometry of the

data, models, parametrization, loss function,

plays a key role
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Geometry of data

Manifold hypothesis

• Data is non uniformly distributed and is concentrated on lower
dimensional sets.

• High dimensional data can be represented in a much lower
dimensional feature space.

• In most cases, the relationship is non linear.

• The geometry of the data can be exploited for learning.
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Deep Learning [Ben09, Fig. 4]

G. Montúfar 11/128



converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.
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Manifold learning / Isomap [TdSL00]
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Shape Space [KMP07, Fig. 1]

x

y
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Variational Autoencoders / Information Bottlenecks [BM18]
Input → compressed task-sufficient representation → output
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Representation Learning

• Performance of Machine Learning algorithms depends heavily
on how data is represented.

• For many tasks, its difficult to know what features should be
extracted, plus there may be many.

• Representation learning is about using ML to learn not only
the map from representation to output, but also the
representation.
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 CHAPTER 1. INTRODUCTION













 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 Figure 1.1: Example of different representations: suppose we want to separate two
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 categories of data by drawing a line between them in a scatterplot. In the plot on the left,
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 we represent some data using Cartesian coordinates, and the task is impossible. In the plot
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 on the right, we represent the data with polar coordinates and the task becomes simple to
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 solve with a vertical line. Figure produced in collaboration with David Warde-Farley.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 One solution to this problem is to use machine learning to discover not only

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 the mapping from representation to output but also the representation itself.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 This approach is known as  
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 often result in much better performance than can be obtained with hand-designed

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 representations. They also allow AI systems to rapidly adapt to new tasks, with

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 minimal human intervention. A representation learning algorithm can discover a

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 good set of features for a simple task in minutes, or a complex task in hours to

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 months. Manually designing features for a complex task requires a great deal of

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 human time and effort; it can take decades for an entire community of researchers.

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 The quintessential example of a representation learning algorithm is the au-
toencoder  
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 converts the input data into a different representation, and a decoder function

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 that converts the new representation back into the original format. Autoencoders

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 are trained to preserve as much information as possible when an input is run

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 through the encoder and then the decoder, but are also trained to make the new

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 representation have various nice properties. Different kinds of autoencoders aim to
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 When designing features or algorithms for learning features, our goal is usually
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 context, we use the word “factors” simply to refer to separate sources of influence;
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 the factors are usually not combined by multiplication. Such factors are often not

4

Representation learning / Deep learning [GBC16, Fig. ]
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Deep Learning

• Many of the factors of variation can be identified only using
very sophisticated understanding of the data.

• Deep learning seeks to automatically discover such
abstractions, from the lowest level features to the highest level
concepts.

• Deep models introduce representations that are expressed in
terms of other simpler representations.

[GBC16, p 5]
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Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “right” representation should be for all these levels
of abstractions, although linguistic concepts might help guessing what the higher levels should implicitly
represent.

3

[Ben09] [ZF13]
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Learning by minimizing a loss function

• Learning problems are often formulated as

min
θ

L(θ)

where L is an (empirical) loss, and θ parametrizes our
hypotheses.

• Keep in mind

Ltraining data vs Lpopulation

Examples:
L(θ) = −∑

i pθ(x (i)) (likelihood) pθ(x) = θx(1− θ)x−1 (Bernoulli),

L(θ) =
∑

i (fθ(x (i))− y (i))2 (MSE) fθ(x) = σ(θ>x) (perceptron)

G. Montúfar 19/128



Function space and learning

Statistical learning

• The complexity of learning is typically described in terms of
the geometry of the hypothesis space / function space
(e.g., DOFs, VC dimension, complexity measures)

• Complexity measures for approximation and estimation depend
on the input space via the geometry of hypothesis space.

• It is desirable to take the geometry of data space more
directly into consideration
(e.g., TDA, Topological DL, Geometric DL, Adversarial training)

→ Talk to Nina Otter!
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Function space and optimization

If the optimization domain is convoluted, the optimization problem
will typically be convoluted as well.

Selection criteria for neuromanifolds of stochastic dynamics [AMR13]
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Geometry of function space

• How should we measure the distance between two hypotheses?

• Often we consider parametric models and work over the
parameter space.

• How should this reflect in optimization / estimation?

