Math 32B: Conservative and not conservative fields, $d\theta_1 - d\theta_2$

Michael Andrews UCLA Mathematics Department

May 18, 2018

Remark: the vector fields in this assignment have the form

$$\mathbf{F}(x, y, z) = (F_1(x, y), F_2(x, y), 0).$$

This means that they can be visualized entirely in 2D and that their curls are multiples of (0, 0, 1). For questions 1-5, the 2D projections of the domains are $\mathbb{R}^2 - (0, 0)$, \mathbb

1. Consider the following vector field with domain $\mathbb{R}^3 - (z-axis)$:

$$\mathbf{F}(x, y, z) = \frac{(-y, x, 0)}{\sqrt{x^2 + y^2}}$$

- (a) What is $\nabla \times \mathbf{F}$?
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- (c) Is **F** conservative on $\mathbb{R}^3 (z \text{-axis})$?
- (d) How would you justify your answer to (c) as quickly as possible?
- 2. Consider the following vector field with domain $\mathbb{R}^3 (z$ -axis):

$$\mathbf{F}(x, y, z) = \frac{(-y, x, 0)}{x^2 + y^2}.$$

- (a) What is $\nabla \times \mathbf{F}$?
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- (c) Is **F** conservative on $\mathbb{R}^3 (z \text{-axis})$?
- (d) How would you justify your answer to (c) as quickly as possible?

3. Consider the following vector field with domain $\mathbb{R}^3 - (z-axis)$:

$$\mathbf{F}(x,y,z) = \frac{(x,y,0)}{\sqrt{x^2 + y^2}}.$$

- (a) What is $\nabla \times \mathbf{F}$?
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- (c) Is **F** conservative on $\mathbb{R}^3 (z \text{-axis})$?
- (d) How would you justify your answer to (c) as quickly as possible?
- 4. Consider the following vector field with domain $\mathbb{R}^3 (\{0\} \times [-1, 1] \times \mathbb{R})$:

$$\mathbf{F}(x,y,z) = \frac{(-(y+1),x,0)}{x^2 + (y+1)^2} - \frac{(-(y-1),x,0)}{x^2 + (y-1)^2}.$$

- Maybe it helps to see the vector field.
- Go to the applet: http://www.falstad.com/vector/index.html.
- Select "user-defined vector field".
- Enter the coordinates lised in the next two steps.
- - $(y+1) / (x^2 + (y+1)^2) + (y-1) / (x^2 + (y-1)^2)$
- x / (x² + (y+1)²) x / (x² + (y-1)²)
- I have chosen to remove the line segment connecting the two dots from the domain of vector field.
- (a) What is $\nabla \times \mathbf{F}$?
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (2\cos t, 2\sin t, 0)$ where $-\pi \le t \le \pi$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$. Hint: how do $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$ and $\mathbf{F}(\mathbf{r}(-t)) \cdot \mathbf{r}'(-t)$ relate?
- (c) Is **F** conservative on $\mathbb{R}^3 (\{0\} \times [-1, 1] \times \mathbb{R})$?
- (d) Justify your answer to (c).

5. Let $\mathbf{F}_1(x, y, z) = \frac{(-(y+1), x, 0)}{x^2 + (y+1)^2}$ and $\mathbf{F}_2(x, y, z) = \frac{(-(y-1), x, 0)}{x^2 + (y-1)^2}$.

- (a) What is $\nabla \times \mathbf{F}_2$? Is \mathbf{F}_2 conservative on $\{(x, y, z) \in \mathbb{R}^3 : y < \frac{1}{2}\}$? Hint: does this domain have holes? Let C be parametrized by $\mathbf{r}(t) = (\cos t, -1 + \sin t, 0), 0 \le t \le 2\pi$.
- (b) What is $\int_C \mathbf{F}_2 \cdot d\mathbf{r}$? Hint: use (a).
- (c) What is $\int_C \mathbf{F}_1 \cdot d\mathbf{r}$?
- (d) Is $\mathbf{F} = \mathbf{F}_1 \mathbf{F}_2$ conservative on

$$\mathbb{R}^{3} - (\{0\} \times \{-1\} \times \mathbb{R}) - (\{0\} \times \{1\} \times \mathbb{R})?$$

(e) Compare your answer to (d) with question 4(c).

