Wasserstein Information Geometry for Learning
from Data

Guido Montufar
montufar@math.ucla.edu

Tutorial at Geometry and Learning From Data, IPAM, March 2019

UCLA



@ Introduction

G. Montdfar 2/128



oq

Parameter Space - Function Space - Data Space - Loss

G. Montafar 3/128



® Develop approaches that can integrate the geometry of
function space and geometry of data in learning

® Loss functions, optimization, and regularization techniques
based on Information Geometry and Wasserstein Geometry
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Wouchen Li Alex Tong Lin  Yonatan Dukler
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Motivation

® |nformation geometry derives geometric structures on the

parameter space of a statistical model by pulling back
structures from the space of probability distributions. The
methods of information geometry have been successful in
statistics and machine learning. However, in their current
form they do not incorporate the geometry of sample space.

Wasserstein geometry incorporates the geometry of sample
space. Has been useful in specific applications, such as image
retrieval and implicit generative models. However, current
approaches do not integrate differential structures and natural
gradients for parametrized models. Full potential in machine
learning has yet to be developed.

Wasserstein Information Geometry is about developing
synergies between the two fields!
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What is learning / from data?

® Learning: Try to obtain a general behavior based on data /
examples

® Design: Try to obtain a general behavior based on expert
knowledge

Data — Knowledge — Specifications — Hypotheses



“If you show a picture to a 3 yr and ask if there is a tree in it, you will likely
get the correct answer. If you ask a 30 yr for the definition of a tree, you will
likely get an inconclusive answer.” [AMMIL12]
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Consider the problem of classifying handwritten 1s and bs.

® We could try to write a list of properties characterizing a 1
(e.g., symmetric, straight, vertical), and try to obtain a
classifier analytically.

® Obtaining such specifications may be very difficult in general,
making the design approach unfeasible.

® However, data / examples should reveal a lot about this, and
we might be able to obtain a good empirical solution.

® By learning from data, we can take an “end to end” approach
that automatically selects the task relevant aspects.



® Nonetheless, the more meaningful priors we can incorporate,
the faster and better we can expect to solve the problem.

E.g., compositionality in deep nets / convolutional networks
(model selection) / pre-trained filters (transfer learning) /
implicit regularization / parametrization (resnet, centering
tricks) / optimization methods (SGD, batch norm)

® At this, the geometry of the
data, models, parametrization, loss function,

plays a key role

G. Montiifar



Geometry of data

Manifold hypothesis

e Data is non uniformly distributed and is concentrated on lower
dimensional sets.

® High dimensional data can be represented in a much lower
dimensional feature space.

® |n most cases, the relationship is non linear.
® The geometry of the data can be exploited for learning.

10/128
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Shape Space [KMPO07, Fig. 1]
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Representation Learning

® Performance of Machine Learning algorithms depends heavily
on how data is represented.

® For many tasks, its difficult to know what features should be
extracted, plus there may be many.

® Representation learning is about using ML to learn not only
the map from representation to output, but also the
representation.
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Cartesian coordinates

Polar coordinates

r

Representation learning / Deep learning [GBC16, Fig. ]
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Deep Learning

® Many of the factors of variation can be identified only using
very sophisticated understanding of the data.

® Deep learning seeks to automatically discover such
abstractions, from the lowest level features to the highest level
concepts.

® Deep models introduce representations that are expressed in
terms of other simpler representations.

[GBC16, p 5]



very high level representation:

... etc ...

4

slightly higher level representation

raw input vector representation:
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Learning by minimizing a loss function
® Learning problems are often formulated as
inL(6
min (9)

where L is an (empirical) loss, and 6 parametrizes our
hypotheses.

® Keep in mind

Ltraining data vs Lpopulation
Examples: _
L(0) = — 3, po(x") (likelihood)  po(x) = (1 — 6)*~* (Bernoulli),
L) = Zi(fg(x(i)) —y@M)2 (MSE)  fa(x) = (8" x) (perceptron)
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Function space and learning

Statistical learning

® The complexity of learning is typically described in terms of
the geometry of the hypothesis space / function space

(e.g., DOFs, VC dimension, complexity measures)

® Complexity measures for approximation and estimation depend
on the input space via the geometry of hypothesis space.

® |t is desirable to take the geometry of data space more
directly into consideration
(e.g., TDA, Topological DL, Geometric DL, Adversarial training)
— Talk to Nina Otter!
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Function space and optimization

If the optimization domain is convoluted, the optimization problem
will typically be convoluted as well.
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Selection criteria for neuromanifolds of stochastic dynamics [AMR13]
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Geometry of function space

® How should we measure the distance between two hypotheses?

e Often we consider parametric models and work over the
parameter space.

® How should this reflect in optimization / estimation?