Loss function ↔ model ↔ parametrization

G. Montúfar 22/128



Parametrization and optimization

Optimization landscape / gradient optimization can be affected by the

parametrization.
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Momentum, Accelerated (Nesterov) moment, RMSprop, Adam, Feature

normalization, Batch normalization
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Optimization landscape and generalization

Large-batch methods tend to converge to sharp minimizers of the training

function ... and tend to generalize less well. Generalization and sharp

minima [KMN+16]

See Chaudhari, Soatto, Osher

→ Discuss with Hui Yin!
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Optimization landscape and generalization

Spectral radius and trace of the Hessian can be manipulated without actually

changing the behavior of the function. Sharp minima can generalize [DPBB17]
G. Montúfar 25/128



(Non) Identifiability

Deep networks are usually not identifiable, meaning that several
parameters represent the same function.

f (x ; θ) = σ(Wlσ(Wl−1σ(· · ·σ(W1x)))

Weight space symmetry

• The latent variables are interchangeable, such that
f (·; θ) = f (·; θπ), where θπ is θ with permuted indices.

• Additionally, we might have scaling symmetries of the form
W2σ(W1x) = 1

cW2σ(cW1x). For ReLUs this creates
hyperbolas of equivalent local minima.

G. Montúfar 26/128



Geometry of parameter space /
Parametrization invariance

• Often we are not interested in the parameter θ ∈ Θ but rather
in the hypothesis pθ ∈ P(X ).

• We seek for pθ by minimizing a loss function of the form

L(θ) = L(pθ),

meaning that it depends on θ only through the corresponding
distribution pθ.

• Parametrization invariance can be useful. Define the geometry
on Θ based on the geometry that is defined on P(X ).

• Taking the steepest descent with respect to function space
(instead of an arbitrary parameter space) can help against
vanishing / exploding gradients.

• Question: how to define the geometry on P(X )?

G. Montúfar 27/128



Video loss function on parameter space / function space
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Geometry of parameter space

• Information Geometry uses the Fisher metric. But the Fisher
is oblivious to the geometry of data space.

• Want: Keep perspective of using geometry of function space,
but incorporate the geometry of data space.

G. Montúfar 29/128



Geometry of data and function space

• How should the geometry of data space enter into the
geometry of function space?

• We may be able to choose function spaces which are less
complex, depending on the data geometry

• Symmetry / invariance / continuity with respect to certain
variability in the input

G. Montúfar 30/128



Using the geometry of the data

• Representation learning (unsupervised feature learning, deep
learning, autoencoders, graphical models)

• Topological data analysis (dimensionality reduction, metric
independence, persistent homology) (handcrafted features)

• Hand crafted features

• Geometric Deep Learning (data defined on non-Euclidean
domains, convolutions on graphs / manifolds) (semi hand
crafted features) IPAM New DL Techniques 2018, M Bronstein

Tutorial
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The curse of dimensionality

• Consider a simple problem of distinguishing handwritten
versions of the digits ‘1’ and ‘4’.

1 4
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• Each image is a point in a high dimensional space.
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• Divide each coordinate into intervals. For a new point x ,
return the average y for training points in the same box.
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• By increasing the number K of intervals for each variable, we
can obtain a more precise specification. Leads to Kd cells,
which is exponential in the dimensionality of the input space.

• Specifying the mapping requires an exponential number of
examples! This phenomenon is called curse of dimensionality.

• If we only have/can process a limited amount of data,
increasing the dimensionality of the space rapidly leads to very
sparse data, and the above gives a very poor representation.
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• Approaches based on neural networks can be much less
susceptible to the curse of dimensionality. These techniques
are able to exploit two important properties of real data:

1 The input variables are generally correlated in some way, so
that the data points do not fill out the entire input space, but
tend to be restricted to a sub-space of lower dimension.

2 For most mappings of practical interest, the output varies
smoothly with the input. Thus it is possible to infer the
output values at intermediate points where no data is
available, by a process similar to interpolation.

[Bis]
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• We could consider lower dimensional features.
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• We could consider lower dimensional features.
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1 Introduction

2 Information Geometry

3 Wasserstein Information Geometry
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What is Information Geometry?

• Information geometry is a branch of mathematics that applies
the techniques of differential geometry to the field of
probability theory.

• This is done by taking probability distributions as the points
of a Riemannian manifold.

• The Fisher information metric provides the Riemannian metric.
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Conferences

• IGAIA, GSI, TGSI, ...

Resources

• Methods of Information Geometry, Amari and Nagaoka

• Information Geometry and Its Applications, Amari

• Information Geometry, Ay, Jost, Le, Schwachhöfer

• Information Geometry Springer Journal (since 2018)

• An elementary introduction to information geometry, Nielsen

• ...
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[Nie18]
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• Fisher metric

• Natural gradient
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Fisher metric

We consider the space of probability distributions as a Riemannian
manifold. What should be the correct metric?

• Consider a probability model {p(θ) : θ ∈ Θ}. We assume that
the parametrization θ 7→ p(θ) is smooth and locally injective.

• At each point θ ∈ Θ we have a matrix given by

G (θ) = Ep(θ)

[
∇ log p(θ)∇ log p(θ)>

]
.

