
PIC 10A
Introduction to Programming

Midterm

Instructions. . .

• Gradescope. . .

– You have until Friday May 7 at 11:59pm PST to submit your solutions to Gradescope.

– Make sure that you correctly tell Gradescope on which pages you answer each ques-
tion.

• Class on Monday May 3 at 1pm is cancelled to give you more time this week.

• Exam conditions???

– I think it is beneficial for you to attempt the exam under exam conditions at first.

– After you have evaluated your progress by attempting the exam under exam conditions,
you can spend as long as you wish writing up perfect solutions with full explanations.

– Only submit your perfect solutions. We do not need to see your previous attempts.

Name:
Student ID number:
Discussion:

Question Points Score

1 6

2 6

3 6

Total: 18



In every question, you should assume that

#include <iostream>
#include <string>

using namespace std;

has been typed at the start.

Problem 1. 6pts.
Explain the output of the following code.
int main() {

cout << boolalpha;
cout << (100.0 * 20.15 < 2015.0) << endl;
cout << static_cast<int>(100.0 * 20.15) << endl;

cout << 'g' - 'b' << endl;
char ch = 'D' + 'a' - 'A';
cout << ch << endl;

string s = "AAARGH!!!";
if (s.find("AAA")) { cout << 1 << endl; }
if (s.find("RGH")) { cout << 2 << endl; }
if (s.find("???")) { cout << 3 << endl; }

return 0;
}

For full credit, your explanation must use the following words appropriately:

• int, double, bool, char, size_t,
• static_cast<int>, static_cast<bool>, static_cast<char>, static_cast<size_t>,
• console, display / displays / displayed, assign / assigns / assigned / assignment,
• implicit, convert / converts / converted / conversion, zero, non-zero,
• rounding, truncate / truncates / truncated / truncation.



Problem 2. 6pts.
Explain the output of the following code by. . .

• carefully keeping track of the input buffer (you should clearly display the contents
of the input buffer after every significant line of code);

• carefully following the instructions on pages 5 and 6 of the supplementary materials
which describe how cin >> variable, getline(cin, s), cin.ignore(), cin.get(),
cin.peek() work (e.g. you should explicitly use steps 1 to 4 for cin >> variable).

int main() {
cout << "Type (not copy and paste) the four (not three)" << endl;
cout << "commented lines of code (ending each by pressing ENTER):" << endl;

/*

9 8
7 6543
2 1012 345 678 911
*/

int i1, i2, i3, i4, i5;
char c1, c2;
string s;

cin >> i1;
cin >> i2;
getline(cin, s);

cin >> i3;
cin.ignore();

c1 = cin.peek();
c2 = cin.get();

cin >> i4 >> i5;
cout << endl;

cout << "Line 1: " << i1 << endl;
cout << "Line 2: " << i2 << endl; // These variables
cout << "Line 3: " << s << endl; // are printed in
cout << "Line 4: " << i3 << endl; // the same order
cout << "Line 5: " << c1 << endl; // that they are
cout << "Line 6: " << c2 << endl; // assigned to.
cout << "Line 7: " << i4 << endl;
cout << "Line 8: " << i5 << endl;

return 0;
}



Problem 3. 6pts.
Explain the output of the following code with the aid of a picture.
int f(int& i, int j) {

int tmp = i;
i = j;

if (tmp == 8) { cout << tmp << ' ' << i << ' ' << j << endl; }

j = tmp;
return j;
return i;

}
int main() {

int i = 8, j = 1, k = 0;

f(j, k);
cout << i << ' ' << j << ' ' << k << endl;

i = f(i, j);
cout << i << ' ' << j << ' ' << k << endl;

return 0;
}

For full credit, your picture must. . .

• display a function scope for each function call;
• display all function parameters in the appropriate place;
• draw references consistently with how they were drawn in lecture;
• indicate the full history of values that each non-referencing variable has;
• indicate the order that values are updated or introduced, and scopes are introduced

and destroyed.

You can satisfy the last bullet point by labelling your picture with numbers in a different
color to your normal writing. I am happy to demonstrate this idea in office hours. You
should expect to use at least the numbers from 1 to 11. It is reasonable to lump together
the introduction of a function scope and the initialization of the function parameters. It
is also reasonable to lump together the destruction of a function scope and the impact
of a returned value. This video (a link you can click) should be useful.

For full credit, your prose must. . .

• disambiguate variables in main and variables in a function scope (if they happen
to have the same name);

• explain issues concerning the return keyword carefully.

https://drive.google.com/file/d/18jgCJrZFypW9kw5iKWH5wiDxIKx9MOKk/view