Loss function <+ model <> parametrization



Parametrization and optimization

Optimization landscape / gradient optimization can be affected by the

parametrization.
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Momentum, Accelerated (Nesterov) moment, RMSprop, Adam, Feature

normalization, Batch normalization
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Optimization landscape and generalization

Training Function

! Testing Function

f(@)

Ha(Minimum Sharp Minimum

Large-batch methods tend to converge to sharp minimizers of the training
function ... and tend to generalize less well. Generalization and sharp
minima [KMN™16]

See Chaudhari, Soatto, Osher

— Discuss with Hui Yin!
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Optimization landscape and generalization

(a) Loss function with default parametrization

(b) Loss function with reparametrization

0,

(c) Loss function with another reparametrization

0,

Spectral radius and trace of the Hessian can be manipulated without actually

changing the behavior of the function. Sharp minima can generalize [DPBB17]
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(Non) Identifiability

Deep networks are usually not identifiable, meaning that several
parameters represent the same function.

f(X;(g) = U(W/U(Wlfla(- --J(Wlx)))

Weight space symmetry

e The latent variables are interchangeable, such that
f(-;0) = f(-;0z), where 6, is 6 with permuted indices.

e Additionally, we might have scaling symmetries of the form
Waa(Wix) = L Wao(cWix). For ReLUs this creates
hyperbolas of equivalent local minima.
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Geometry of parameter space /
Parametrization invariance

Often we are not interested in the parameter 0 € © but rather
in the hypothesis py € P(X).

We seek for pg by minimizing a loss function of the form
L(0) = L(ps),

meaning that it depends on 6 only through the corresponding
distribution py.

Parametrization invariance can be useful. Define the geometry
on © based on the geometry that is defined on P(X).

Taking the steepest descent with respect to function space
(instead of an arbitrary parameter space) can help against
vanishing / exploding gradients.

Question: how to define the geometry on P(X)?



Video loss function on parameter space / function space
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Geometry of parameter space

¢ Information Geometry uses the Fisher metric. But the Fisher
is oblivious to the geometry of data space.

® Want: Keep perspective of using geometry of function space,
but incorporate the geometry of data space.



Geometry of data and function space

® How should the geometry of data space enter into the
geometry of function space?

® We may be able to choose function spaces which are less
complex, depending on the data geometry

® Symmetry / invariance / continuity with respect to certain
variability in the input

30/128
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Using the geometry of the data

Representation learning (unsupervised feature learning, deep
learning, autoencoders, graphical models)

Topological data analysis (dimensionality reduction, metric
independence, persistent homology) (handcrafted features)

Hand crafted features

Geometric Deep Learning (data defined on non-Euclidean
domains, convolutions on graphs / manifolds) (semi hand
crafted features) IPAM New DL Techniques 2018, M Bronstein

Tutorial
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The curse of dimensionality

® Consider a simple problem of distinguishing handwritten
versions of the digits ‘1" and ‘4’

G. Montiifar
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® Each image is a point in a high dimensional space.
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® Divide each coordinate into intervals. For a new point x,
return the average y for training points in the same box.




® By increasing the number K of intervals for each variable, we
can obtain a more precise specification. Leads to K9 cells,
which is exponential in the dimensionality of the input space.

® Specifying the mapping requires an exponential number of
examples! This phenomenon is called curse of dimensionality.

® If we only have/can process a limited amount of data,
increasing the dimensionality of the space rapidly leads to very
sparse data, and the above gives a very poor representation.

G. Montdfar 35/128
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[Bis]

Approaches based on neural networks can be much less
susceptible to the curse of dimensionality. These techniques
are able to exploit two important properties of real data:

The input variables are generally correlated in some way, so
that the data points do not fill out the entire input space, but
tend to be restricted to a sub-space of lower dimension.

For most mappings of practical interest, the output varies
smoothly with the input. Thus it is possible to infer the
output values at intermediate points where no data is
available, by a process similar to interpolation.

36/128
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® We could consider lower dimensional features.
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® We could consider lower dimensional features.
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@® Information Geometry
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What is Information Geometry?

® Information geometry is a branch of mathematics that applies
the techniques of differential geometry to the field of
probability theory.

® This is done by taking probability distributions as the points
of a Riemannian manifold.

® The Fisher information metric provides the Riemannian metric.

39/128
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Conferences

IGAIA, GSI, TGSI, ...

Resources

Methods of Information Geometry, Amari and Nagaoka
Information Geometry and lts Applications, Amari
Information Geometry, Ay, Jost, Le, Schwachhofer
Information Geometry Springer Journal (since 2018)

An elementary introduction to information geometry, Nielsen
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Prerequisite: Basics of differential geometry 4

2.1 Overview of differential geometry . . . . . . . .. .. 4
2.2 Metric tensor fields g . . . . . .. ... ... 5
2.3 Affine connections V . 7l

2.3.1 Covariant derivatives VxY of vector fields . . 7l

2.3.2  Parallel transport HCV along a smooth curve ¢ 7l

2.3.3  V-geodesics yy: Autoparallel curves . . . . . 8|

2.3.4 Curvature and torsion of a manifold . . .. .. ... ... ... . 0 L. 9l
2.4 The fundamental theorem of Riemannian geometry: The Levi-Civita metric connection (10
2.5 Preview: Information geometry versus Riemannian geometry . . . . ... ... ... 11
Information manifolds 11
3.1 Overview . ... 11
3.2 Conjugate connection manifolds: (M,g,V,V*) ... ... ... ... ... .. ... 12
3.3 Statistical manifolds: (M,g,C) . . . .. ... . 13
3.4 A family {(M,g, V™% V®* = (V™%)*)}acr of conjugate connection manifolds . . . . . 14
3.5 The fundamental theorem of information geometry: V s-curved & V* k-curved . . . [14
3.6 Conjugate connections from divergences: (M, D) = (M,Pg,PV,Pv* = P'V) 15