If Θ ⊆ Rd , this is d × d real symmetric matrix.
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Example: Discrete simplex

• Consider as our model the set of all probability distributions
on a finite set I = {1, . . . , n}.
• Each probability distribution is a vector p = (p(1), . . . , p(n))

with p(i) ≥ 0 and
∑n

i=1 p(i) = 1.

• Standard n − 1 simplex in Rn. We can parametrize it as

p(i) = θi , for i = 1, . . . , n − 1, p(n) = 1−
n−1∑
i=1

θi .

• Then the Fisher matrix is given by

Gij(θ) =
∑
k

p(k)
δi (k)

p(k)

δj(k)

p(k)
=

δi ,j
p(i)

.
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Interpretation of Fisher metric

• Information an observation carries about a parameter

• Curvature of the log likelihood

• Optimal variance of an estimator

• Invariant Riemannian metric
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Fisher Information

Information that an observable random variable X carries about
unknown parameter θ of a distribution that models X .

G (θ) = Epθ [∇ log pθ(x)∇ log pθ(x)>]

- pθ(x) is the likelihood function of θ given observation x .

- ∇ log pθ(x) is the score, which measures how sensitively the
model depends on θ at the current θ.

• If x ∼ pθ(x), Epθ [∇ log pθ] = 0, and G is the variance of the
score, positive semi-definite.

• Negative expectation of the Hessian of the log likelihood.
Curvature of the log likelihood. Low value at shallow
maximum. High value at sharp maximum.
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θ

log pθ(x)
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θ

log pθ(x)
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Invariant Riemannian metric

The Fisher metric is uniquely characterized (up to scaling) by
being invariant under all sufficient statistics.

Chentsov, Campbell, Lebanon, Ay, Jost, ...
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• Finite set [n] := {1, . . . , n}. Probability simplex

∆n−1 := {(pi )i ∈ Rn : pi ≥ 0,
∑
i∈[n]

pi = 1}

• Tangent space Tp∆◦n−1 ⊂ TpRn
+ = 〈∂1, . . . , ∂n〉

u =
∑
i∈[n]

ui∂i with
∑
i∈[n]

ui = 0

• A metric gp is an inner product on Tp∆◦n−1 at each p

• The Fisher metric on ∆◦n−1 is given by

g
(n)
p (u, v) =

∑
i∈[n]

uivi
pi

, for all u, v ∈ Tp∆◦n−1
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• Consider two Riemannian manifolds (E , g), (E ′, g ′), and a
smooth embedding f : E → E ′.
• The push-forward through f is

f∗ : TpE → Tf (p)E ′;
∑
i

ui∂i 7→
∑
j

∑
i

ui
∂fj(p)

∂i
∂′j .

• The pull-back of g ′ through f is

(f ∗g ′)p(u, v) := g ′f (p)(f∗u, f∗v), for all u, v ∈ TpE .

• The embedding f is an isometry (g is invariant under f ) iff

gp(u, v) = (f ∗g ′)p(u, v), for all p ∈ E and u, v ∈ TpE .
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Embeddings by Markov maps

• A Markov map is a map of the form

f : Rm
+ → Rn

+; p 7→ p · Q,

where Q ∈ Rm×n
≥0 is a row-partition matrix, meaning that

there is a partition ∪̇mi=1 Ai = [n] with
∑

j∈Ai′
Qij = δii ′ .

• This defines an embedding f : ∆◦m−1 → ∆◦n−1.
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Embeddings by Markov maps

Qp
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The result of Chentsov

Characterization of Fisher metric on the probability simplex via
invariance under a class of natural statistical embeddings

Theorem 1 (Chentsov ’72)

• Let g (m) be a Riemannian metric on ∆◦m−1 for m ∈ {2, 3, . . .},
with every embedding by a Markov map an isometry. Then
there is a constant C > 0 such that

g
(m)
p (u, v) = C

∑
i

uivi
pi

. (1)

• Conversely, for any C > 0, (1) defines Riemannian metrics for
which every embedding by a Markov map is an isometry.
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Geometry and Estimation I

It turns out that the curvature of the model also affects the
estimation problem.

• Let M = {p(x , ξ)} be a statistical model specified by
parameter ξ.

• We observe N independent data points D = {x1, . . . , xN}
generated from p(x , ξ) and want to know ξ.

• This is a problem of estimation. An estimator is a function

ξ̂ = f (x1, . . . , xN).

• The estimation error is e = ξ̂ − ξ. The bias of the estimator is

b(ξ) = E[ξ̂]− ξ.

The estimator is unbiased when b(ξ) = 0 and it is
asymptotically unbiased when limN→∞ b(ξ) = 0.
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Geometry and Estimation II
• It is expected that a good estimator is consistent, meaning

that it converges to the true parameter as N tends to infinity,

lim
N→∞

ξ̂ = ξ.