Solutions

1. Consider the following vector field with domain $\mathbb{R}^3 - (z-axis)$:

$$\mathbf{F}(x, y, z) = \frac{(-y, x, 0)}{\sqrt{x^2 + y^2}}.$$

(a) Direct calculation gives

$$abla imes \mathbf{F} = \left(0, 0, \frac{1}{\sqrt{x^2 + y^2}}\right).$$

- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Direct calculation gives $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$.
- (c) **F** is NOT conservative on \mathbb{R}^3 -(z-axis).
- (d) I found the line integral to be the quicker calculation.A vector field with a non-zero circulation is not conservative.The curl calculation also tells you F is NOT conservative.
- 2. Consider the following vector field with domain $\mathbb{R}^3 (z$ -axis):

$$\mathbf{F}(x, y, z) = \frac{(-y, x, 0)}{x^2 + y^2}.$$

- (a) Direct calculation gives $\nabla \times \mathbf{F} = \mathbf{0}$.
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Direct calculation gives $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$.
- (c) **F** is NOT conservative on $\mathbb{R}^3 (z \text{-axis})$.
- (d) A vector field with a non-zero circulation is not conservative.
- 3. Consider the following vector field with domain $\mathbb{R}^3 (z-axis)$:

$$\mathbf{F}(x,y,z) = \frac{(x,y,0)}{\sqrt{x^2 + y^2}}.$$

- (a) Direct calculation gives $\nabla \times \mathbf{F} = \mathbf{0}$.
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ where $0 \le t \le 2\pi$. Direct calculation gives $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.
- (c) **F** is conservative on $\mathbb{R}^3 (z$ -axis).
- (d) $f(x, y, z) = \sqrt{x^2 + y^2}$ is a potential for **F**.

4. Consider the following vector field with domain $\mathbb{R}^3 - (\{0\} \times [-1, 1] \times \mathbb{R})$:

$$\mathbf{F}(x,y,z) = \frac{(-(y+1),x,0)}{x^2 + (y+1)^2} - \frac{(-(y-1),x,0)}{x^2 + (y-1)^2}.$$

- (a) Question 3a together with the chain rule give $\nabla \times \mathbf{F} = \mathbf{0}$.
- (b) Let C be the oriented curve parametrized by $\mathbf{r}(t) = (2\cos t, 2\sin t, 0)$ where $-\pi \le t \le \pi$.

$$\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \frac{4 + 2\sin t}{5 + 4\sin t} - \frac{4 - 2\sin t}{5 - 4\sin t}$$

so $\mathbf{F}(\mathbf{r}(-t)) \cdot \mathbf{r}'(-t) = -\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$. Thus, $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.

- (c) **F** is conservative on $\mathbb{R}^3 (\{0\} \times [-1, 1] \times \mathbb{R})$.
- (d) **F** has zero curl. The domain has a hole, but we checked that the circulation around that hole is zero, so **F** is conservative.

Perhaps you'd feel better if we defined a potential for **F**. Define a function with domain $\mathbb{R}^3 - (\{0\} \times [-1, 1] \times \mathbb{R})$ by

$$f(x, y, z) = \begin{cases} \arctan(\frac{y+1}{x}) - \arctan(\frac{y-1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Direct calculation shows that for $x \neq 0$, $\nabla f(x, y, z) = \mathbf{F}(x, y, z)$.

We worry though. Is f even continuous when x = 0? A point (0, y, z) in the domain has either y > 1 or y < -1. Suppose y > 1. Then $\lim_{x\to 0^+} f(x, y, z) = \frac{\pi}{2} - \frac{\pi}{2} = 0$ and $\lim_{x\to 0^-} f(x, y, z) = -\frac{\pi}{2} + \frac{\pi}{2} = 0$, so $\lim_{x\to 0} f(x, y, z) = 0 = f(0, y, z)$. Suppose y < -1. Then $\lim_{x\to 0^+} f(x, y, z) = -\frac{\pi}{2} + \frac{\pi}{2} = 0$ and $\lim_{x\to 0^-} f(x, y, z) = \frac{\pi}{2} - \frac{\pi}{2} = 0$, so $\lim_{x\to 0} f(x, y, z) = 0 = f(0, y, z)$. Yes, f is continuous when x = 0. We worry more. Does $\nabla f(x, y, z) = \mathbf{F}(x, y, z)$ hold when x = 0?