3.7 Dually flat manifolds (Bregman geometry): (M, F) = (M,Prg, Brv Bry* = Brev) 116

3.8 Expected a-manifolds of a family of parametric probability distributions:

(Popg, PV 4 pVY) 18
3.9 Criteria for statistical invariance . . . . ... ... .. o o 0oL 20
3.10 Fisher-Rao expected Riemannian manifolds: (P,pg) . . . ... ... ... ... ... 23
3.11 The monotone a-embeddings . . . . . . .. . ... L L o 24
Some illustrating applications of dually flat manifolds 25
4.1 Hypothesis testing in the dually flat exponential family manifold (£,KL*) . . .. .. 27
4.2 Clustering mixtures in the dually flat mixture family manifold (M,KL) . . ... .. 28
Conclusion: Summary, historical background, and perspectives 31
5.1 SUMMATY . . o v v v e e e 31
5.2 A brief historical review of information geometry . . . . ... ... ... ... 31
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® Fisher metric

® Natural gradient
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Fisher metric

We consider the space of probability distributions as a Riemannian
manifold. What should be the correct metric?

e Consider a probability model {p(6): 6 € ©}. We assume that
the parametrization 6 — p(0) is smooth and locally injective.

® At each point 0 € © we have a matrix given by
G(6) = Ep) [v log p(8)V log p(e)q .

If © C RY, thisis d x d real symmetric matrix.



Example: Discrete simplex

Consider as our model the set of all probability distributions
on a finite set | = {1,...,n}.

Each probability distribution is a vector p = (p(1), ..., p(n))
with p(i) >0 and Y7, p(i) = 1.
Standard n — 1 simplex in R". We can parametrize it as

n—1

pi)=6;, fori=1...n—1 p(n)=1-3 6
i=1

Then the Fisher matrix is given by

5 (k (k) _ Gi
= 27000y k) = o)

44/128



Interpretation of Fisher metric

Information an observation carries about a parameter

® Curvature of the log likelihood

Optimal variance of an estimator

Invariant Riemannian metric

G. Montifar 45/128
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Fisher Information

Information that an observable random variable X carries about
unknown parameter 6 of a distribution that models X.

G(0) = Ep, [V log py(x)V log py(x) ']

- pg(x) is the likelihood function of 6 given observation x.

- Vlog py(x) is the score, which measures how sensitively the
model depends on 6 at the current 6.

® If x ~ pp(x), Ep,[Vlog pg] =0, and G is the variance of the
score, positive semi-definite.

® Negative expectation of the Hessian of the log likelihood.
Curvature of the log likelihood. Low value at shallow
maximum. High value at sharp maximum.



NQ(X)
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Invariant Riemannian metric

The Fisher metric is uniquely characterized (up to scaling) by
being invariant under all sufficient statistics.

Chentsov, Campbell, Lebanon, Ay, Jost, ...

G. Montafar 48/128



Finite set [n] := {1,..., n}. Probability simplex

i€[n]

® Tangent space T,A; | C T,R} = (01,...,0n)
u—Zua with Zu,—O
ie[n] ie[n]

® A metric g, is an inner product on T,A}_; at each p

The Fisher metric on A} _4 is given by

glg")(u’ v) = Z u,-v,-’ forall u,v e T,A7_4
: Pi
i€[n]

G. Montdfar 49/128
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Consider two Riemannian manifolds (&, g), (£/,g’), and a
smooth embedding f: £ — &'

The push-forward through f is

f*: Tpg — Tf(p)g/; Z u,-&- — Z Z uj 8%(P) 01,
i i !

The pull-back of g’ through f is
(F*g")p(u,v) := g;(p)(f*u, fiv), forall u,v e TyE.
The embedding f is an isometry (g is invariant under f) iff

go(u,v) = (f*g")p(u,v), forallpe & and u,ve TLE.
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Embeddings by Markov maps

o A Markov map is a map of the form
f: RT—=RY, p—p-Q,

where @ € RQOX" is a row-partition matrix, meaning that
there is a partition Ui_; A; = [n] with > jen, Qi = diir.

® This defines an embedding f: A} _; — A} _;.

51/128
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Embeddings by Markov maps

0 Q

=

AN
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The result of Chentsov

Characterization of Fisher metric on the probability simplex via
invariance under a class of natural statistical embeddings

Theorem 1 (Chentsov '72)

o Let g™ be a Riemannian metric on AS, | for m € {2,3,.. .},
with every embedding by a Markov map an isometry. Then
there is a constant C > 0 such that

(m) CZ uj VI (1)

e Conversely, for any C > 0, (1) defines Riemannian metrics for
which every embedding by a Markov map is an isometry.
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Geometry and Estimation |

It turns out that the curvature of the model also affects the
estimation problem.