• The accuracy is measured by the error covariance matrix

V = E
[
(ξ̂ − ξ)(ξ̂ − ξ)>

]
.

• The Cramér-Rao theorem gives a bound on the accuracy:

Theorem 2 (Cramér ’46, Rao ’45)

For an asymptotically unbiased estimator ξ̂, it holds that

V ≥ 1

N
G−1,

where G is the Fisher information matrix.
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Example MLE

• The Maximum Likelihood Estimator (MLE) is the maximizer
of the likelihood,

ξ̂MLE = argmaxξ

N∏
i=1

p(x (i), ξ).

• The MLE is asymptotically unbiased and its error covariance
satisfies

VMLE =
1

N
G−1 + O

(
1

N2

)
,

attaining the Cramér-Rao bound asymptotically. It is said to
be Fisher efficient (first-order efficient).
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Natural gradient
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What is the natural gradient?

• A type of gradient descent method

• Generally applicable to optimization over probability models

• Defined as the gradient times the inverse of the Fisher matrix
of the model
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Steepest descent I

The natural gradient is motivated as a way to obtain the steepest
descent direction in the set of distributions.

• Let Θ = {θ ∈ Rn} be the parameter space, on which a
function L(θ) is defined.

• When Euclidean, the square length of an increment dθ of θ is

|dθ|2 =
∑
i

(dθi )
2.

• In general, when the coordinate system is nonorthonormal,

|dθ|2 =
∑
i ,j

gij(θ)dθidθj .

The matrix is called Riemannian metric tensor, and it depends
on θ. In the Euclidean case it reduces to gij(θ) = δi ,j .
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Steepest descent II

• The steepest descent direction of L(θ) at θ is defined as the
dθ that minimizes L(θ + dθ) with fixed |dθ|, i.e.,

min L(θ + dθ)

s.t. |dθ|2 = ε2.
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Theorem 3
The steepest descent direction of L(θ) in a Riemannian space is

−∇̃L(θ) = −G (θ)−1∇L(θ),

where G = (gij) is the Riemannian metric and

∇L(θ) =

(
∂L

∂θ1
, . . . ,

∂L

∂θn

)>
is the ordinary gradient. Note ∇̃ is just the contravariant form of
∇.
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Proof.
Put dθ = εa and minimize

min L(θ + dθ) = L(θ) + ε∇L(θ)>a,

s.t. |a|2 =
∑
ij

gij(θ)aiaj = 1.

Lagrange

∂

∂ai

{
∇L(θ)>a− λa>Ga

}
= 0

⇒ ∇L(θ) = 2λGa

⇒ a =
1

2λ
G−1(θ)∇L(θ),

where λ is determined by the constraint.
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Fewer iterations

• In many applications, the natural gradient seems to require far
fewer iterations than the ordinary gradient.

• This makes it a potentially attractive alternative to the regular
gradient method.
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Parametrization invariance

• So, the natural gradient is the steepest descent on a
Riemannian manifold.

• An important aspect is that the Riemannian metric comes
from the space of distributions.

• Under these assumptions, the flow (of distributions) defined
by the natural gradient is invariant with respect to smooth
invertible reparametrizations of the distributions.

• Note, the matrix G still depends on the specific
parametrization that we choose.
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Example
Of course, the metric can look different depending on our
parametrization.

• Consider an exponential family

pθ(x) = exp(
∑
j

θj fj(x)− ψ(θ))

The functions fj are “observables” or sufficient “statistics”
which define the model and its specific parametrization.

• Any choice of f1, . . . , fn with the same span produces the
same set of distributions.

• The Fisher metric is given by

G (θ) = Epθ

[
∇ log(pθ)∇ log(pθ)>

]
= covpθ(f )

∇ log(pθ(x)) = ∇(
∑
j

θj fj(x)− ψ(θ)) = f (x)− Epθ [f ]
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Example I

Natural gradient can help against the vanishing / exploding
gradient problem.

• Consider as a loss function the negative log likelihood

L(θ) = −
∑
i

log(pθ(x (i))),

For simplicity consider only one example x (1) and write x .

• For the ordinary gradient we have

−∇L(θ) = ∇ log(pθ(x))

= (f (x)− Epθ [f ])
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Example II

• For the natural gradient we have

−∇̃L(θ) = G (θ)−1∇ log(pθ(x))

= G (θ)−1(f (x)− Epθ [f ])

G (θ) = (f − fp>θ 1) diag(p)(f − fp>θ 1)>
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Challenges

• For large models (with many parameters), computing the
natural gradient is impractical due to the large size of the
Fisher information matrix.

