Math 32B: $d \theta$

Michael Andrews
UCLA Mathematics Department

May 11, 2018

1 Another problem

Let $f(x, y, z)=\arctan \left(\frac{y}{x}\right)$. Calculate ∇f.

Read the first paragraph of "conservative vector fields" on page 915.
Is $\mathbf{F}(x, y, z)=\frac{(-y, x, 0)}{x^{2}+y^{2}}$ conservative?

2 Solution

$\nabla f=\frac{(-y, x, 0)}{x^{2}+y^{2}}$.
The domain of \mathbf{F} is

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \neq 0\right\} .
$$

The domain of f is smaller:

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x \neq 0\right\} .
$$

Thus, f does NOT define a potential for \mathbf{F}.
We'll be able to show \mathbf{F} is not conservative in a week or so. The reason is that the integral

$$
\int_{x^{2}+y^{2}=1, z=0} \mathbf{F} \cdot d \mathbf{r}=2 \pi
$$

is non-zero.