® Let M = {p(x,&)} be a statistical model specified by
parameter £.

® We observe N independent data points D = {x1,...,xn}
generated from p(x, £) and want to know &.

® This is a problem of estimation. An estimator is a function
£=Ff(xi,...,xn).
® The estimation error is e = é— &. The bias of the estimator is
b(¢) = E[¢] - ¢.

The estimator is unbiased when b(§) = 0 and it is
asymptotically unbiased when limy_,o b(§) = 0.



G. Montifar

Geometry and Estimation Il
® |t is expected that a good estimator is consistent, meaning
that it converges to the true parameter as N tends to infinity,

lim € =¢.

N—o0

® The accuracy is measured by the error covariance matrix
V=E[E-9¢-9T].

® The Cramér-Rao theorem gives a bound on the accuracy:

Theorem 2 (Cramér '46, Rao '45)

For an asymptotically unbiased estimator §A , it holds that
1
V>_-G61
-_ N b

where G is the Fisher information matrix.
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Example MLE

® The Maximum Likelihood Estimator (MLE) is the maximizer
of the likelihood,

N
mie = argmaxe [ [ p(x),€).
i=1

® The MLE is asymptotically unbiased and its error covariance
satisfies ) )
Ve = -G+ 0(—
MLE = + <N2> )
attaining the Cramér-Rao bound asymptotically. It is said to
be Fisher efficient (first-order efficient).



Natural gradient
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What is the natural gradient?

® A type of gradient descent method

® Generally applicable to optimization over probability models

® Defined as the gradient times the inverse of the Fisher matrix
of the model
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Steepest descent |

The natural gradient is motivated as a way to obtain the steepest
descent direction in the set of distributions.

® Let © = {0 € R"} be the parameter space, on which a
function L(0) is defined.

® When Euclidean, the square length of an increment df of 0 is

|dO* = "(d6;)>.

1

® |n general, when the coordinate system is nonorthonormal,

|dO” = g;i(6)dbido;.
iJ

The matrix is called Riemannian metric tensor, and it depends
on 6. In the Euclidean case it reduces to gjj(#) = 0; .



Steepest descent I

® The steepest descent direction of L(6) at 6 is defined as the
df that minimizes L(6 + df) with fixed |df|, i.e.,

min  L(6 + db)
st |dO)? = €.

G. Montifar 60/128



Theorem 3
The steepest descent direction of L(0) in a Riemannian space is

—VL(#) = —-G(H) VL),
where G = (gjj) is the Riemannian metric and

oL aL\ "

is the ordinary gradient. Note V is just the contravariant form of
V.

G. Montdfar
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Proof.

Put df = ea and minimize
min  L(6 + df) = L(A) + eVL(0) " a,
st. |a]® = Zgu )aiaj = 1.

Lagrange

0 {VL(H)Ta - )\aTGa} =0

daj
= w(e) =2)\Ga
= a 2)\G HO)VL(B),

where )\ is determined by the constraint. [



Fewer iterations

® In many applications, the natural gradient seems to require far
fewer iterations than the ordinary gradient.

® This makes it a potentially attractive alternative to the regular
gradient method.

G. Montdfar 63/128
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Parametrization invariance

So, the natural gradient is the steepest descent on a
Riemannian manifold.

An important aspect is that the Riemannian metric comes
from the space of distributions.

Under these assumptions, the flow (of distributions) defined
by the natural gradient is invariant with respect to smooth
invertible reparametrizations of the distributions.

Note, the matrix G still depends on the specific
parametrization that we choose.

64/128
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Example

Of course, the metric can look different depending on our
parametrization.

® Consider an exponential family
po(x) = exp(D_ 0;fi(x) — v(0))
J
The functions f; are “observables” or sufficient “statistics”
which define the model and its specific parametrization.

® Any choice of fi,..., f, with the same span produces the
same set of distributions.

® The Fisher metric is given by

G(0) =Ep, [V log(pg)V log(pg) " | = covp, (f)

V log(py(x 29175 (0)) = f(x) — Ep,[f]
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Example |

Natural gradient can help against the vanishing / exploding
gradient problem.

e Consider as a loss function the negative log likelihood

L(#) = — > log(po(x("),

For simplicity consider only one example x(1) and write x.

® For the ordinary gradient we have

—VL(6) = Vlog(ps(x))
= (F(x) ~ Ep, [])



Example Il

® For the natural gradient we have
~VL(8) = G(8) "V log(ps(x))
= G(0)"(f(x) — Ep[f])
G(0) = (f — fpg 1) diag(p)(f — fpg 1)"



Challenges

¢ For large models (with many parameters), computing the
natural gradient is impractical due to the large size of the
Fisher information matrix.

® This is addressed through various approximations to make it
easier to compute, store, invert than the exact Fisher. (e.g Le
Roux et al., 2008; Ollivier, 2015; Grosse and Salakhudinov, 2015; Martens
and Grosse, 2015)

® We will consider proximal methods and affine restrictions on
dual variables.

G. Montdfar 68/128



Loss functions

e Often we formulate a learning problem in terms of a
probability distribution.

® What should be the loss function to be used here?

® |n particular, should the discrepancy between probability
distributions have something to do with the geometry of the
data on which they are defined?