• This is addressed through various approximations to make it
easier to compute, store, invert than the exact Fisher. (e.g Le

Roux et al., 2008; Ollivier, 2015; Grosse and Salakhudinov, 2015; Martens

and Grosse, 2015)

• We will consider proximal methods and affine restrictions on
dual variables.
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Loss functions

• Often we formulate a learning problem in terms of a
probability distribution.

• What should be the loss function to be used here?

• In particular, should the discrepancy between probability
distributions have something to do with the geometry of the
data on which they are defined?
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1 Introduction

2 Information Geometry

3 Wasserstein Information Geometry
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Motivation

We can use the Wasserstein distance as a vehicle to define

• Geometry of data space (e.g., distance between images)

• Loss functions for parameter estimation in parametrized
models, which capture the geometry of the data space
(WGANs, WWGANs)

• Riemannian structure on function space and natural gradients
which incorporate the geometry of the data space
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Optimal transport

• Mapping formulation: Monge problem (1781):
Monge-Ampére equation

• Statical formulation: Kantorovich problem (1940): Linear
programming

• Dynamical formulation: Density optimal control (Nelson,
Lafferty, Gangbo, Otto, Villani, Chow, Zhou, Osher)

• In recent times in relation to information geometry: Amari,
Karakida, Malago, Pistone
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Announcement

Special session on Wasserstein Information Geometry at GSI 2019
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Wasserstein distance

• Consider a metric space (X , dX ) and the set Pp(X ) of
densities with finite p-th moment.

• The Wasserstein-p distance of a pair P0, P1 ∈ Pp(X ) is

Wp,dX (P0,P1) = inf
Π

{(
E(X ,Y )∼ΠdX (X ,Y )p

) 1
p
}
,

where Π is a joint distribution of (X ,Y ) with marginals
X ∼ P0, Y ∼ P1.

• Note Wp depends on the ground metric dX : X × X → R.
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Why optimal transport?
Optimal transport provides a particular distance among histograms
which relies on the ground metric d on sample space.

If X0 ∼ ρ0 = δx0 , X1 ∼ ρ1 = δx1 ,

W (ρ0, ρ1) = inf
π∈Π(ρ0,ρ1)

E(X0,X1)∼πc(X0,X1) = c(x0, x1)

TV(ρ0, ρ1) =

∫
Ω
|ρ0(x)− ρ1(x)|dx = 2

KL(ρ0‖ρ1) =

∫
Ω
ρ0(x) log

ρ0(x)

ρ1(x)
dx =∞.
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Wasserstein Loss

Wasserstein training of RBMs [MMC16, Fig. 1]
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Wasserstein Loss

Samples in the training set

Samples from p1 (nearby points in sample space)

Samples from p2 (arbitrary locations in sample space)
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Wasserstein Loss
• Wasserstein is more “continuous” than KL.

• W2(a, b)2 = (1− α)(a1 − b1)2 + α(a2 − b2)2

• KL(a‖b) = +∞ (because no overlap between distributions)
• Euclidean(a, b) = (a1 − b1)2 + (a2 − b2)2

• L2(a, b)2 = +∞ (because integrating over all of R)

• So when a(k) → b, then we have convergence under the W2

and Euclidean metric, but not others.
• But the Euclidean metric overemphasizes the distance

between a1 and b1, which should be weighted less.
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Wasserstein metric

Video Dynamical OT
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Density manifold

Optimal transport has an optimal control reformulation that gives
rise to a Riemannian metric:

inf
ρt

∫ 1

0
gW (∂tρt , ∂tρt)dt =

∫ 1

0

∫
Ω

(∇Φt ,∇Φt)ρtdxdt,

under the dynamical constraint, i.e., the continuity equation

∂tρt +∇ · (ρt∇Φt) = 0, ρ0 = ρ0, ρ1 = ρ1.

Here, (P(Ω), gW ) forms an infinite-dimensional Riemannian
manifold1.

1Lafferty 1988, Otto 2001.
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Density submanifold
If we have a parametrized model ρθ, θ ∈ Θ, we define the metric
gθ on Θ as the pull-back of the metric gW on P(Ω),

gθ(ξ, η) = gW (dρθ(ξ), dρθ(η)), for ξ, η ∈ TθΘ.

We call (Θ, gθ) a Wasserstein statistical manifold.
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Wasserstein matrix

Write gθ(ξ, η) = ξTGW (θ)η, where GW (θ) ∈ Rd×d .
The Wasserstein matrix is given by

GW (θ)ij =
(
∇θiρ(·, θ), (−∆ρ)−1∇θjρ(·, θ)

)
L2

,

where ∆ρθ is the weighted elliptic operator.
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Consider the probability space (P(Ω), g) with metric tensor g , and
a smoothly parametrized probability model ρθ with parameter
θ ∈ Θ. Then the pull-back G of g is given by

G (θ) =
(
∇θρθ, g(ρθ)∇θρθ

)
.