$$\mathbf{F}(0, y, z) = \left(\frac{2}{y^2 - 1}, 0, 0\right)$$

We quickly see that $\frac{\partial f}{\partial y}(0, y, z) = \frac{\partial f}{\partial z}(0, y, z) = 0.$ By definition, $\frac{\partial f}{\partial x}(0, y, z) = \lim_{x \to 0} \frac{f(x, y, z) - f(0, y, z)}{x} = \lim_{x \to 0} \frac{f(x, y, z)}{x}.$ By L'Hôpital's rule, $\lim_{x \to 0} \frac{f(x, y, z)}{x} = \lim_{x \to 0} \frac{\partial f}{\partial x}(x, y, z).$ Finally,

$$\lim_{x \to 0} \frac{\partial f}{\partial x}(x, y, z) = \lim_{x \to 0} \left(\frac{-(y+1)}{x^2 + (y+1)^2} - \frac{-(y-1)}{x^2 + (y-1)^2} \right) = \frac{2}{y^2 - 1}.$$

So $\frac{\partial f}{\partial x}(0, y, z) = \frac{2}{y^2 - 1}.$
Yes, $\nabla f(x, y, z) = \mathbf{F}(x, y, z)$ holds when $x = 0$.

Phew!! You can see the end for other approaches.

5. Let
$$\mathbf{F}_1(x, y, z) = \frac{(-(y+1), x, 0)}{x^2 + (y+1)^2}$$
 and $\mathbf{F}_2(x, y, z) = \frac{(-(y-1), x, 0)}{x^2 + (y-1)^2}$.

- (a) Question 3a together with the chain rule give ∇ × F₂. {(x, y, z) ∈ ℝ³ : y < ¹/₂} has no holes, so F₂ is conservative on {(x, y, z) ∈ ℝ³ : y < ¹/₂}. Let C be parametrized by r(t) = (cos t, -1 + sin t, 0), 0 ≤ t ≤ 2π.
- (b) $\int_C \mathbf{F}_2 \cdot d\mathbf{r} = 0$ since \mathbf{F}_2 is conservative on $\{(x, y, z) \in \mathbb{R}^3 : y < \frac{1}{2}\}$.
- (c) Direct calculation gives $\int_C \mathbf{F}_1 \cdot d\mathbf{r} = 2\pi$.

(d) Let
$$F = F_1 - F_2$$

 $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$ so \mathbf{F} has a non-zero circulation on

$$\mathbb{R}^3 - (\{0\} \times \{-1\} \times \mathbb{R}) - (\{0\} \times \{1\} \times \mathbb{R})$$

which means it is NOT conservative on this domain. Notice that trying to define a potential as in 4(d) would result in a discontinuous function since

$$\lim_{x \to 0+} f(x, 0, 0) = \pi \neq -\pi = \lim_{x \to 0-} f(x, 0, 0).$$

(e) Putting a wall between $\{0\} \times \{-1\} \times \mathbb{R}$ and $\{0\} \times \{1\} \times \mathbb{R}$), makes **F** change from not conservative to conservative.

 \mathbf{F} "detects" loops which are nontrivial and pass through the region being blocked by the wall.

6. Another formula for the potential I gave in 4.(d) is

$$\operatorname{sgn}(x)\left[\operatorname{arcsin}\left(\frac{y+1}{\sqrt{x^2+(y+1)^2}}\right) - \operatorname{arcsin}\left(\frac{y-1}{\sqrt{x^2+(y-1)^2}}\right)\right].$$

Another way to prove that f is differentiable on the plane x = 0 is to note that for |y| > 1, we have

$$f(x, y, z) = \arctan\left(\frac{x}{y-1}\right) - \arctan\left(\frac{x}{y+1}\right).$$

This formula is not valid when $-1 \le y \le 1$. We have

$$f(x, y, z) = \begin{cases} \arctan(\frac{x}{y-1}) - \arctan(\frac{x}{y+1}) + \pi & \text{if } x > 0, \ -1 < y < 1\\ \arctan(\frac{x}{y-1}) - \arctan(\frac{x}{y+1}) - \pi & \text{if } x < 0, \ -1 < y < 1. \end{cases}$$

7. How do question 4 and 5 change for the domain

$$\mathbb{R}^3 - (\{0\} \times (-\infty, -1] \times \mathbb{R}) - (\{0\} \times [1, \infty) \times \mathbb{R})?$$