G. Montdfar 69/128



© Wasserstein Information Geometry
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Motivation

We can use the Wasserstein distance as a vehicle to define
® Geometry of data space (e.g., distance between images)

® |oss functions for parameter estimation in parametrized
models, which capture the geometry of the data space
(WGANs, WWGANSs)

® Riemannian structure on function space and natural gradients
which incorporate the geometry of the data space



Optimal transport

® Mapping formulation: Monge problem (1781):
Monge-Ampére equation

e Statical formulation: Kantorovich problem (1940): Linear
programming

¢ Dynamical formulation: Density optimal control (Nelson,
Lafferty, Gangbo, Otto, Villani, Chow, Zhou, Osher)

® In recent times in relation to information geometry: Amari,
Karakida, Malago, Pistone
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Announcement

Special session on Wasserstein Information Geometry at GSI 2019

GSI'19 %‘

Geometric Science of Information

4! Edition o " 2
de France ¢
Toulouse, 27"-29" August 2019 [SPi[F] see |

Pierre de FERMAT
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Wasserstein distance

® Consider a metric space (X, dx) and the set P,(X’) of
densities with finite p-th moment.

® The Wasserstein-p distance of a pair Py, P1 € Pp(X) is

W.a (Po, P1) = inf { (E(va)Nl—,dX(X, Y)P>‘1’},

where 1 is a joint distribution of (X, Y) with marginals
X ~ Py, Y ~ P;.
® Note W, depends on the ground metric dx: X x X — R.
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Why optimal transport?

Optimal transport provides a particular distance among histograms
which relies on the ground metric d on sample space.

0 1
P P
1
0.75
05 —_—
0.25
0
xo Z1

If Xo ~ p° = 0y, X1 ~ pl = iy,

W(p°, p") :weni(m; I)E(Xo,Xl)NfrC(Xle) = ¢(x0,x1)

V(0. ) /|p°(x (x)ldx = 2

M@Wﬂf&ﬂ@mﬁngm
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Wasserstein Loss

i) Model 1 Model 2
2(z) i po(x) o (@)

W
AC0D) A

| ) _— Il overl
\mmmm) ow LN\ SRR ) high
small distance

large distance . -
g W(p,pe) high W(B. per) low

Wasserstein training of RBMs [MMC16, Fig. 1]

Data distribution
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Wasserstein Loss

Samples in the training set

Samples from p! (nearby points in sample space)
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Wasserstein Loss

® \Wasserstein is more “continuous’ than KL.
Distance between two distributions

—

b

1-a 1 l-a

ar b, 0 by @

Wz(a, b)2 = (1 — a)(31 — b1)2 + Oé(a2 - b2)2

KL(a||b) = +o0 (because no overlap between distributions)
Euclidean(a, b) = (a1 — b1)? + (a2 — by)?

L>(a, b)?> = +oco (because integrating over all of R)

® So when a(k) — b, then we have convergence under the W,
and Euclidean metric, but not others.

® But the Euclidean metric overemphasizes the distance
between a; and by, which should be weighted less.



Wasserstein metric

Video Dynamical OT
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Density manifold

Optimal transport has an optimal control reformulation that gives
rise to a Riemannian metric:

Pt

1 1
inf / gW(atpt, Otpt)dt = / /(Vd)t, Vd)t)ptdxdt,
0 0 JQ
under the dynamical constraint, i.e., the continuity equation

Oepe + V- (pe V) =0, po=0p°, p1=ph

Here, (P(£2), gw) forms an infinite-dimensional Riemannian
manifold?.

EEmnnEn

!Lafferty 1988, Otto 2001.
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Density submanifold

If we have a parametrized model py, 6 € ©, we define the metric
go on © as the pull-back of the metric gy on P(Q),

go(&.m) = gw(dpa(§), dpa(n)), for & ne TyO.

We call (©, gg) a Wasserstein statistical manifold.

81/128
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Wasserstein matrix

Write gy(&,7) = ¢7 Gy /(0)n, where Gy () € R9*9,
The Wasserstein matrix is given by

GW(G)U = (veip('v 0), (—Ap)_1Vij(-, 0)) L

where A, is the weighted elliptic operator.
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Consider the probability space (P(2), g) with metric tensor g, and
a smoothly parametrized probability model pg with parameter
0 € ©. Then the pull-back G of g is given by

G(0) = (Vepe,g(Pe)Vepe>-

(i) If gg = —(A,,)7 L, with A,, being the weighted elliptic
operator, then G(#) is the Wasserstein metric tensor, given by

GW(O)IJ - <v0;99a (_Apo)_IVOJ-PQ)a

(ii) If gg = p%' then G(6) is the Fisher-Rao metric tensor, given by

1
Grr(0)jj = (Ve,-/)e, %V@-m))-
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Gradient Flows

Woasserstein
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Generative Adversarial Networks (GANs)

® Generative Adversarial Networks (GANs) are a way to mimic a
probability distribution. Given training data, they can
construct samples that look like the training data.

mmmm==)  Discriminator Network - Predicted Labels
D-dimensional

noise vector

I-

[slide A. Lin]

Generator Network

1

-
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What can GANs do?