(i) If gθ = −(∆ρθ)−1, with ∆ρθ being the weighted elliptic
operator, then G (θ) is the Wasserstein metric tensor, given by

GW (θ)ij =
(
∇θiρθ, (−∆ρθ)−1∇θjρθ

)
,

(ii) If gθ = 1
ρθ

, then G (θ) is the Fisher-Rao metric tensor, given by

GFR(θ)ij =
(
∇θiρθ,

1

ρθ
∇θjρθ

)
.
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Geodesics
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Gradient Flows

Fisher-Rao
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GANs

G. Montúfar 86/128



Generative Adversarial Networks (GANs)

• Generative Adversarial Networks (GANs) are a way to mimic a
probability distribution. Given training data, they can
construct samples that look like the training data.

[slide A. Lin]
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What can GANs do?

GANs can create new celebrity faces:

[KALL18]

[slide A. Lin]
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What can GANs do?

GANs can do image superresolution:

[LTH+16]
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What can GANs do?

GANs can do text-to-image synthesis:

[ZXL+16]
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What can GANs do?

GANs can do image-to-image translation:

[ZPIE17]
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What are GANs, mathematically?

• GANs consist of two networks: D – the discriminator, and G
– the generator.

• The (initially proposed) performance function for GANs is:

max
ω

min
Gθ

Ex∼real[logDω(x)] + Ez∼N [log 1− Dω(Gθ(z))]

where N is the normal distribution.

[Sky18]
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Different performance functions for GANs
Many other performance functions are available:

• Standard GAN [GPM+14]:

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1− D(G (z))]

• (Standard) WGAN [ACB17]:

max
D

min
G

Ex∼real[D(x)]− Ez∼N [D(G (z))] (and clip the weights of D)

• WGAN-GP [GAA+17]:

max
D

min
G

Ex∼real[D(x)]− Ez∼N [D(G (z))] + λ · Ex̂∼Px̂
[(‖∇x̂D(x̂)‖ − 1)2]

• DRAGAN [KAHK17]:

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1− D(G (z))]

+ λ · Ex∼real,δ∼Nd (0,cI )[‖∇xD(x + δ)‖ − k]2
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Wasserstein of Wasserstein Loss for Learning
Generative Models
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Wasserstein Loss

Given a probability model {PG : G ∈ Θ} ⊆ Pp(X ) and a data
distribution Pr ∈ Pp(X ), we find a hypothesis by minimizing

inf
G

Wp,dX (PG ,Pr ).

This depends on a choice of the ground metric dX on the sample
space X .
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Wasserstein ground metric

The Wasserstein distance is known to be effective for images.
Motivated by this, we introduce a Wasserstein ground metric

dX (X ,Y ) := Wq,dΩ
(X ,Y ) = inf

π

{(
E(x ,y)∼πdΩ(x , y)q

) 1
q
}
.

An image X ∈ X is viewed as a histogram over pixels x ∈ Ω.

The pixel ground metric dΩ : Ω× Ω→ R+ assigns distances to
pairs of pixels.
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Pixel Space

y

x

Image Space

X

Y

Space of Distributions on Image Space

P0

P1

Wasserstein of Wasserstein loss [DLLM19, Fig. 3]
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Pixel

Image

Distribution
of images

Pixel ground metric

Image ground metric

(Ω, dΩ)

(X ,Wq,dΩ
)

(P(X ),Wp,Wq,dΩ
)

Induced differential structure

Induced differential structure

G. Montúfar 98/128



Wasserstein ground metric

L2 (Euclidean) ground metric Wasserstein-2 ground metric

Source and nearest images from the CIFAR-10 dataset.
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Duality and computation

The linear programming computation is unfeasible.
We use a Kantorovich duality formulation with Lipschitz-1
condition.

Theorem 4 (Duality of Wasserstein of Wasserstein)

The Wasserstein-1 loss function over Wasserstein-2 ground metric
has the following equivalent formulation:

W1,W2,dΩ
(PG ,Pr ) = sup

f ∈C(X )

{
EX∼PG

f (X )− EX∼Pr f (X ) :∫
Ω
‖∇xδX f (X )(x)‖2

dΩ
X (x)dx ≤ 1

}
,

where ∇x is the gradient operator in pixel space Ω and δX is the
L2 gradient in image space X .
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Pixel discretization

Proposition 5 (Wasserstein gradient on discrete image space)

Given a pixel space graph G, the gradient of f ∈ C 1(X ) is

grad f (X ) = L(X )∇X f (X ),

where ∇X is the Euclidean gradient operator, and L(X ) ∈ Rn×n is
the weighted Laplacian matrix defined as

L(X )ij =


1
2

∑
k∈N(i) ωik(Xi

di
+ Xk

dk
) if i = j ;

−1
2ωij(

Xi
di

+
Xj

dj
) if j ∈ N(i);

0 otherwise.