GANSs can create new celebrity faces:

[KALL18]

[slide A. Lin]
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What can GANs do?

GANs can do image superresolution:

bicubic SRResNet SRGAN

15dB/0.6868)
o e

(21.59dB/0.6423) (23.53dB/0.7832, (21.
—_

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and

SSIM are shown in brackets. [4x upscaling] [LT H + 16]
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What can GANs

GANs can do text-to-image synthesis:

Asmallbird A small yellow  This small bird
“The bird is Abirdwitha  This small withvarying  bird witha has a white
Thisbird isred  shortand medium orange  black bird has  shades of black crown  breast, light
and brownin  stubby with bill white body  a short, slightly  brown with and a short grey head, and
color, witha. yellow on its gray wingsand  curved billand  white under the  black pointed  black wings
stubby beak webbed feet long legs eyes beak and tail

Text
description

B4x64
GAN-INT-CLS
[22]

1285128
GAWWN
[20]

256x256
StackGAN

Figure 3. Example results by our proposed StackGAN, GAWWN [20], and GAN-INT-CLS [2?] conditioned on text descriptions from
CUB test set. GAWWN and GAN-INT-CLS generate 16 images for each text description, respectively. We select the best one for each of
them to compare with our StackGAN,

do?

[ZXL*16]
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What can GANs do?

GANs can do image-to-image translation:

Monet T Photos Summer T Winter

Zebras > Horses

e

‘Monet — photo zebra — horse
photo —Monet horse — zebra
Photograph Monet Van Gogh Cezanne Ukiyo-e

[ZPIE17]
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What are GANs, mathematically?

® GANSs consist of two networks: D — the discriminator, and G
— the generator.

® The (initially proposed) performance function for GANs is:

max n&in Ex~real[log Dy (x)] + E,on[log 1 — D, (Gy(2))]
w 0

where N is the normal distribution.

=) Discriminator Network - Predicted Labels
D-dimensional

noise vector

) Generator Network — -
[Sky18]

G. Montafar
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Different performance functions for GANs
Many other performance functions are available:

* Standard GAN [GPMT14]:

max m(gn Exnreal[log D(x)] + E,n[logl — D(G(2))]

e (Standard) WGAN [ACB17]:

max mGin Ex~real|[D(x)] — E.on[D(G(2))] (and clip the weights of D)

* WGAN-GP [GAA*17]:
max min Exvrea[D(x)] = Ez~n[D(G(2))] + A - Egp [(1V£D(R)| = 1)7]
* DRAGAN [KAHK17]:
maxmin E,reallog D(x)] + Ez~nllog 1 - D(G(2))]

+A- IIE‘:xr\«rea\l,éwNd(O,cI)[”VX[)(X + 6)” - k]2
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Wasserstein of Wasserstein Loss for Learning
Generative Models
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Wasserstein Loss

Given a probability model {Pg: G € ©} C P,(X) and a data
distribution P, € P,(X), we find a hypothesis by minimizing

inf W,a, (P, P,).

This depends on a choice of the ground metric dy on the sample
space X.



Wasserstein ground metric

The Wasserstein distance is known to be effective for images.
Motivated by this, we introduce a Wasserstein ground metric

1

du(X, Y) = Wea (X, Y) = inf { (E(Xﬁy)wdﬂ(x,y)qf}.

An image X € X is viewed as a histogram over pixels x € Q.

The pixel ground metric do: Q x Q — R assigns distances to
pairs of pixels.
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Pixel Space Image Space Space of Distributions on Image Space

Wasserstein of Wasserstein loss [DLLM19, Fig. 3]
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Pixel

Pixel ground metric

l

Image

Image ground metric

1
Distribution

of images

(Qv dQ)

Induced differential structure

!

(Xa W, ,dQ)

Induced differential structure

l

(P(X), vawq,dn )



G
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Wasserstein ground metric

L? (Euclidean) ground metric Wasserstein-2 ground metric

Source and nearest images from the CIFAR-10 dataset.
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Duality and computation

The linear programming computation is unfeasible.
We use a Kantorovich duality formulation with Lipschitz-1
condition.

Theorem 4 (Duality of Wasserstein of Wasserstein)

The Wasserstein-1 loss function over Wasserstein-2 ground metric
has the following equivalent formulation:

Wi, (Pc,B) = sup {IEXNPGf(X) Ex-p, f(X):
feC(X)

LIV ()G X(x)ee < 1},

where V is the gradient operator in pixel space Q2 and §x is the
L? gradient in image space X.
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Pixel discretization

Proposition 5 (Wasserstein gradient on discrete image space)
Given a pixel space graph G, the gradient of f € CY(X) is

grad £(X) = L(X)Vxf(X),

where V x is the Euclidean gradient operator, and L(X) € R"™" js
the weighted Laplacian matrix defined as

2ZkEN( Wf((%"‘%) if i =J;
L(X)j = —swi(g + 3) if j € N(i);

0 otherwise.

Moreover, the 1-Lipschitz condition on (X, W),
|lgrad f(X)||lw < 1, is equivalent to

Vxf(X)TL(X)Vxf(X) <1
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Stability to natural data variability

WGANGP WWGAN

50

00

50

00

400
300
200
100 /\
0
AN

5 10 15 20 25 30 0 5 10 15 20 25 30

pixels translated pixels translated

D(Xtransiate) discrimnator value
D(Xtransiate) discrimnator value

Discriminator for CIFAR-10 images translated continuously.
Both discriminators were trained to reach an FID value of 40.
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Stability to noise

. WGAN-GP eo WWGAN
» e clean images » e clean images
L , e noisyimages L 45 e noisyimages
E s . g
5 2 ol © r 4 e ® 50 -
=] o o oo ° =] *®s o
2 . o0 ® % o e’ T LA/
g e e %l e e S s %oy e o
€ o° ¢ e, 0 o ” S 8o, oo
= e, "o ® ® o ° = e ot
Q % e LX) G 60
8- S g le s e Ve 2
Po '. ° o o o o 5 o®
o 10 20 20 40 50 60 o 10 20 30 40 50 60
image index image index

Discriminator values on CIFAR-10 images with RGB salt and
pepper noise 15% of the pixels.
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* WW allows us to incorporate a meaningful geometry in
sample space and train generative models that are more in
line with the natural variability of the data.
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Woasserstein Natural Gradient
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Natural gradient

® We can use Wasserstein geometry not only design distances in
sample space and useful loss functions for learning, but also to
develop optimization methods.

Consider the natural gradient
0 =0+ aVF(9),
where y
VF(9) = GHO)VF(9).

Here G is the matrix that defines the inner product on the tangent
space of the probability model. While this is usually taken to be
the Fisher information matrix, we can use the Wasserstein matrix.
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MLE
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Wasserstein proximal of GANs
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Woasserstein Natural Gradient for GANs

® |In GANs, we can utilize the reparameterization trick and some
more Taylor expansions, to arrive at the following update
scheme:

. 1
0%+t = argmin, L(0) + ﬂEZNNHga(Z) — g (2)I13

which we call the Relaxed Wasserstein Proximal (RWP).

® This resembles a proximal operator:

prox, ()(x) = argmin, {£(y) + 5 l1x — y3)

® We use this to gain better speed and stability in GANs.
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Fréchet Inception Distance

® To measure convergence, we use a quantitative measure: the
Fréchet Inception Distance

® |t compares statistics at the last pooling layer of Inception v3:

Input: 299x299x3, Output:8x8x2048

Convolution Input: Output:

2

AvgPool 299x299x3 8x8x2048
= Narpool Final part:8x8x2048 -> 1001
== Concat
== Dropout
== Fully connected
== Softmax

G. Montafar
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The RWP Algorithm

® The RWP algorithm is meant as a drop-in regularizer. You
train your GAN in the usual way with a slight modification:
® The algorithm is as follows:

- Sample real data {x;}2; and noise data {z}2 ;
- Do

ket Optimizerw{Loss(Dwk({x;},B;l), Dw(Gg({z,-},B:l)))}

- Sample noise data {z}2,
- Do

B
Pk+l Optimizerg{Loss(Gg({z,-},- 1 Z 1Go(zi) — Gor(2:)]| }
- Repeat until convergence.
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RWP of DRAGAN on CIFAR-10
® The performance function of DRAGAN is,

max mén Ex~real[log D(x)] + E,.n[log1l — D(G(z))]
+ A Exreal. s (0,cn) |V D(x + 8)|| — K]

® Results with and without RWP regularization:

FID vs Wallclock time {minutes)

100

— DRAGAN

9% | —— RWP of DRAGAN (ours)

80 1

701

60

Frechet Inception Distance (FID)

50 1

40 —— T T T T T
0 25 50 75 100 125
Wallclock {minutes)
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RWP of Standard GANs on CIFAR-10
® The performance function of Standard GANs is,
max mci_n Exreal[log D(x)] + E,n[log1 — D(G(2))]
® Results with and without RWP regularization:

FID v.s. Wallclock time (minutes)
50.0

—— Standard GAN
a7.5 1 —— RWP of Standard GAN (ours)

45.0 1

Frechet Inception Distance (FID)

T T T T T T T T
0 10 20 30 40 50 60 70
Wallclock {minutes)
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RWP of WGANGP on CIFAR-10
® The performance function of WGANGP is,

max min Exvrea[D(x)] = Ez~n[D(G(2))] + A - Exp [(1 V2 D(R) | — 1)°]

® Results with and without RWP regularization:

FID v.s. Wallclock time (minutes)

—— WGAN-GP
75 —— RWP of WGAN-GP (ours)

w w @ @ ~
=} @ o v} =}
L L L L L

Frechet Inception Distance (FID)

S
[l
L

Y
=}
L

w
o

T T T T T T T T
0 50 100 150 200 250 300 350

Wallclock {minutes)
G. Montiifar 114/128



G. Montafar

RWP of Standard GANs on CelebA

® The performance function of Standard GANs is,
max mGin Ex~real[log D(x)] + E,n[log1l — D(G(z))]

® Results with and without RWP regularization:

Frechet Inception Distance (FID)