Moreover, the 1-Lipschitz condition on (X ,W ),
‖ grad f (X )‖W ≤ 1, is equivalent to

∇X f (X )>L(X )∇X f (X ) ≤ 1.
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Stability to natural data variability
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Discriminator for CIFAR-10 images translated continuously.
Both discriminators were trained to reach an FID value of 40.
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Stability to noise
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Discriminator values on CIFAR-10 images with RGB salt and
pepper noise 15% of the pixels.
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• WW allows us to incorporate a meaningful geometry in
sample space and train generative models that are more in
line with the natural variability of the data.
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Wasserstein Natural Gradient
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Natural gradient

• We can use Wasserstein geometry not only design distances in
sample space and useful loss functions for learning, but also to
develop optimization methods.

Consider the natural gradient

θ′ = θ + α∇̃F (θ),

where
∇̃F (θ) = G−1(θ)∇F (θ).

Here G is the matrix that defines the inner product on the tangent
space of the probability model. While this is usually taken to be
the Fisher information matrix, we can use the Wasserstein matrix.
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G. Montúfar 107/128



MLE

1 2 3 4 5 6

model

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

di
ve

rg
en

ce
 v

al
ue

s

Euclidean 
Euclidean 
Fisher
Wasserstein

1 2 3 4 5 6

model

101

102

103

104

105

ite
ra

tio
ns

 u
nt

il 
co

nv
er

ge
nc

e

Euclidean 
Euclidean 
Fisher
Wasserstein

n=6

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

100 105

normalized area under learning curve

0

5

10

nu
m

be
r 

of
 ta

rg
et

s

Euclidean 
Euclidean 
Fisher
Wasserstein

Euclidean, Fisher, Wasserstein gradients on MLE for discrete
hierarchical models
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Wasserstein proximal of GANs
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Wasserstein Natural Gradient for GANs

• In GANs, we can utilize the reparameterization trick and some
more Taylor expansions, to arrive at the following update
scheme:

θk+1 = argminθ L(θ) +
1

2h
Ez∼N‖gθ(z)− gθk (z)‖2

2

which we call the Relaxed Wasserstein Proximal (RWP).

• This resembles a proximal operator:

proxλ(f )(x) = argminy

{
f (y) +

1

2λ
‖x − y‖2

2

}
• We use this to gain better speed and stability in GANs.
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Fréchet Inception Distance

• To measure convergence, we use a quantitative measure: the
Fréchet Inception Distance

• It compares statistics at the last pooling layer of Inception v3:

[Goo]
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The RWP Algorithm

• The RWP algorithm is meant as a drop-in regularizer. You
train your GAN in the usual way with a slight modification:
• The algorithm is as follows:

- Sample real data {xi}Bi=1 and noise data {zi}Bi=1

- Do

ωk+1 ← Optimizerω

{
Loss(Dωk ({xi}Bi=1), Dω(Gθ({zi}Bi=1)))

}
- Sample noise data {zi}Bi=1

- Do

θk+1 ← Optimizerθ

{
Loss(Gθ({zi}Ni=1)) +

1

B

B∑
i=1

‖Gθ(zi )− Gθk (zi )‖2
}

- Repeat until convergence.
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RWP of DRAGAN on CIFAR-10

• The performance function of DRAGAN is,

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1− D(G (z))]

+ λ · Ex∼real,δ∼Nd (0,cI )[‖∇xD(x + δ)‖ − k]2

• Results with and without RWP regularization:
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RWP of Standard GANs on CIFAR-10
• The performance function of Standard GANs is,

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1− D(G (z))]

• Results with and without RWP regularization:

G. Montúfar 113/128



RWP of WGANGP on CIFAR-10
• The performance function of WGANGP is,

max
D

min
G

Ex∼real[D(x)]− Ez∼N [D(G (z))] + λ · Ex̂∼Px̂
[(‖∇x̂D(x̂)‖ − 1)2]

• Results with and without RWP regularization:
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RWP of Standard GANs on CelebA

• The performance function of Standard GANs is,

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1− D(G (z))]

• Results with and without RWP regularization:
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RWP of Standard GANs on CelebA for 1
million updates

• Results with and without RWP regularization:
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Stability to Hyperparameters

The Wasserstein proximal improves the training by providing a
lower FID when the learning rate is high. The results are based on
the CelebA dataset.
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Latent Space Walk

• Latent space walk of Standard GANs with RWP on CelebA:
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Affine Natural Proximal Gradients

G. Montúfar 119/128



Natural gradient

• The natural gradient

θk+1 = θk − hG (θk)−1∇θF (θk)

requires G (θ) and its inverse at each iteration.