60
55 4
50 4
45 4
40 4
351
304
254
201

15 T T T
0 200 400 600

FID vs Wallclock time (minutes)

—— standard GAN
—— RWP of Standard GAN (ours)

Wallclock {minutes)
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RWP of Standard GANs on CelebA for 1
million updates

® Results with and without RWP regularization:

FID v.s. Outer-lterations
80

—— Standard WGAN-GP
—— RWP WGAN-GP (ours)

v @ ~
=} =} o
| L

Frechet Inception Distance (FID)

5

T T T T T T
0 200000 400000 600000 800000 1000000
OQuter-lterations
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100

Frechet Inception Distance (FID)

Stability to Hyperparameters

FID v.s. Wallclock time (minutes)
High momentum

80

70 4

60

WGAN-GP

RWP of WGAN-GP (ours)
01-SBE of WGAN-GP (ours)
02Diag-SBE WGAN-GP (ours)

200 400 600 800 1000
Wallclock (minutes)

Frechet Inception Distance (FID)

300

250

200 +

150 4

100

FID v.s. Wallclock time (minutes)
High learning rate

| —— WGAN-GP

| =—— RWP of WGAN-GP (ours)
. —— 01-SBE of WGAN-GP (ours)
—— 02Diag-SBE WGAN-GP (ours)

\

0 s0 100 150 200 250

Wallclock (minutes)

The Wasserstein proximal improves the training by providing a

lower FID when the learning rate is high. The results are based on

the CelebA dataset.
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Latent Space Walk

® |atent space walk of Standard GANs with RWP on CelebA:

- 555‘
"?9

plia e e s Ys T 1

It h-
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Affine Natural Proximal Gradients
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Natural gradient

® The natural gradient
okl = gk — hG(6%) "1V F(6%)

requires G(0) and its inverse at each iteration.
® This is difficult in high dimensional parameter spaces.

® We develop an alternative approach based on the proximal
method and approximations of the proximity term
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Natural proximal operators

® The proximal operator refers to

D(6,6%)
2h

0K+t = Prox,e(6%) = arg mgin F(0) +

® D penalizes the distance from the current point. Choose
Riemannian distance

D(6.6) = inf { /01 0T GO by = 6. by = 0¥

® h adjusts the strength. When h is infinity, the proximal
operator returns the global minimizer of F.
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Quadratic approximation

® Consider the local approximation of the Riemannian distance
D(0,0") = (Pe — Pox>8(pg)(po — ﬂek))~

o Express D in terms of its Legendre dual:
1

75(9,9k):¢.sgiR(¢,pg pgk)—*<¢ glp )q))

(Maximizer ® = g(p;)(po — pgx) recovers above)



Affine space restriction

Now we restrict the dual variable to an affine space
Fo={00) = gui(x) = W(x): ¢ € R},
j=1

where £ = (fj)J’-’zl is a parameter vector and ¥ = (wj)J’-’:l collects a
choice of basis functions 1);: Q — R.
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Theorem 6 (Affine space approximation)
Given a basis U, the proximity term D within the affine function

space Fy = {£"V: £ € R"} is given by
Bu(6.0) = (Eg[V] — Ege V)T (V. £(00)!¥) (B[] — Egu [)).

(i) For the Wasserstein metric, we have

BY(0.04) = (Balv] ~ Egu (V) (€¥(3)) " (Eo[¥] ~ Epe[v])

where €W (0) = E5[3, (a,w) (a,w) B

(ii) For the Fisher-Rao metric, we have

BER(0.0%) = (Bglv] ~Egu[V]) " (€"%(3)) (B[]~ Ege V)

where €7R(f) = B[ (V(x) ~ B[] (V(x) - E[v]) 1.
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Interpretation

Eg/ [V]

Eg[W]

® Intuitively, the metric between two distributions is measured
along a chosen set of statistics.

e If W is the sufficient statistics of an exponential family Ey,
then we are measuring local distances of MLE projections
onto €y, whose dual parameters are Ey[V] and Eq [V].



G. Montifar

Example 7 (Order-1 approximation)
For the metric approximation with the (linear) space of linear
functions, F; = {(D(X) =a'x+b:acR™ be R}, we have:
i .
O B1Y(6,6%) = (Balx] ~ Byl (Boli] — Bl
(i) B

BER(6,6%) = (Bolx] — Egelx]) " (B5[(x — Egn)(x — Egx)T| ) (Bglx] — Egu[x]).
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Example 8 (Order-2 approximation)

For the space of quadratic functions,

Fr = {CD(X) = %XTQX+ alx+b: Qe R™M 4cR™ be ]R},
we have:

(i)

BY(0.0%) = (Bo [ 5] —Bor [5:] ) s [0y, rocin] ™ (Bo [5:] B [5:] ).

(ii)

2

0570, = (5[] -2 [4]) (e0) (0[] -5 [4])

where



Validation error per epoch
Averaged over 5 runs

—— Vanilla/Standard

—— S5GD 3 times, no regularization
—— SGD 5 times, no regularization
—— Order 1 Wasserstein Proximal
—— Order 2 Wasserstein Proximal

50 4

validation error

Test error on CIFAR-10 classification
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