• This is difficult in high dimensional parameter spaces.

• We develop an alternative approach based on the proximal
method and approximations of the proximity term
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Natural proximal operators

• The proximal operator refers to

θk+1 = ProxhF (θk) = arg min
θ

F (θ) +
D(θ, θk)

2h
,

• D penalizes the distance from the current point. Choose
Riemannian distance

D(θ, θk) = inf
θ(t)

{∫ 1

0
θ̇(t)>G (θ(t))θ̇(t)dt : θ0 = θ, θ1 = θk

}
• h adjusts the strength. When h is infinity, the proximal

operator returns the global minimizer of F .
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Quadratic approximation

• Consider the local approximation of the Riemannian distance

D̃(θ, θk) =
(
ρθ − ρθk , g(ρθ̃)(ρθ − ρθk )

)
.

• Express D̃ in terms of its Legendre dual:

1

2
D̃(θ, θk) = sup

Φ: Ω→R
(Φ, ρθ − ρθk )− 1

2

(
Φ, g(ρθ̃)†Φ

)
.

(Maximizer Φ = g(ρθ̃)(ρθ − ρθk ) recovers above)
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Affine space restriction

Now we restrict the dual variable to an affine space

FΨ =
{

Φ(x) =
n∑

j=1

ξjψj(x) = ξ>Ψ(x) : ξ ∈ Rn
}
,

where ξ = (ξj)
n
j=1 is a parameter vector and Ψ = (ψj)

n
j=1 collects a

choice of basis functions ψj : Ω→ R.
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Theorem 6 (Affine space approximation)

Given a basis Ψ, the proximity term D̃ within the affine function
space FΨ = {ξ>Ψ: ξ ∈ Rn} is given by

D̃Ψ(θ, θk) = (Eθ[Ψ]− Eθk [Ψ])>
(

Ψ, g(ρθ)†Ψ
)†

(Eθ[Ψ]− Eθk [Ψ]).

(i) For the Wasserstein metric, we have

D̃W
Ψ (θ, θk) = (Eθ[Ψ]−Eθk [Ψ])>

(
CW (θ̃)

)−1
(Eθ[Ψ]−Eθk [Ψ]),

where CW (θ̃) = Eθ̃[
∑

l

(
∂lΨ

)(
∂lΨ

)>
].

(ii) For the Fisher-Rao metric, we have

D̃FR
Ψ (θ, θk) = (Eθ[Ψ]−Eθk [Ψ])>

(
CFR(θ̃)

)−1
(Eθ[Ψ]−Eθk [Ψ]),

where CFR(θ̃) = Eθ̃[
(

Ψ(x)− Eθ̃[Ψ]
)(

Ψ(x)− Eθ̃[Ψ]
)>

].
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Interpretation

EΨ

ρθ ρθ′

Eθ[Ψ]

Eθ′ [Ψ]

• Intuitively, the metric between two distributions is measured
along a chosen set of statistics.

• If Ψ is the sufficient statistics of an exponential family EΨ,
then we are measuring local distances of MLE projections
onto EΨ, whose dual parameters are Eθ[Ψ] and Eθ′ [Ψ].
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Example 7 (Order-1 approximation)

For the metric approximation with the (linear) space of linear

functions, F1 =
{

Φ(x) = a>x + b : a ∈ Rm, b ∈ R
}

, we have:

(i)
D̃W

1 (θ, θk) = (Eθ[x ]− Eθk [x ])>(Eθ[x ]− Eθk [x ]).

(ii)
D̃FR

1 (θ, θk) = (Eθ[x ]− Eθk [x ])>
(
Eθ̃
[
(x − Eθ̃x)(x − Eθ̃x)>

])−1
(Eθ[x ]− Eθk [x ]).
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Example 8 (Order-2 approximation)

For the space of quadratic functions,

F2 =
{

Φ(x) = 1
2x
>Qx + a>x + b : Q ∈ Rm×m, a ∈ Rm, b ∈ R

}
,

we have:

(i)
D̃W

2 (θ, θk) =
(
Eθ
[

x
x⊗x

2

]
− Eθk

[
x

x⊗x
2

] )>
Eθ̃
[

Im x>⊗Im
x⊗Im Im⊗xx>

]−1 (
Eθ
[

x
x⊗x

2

]
− Eθk

[
x

x⊗x
2

] )
.

(ii)
D̃FR

2 (θ, θk) =
(
Eθ
[

x
x⊗x

2

]
− Eθk

[
x

x⊗x
2

] )>(
CFR(θ̃)

)−1(
Eθ
[

x
x⊗x

2

]
− Eθk

[
x

x⊗x
2

] )
,

where

CFR = Eθ̃

[( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )>]
.
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Test error on CIFAR-10 classification
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