Math 32B: Conservative and not conservative fields, $d \theta_{1}-d \theta_{2}$

Michael Andrews
UCLA Mathematics Department

May 18, 2018

Remark: the vector fields in this assignment have the form

$$
\mathbf{F}(x, y, z)=\left(F_{1}(x, y), F_{2}(x, y), 0\right)
$$

This means that they can be visualized entirely in 2D and that their curls are multiples of $(0,0,1)$. For questions $1-5$, the 2 D projections of the domains are $\mathbb{R}^{2}-(0,0), \mathbb{R}^{2}-(0,0), \mathbb{R}^{2}-(0,0), \mathbb{R}^{2}-($ the line from $(0,-1)$ to $(0,1))$, and $\mathbb{R}^{2}-(0,-1)-(0,1)$, respectively.

1. Consider the following vector field with domain $\mathbb{R}^{3}-(z$-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(-y, x, 0)}{\sqrt{x^{2}+y^{2}}} .
$$

(a) What is $\nabla \times \mathbf{F}$?
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(c) Is \mathbf{F} conservative on $\mathbb{R}^{3}-(z$-axis $)$?
(d) How would you justify your answer to (c) as quickly as possible?
2. Consider the following vector field with domain \mathbb{R}^{3}-(z-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(-y, x, 0)}{x^{2}+y^{2}}
$$

(a) What is $\nabla \times \mathbf{F}$?
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(c) Is \mathbf{F} conservative on $\mathbb{R}^{3}-(z$-axis)?
(d) How would you justify your answer to (c) as quickly as possible?
3. Consider the following vector field with domain $\mathbb{R}^{3}-(z$-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(x, y, 0)}{\sqrt{x^{2}+y^{2}}}
$$

(a) What is $\nabla \times \mathbf{F}$?
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(c) Is \mathbf{F} conservative on $\mathbb{R}^{3}-(z$-axis)?
(d) How would you justify your answer to (c) as quickly as possible?
4. Consider the following vector field with domain $\mathbb{R}^{3}-(\{0\} \times[-1,1] \times \mathbb{R})$:

$$
\mathbf{F}(x, y, z)=\frac{(-(y+1), x, 0)}{x^{2}+(y+1)^{2}}-\frac{(-(y-1), x, 0)}{x^{2}+(y-1)^{2}} .
$$

- Maybe it helps to see the vector field.
- Go to the applet: http://www.falstad.com/vector/index.html.
- Select "user-defined vector field".
- Enter the coordinates lised in the next two steps.
- - $(y+1) /\left(x^{\wedge} 2+(y+1)^{\wedge} 2\right)+(y-1) /\left(x^{\wedge} 2+(y-1)^{\wedge} 2\right)$
- $\mathrm{x} /\left(\mathrm{x}^{\wedge} 2+(\mathrm{y}+1)^{\wedge} 2\right)-\mathrm{x} /\left(\mathrm{x}^{\wedge} 2+(\mathrm{y}-1)^{\wedge} 2\right)$
- I have chosen to remove the line segment connecting the two dots from the domain of vector field.
(a) What is $\nabla \times \mathbf{F}$?
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(2 \cos t, 2 \sin t, 0)$ where $-\pi \leq t \leq \pi$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. Hint: how do $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$ and $\mathbf{F}(\mathbf{r}(-t)) \cdot \mathbf{r}^{\prime}(-t)$ relate?
(c) Is \mathbf{F} conservative on $\mathbb{R}^{3}-(\{0\} \times[-1,1] \times \mathbb{R})$?
(d) Justify your answer to (c).

5. Let $\mathbf{F}_{1}(x, y, z)=\frac{(-(y+1), x, 0)}{x^{2}+(y+1)^{2}}$ and $\mathbf{F}_{2}(x, y, z)=\frac{(-(y-1), x, 0)}{x^{2}+(y-1)^{2}}$.
(a) What is $\nabla \times \mathbf{F}_{2}$? Is \mathbf{F}_{2} conservative on $\left\{(x, y, z) \in \mathbb{R}^{3}: y<\frac{1}{2}\right\}$? Hint: does this domain have holes?
Let C be parametrized by $\mathbf{r}(t)=(\cos t,-1+\sin t, 0), 0 \leq t \leq 2 \pi$.
(b) What is $\int_{C} \mathbf{F}_{2} \cdot d \mathbf{r}$? Hint: use (a).
(c) What is $\int_{C} \mathbf{F}_{1} \cdot d \mathbf{r}$?
(d) Is $\mathbf{F}=\mathbf{F}_{1}-\mathbf{F}_{2}$ conservative on

$$
\mathbb{R}^{3}-(\{0\} \times\{-1\} \times \mathbb{R})-(\{0\} \times\{1\} \times \mathbb{R}) ?
$$

(e) Compare your answer to (d) with question 4(c).

Solutions

1. Consider the following vector field with domain $\mathbb{R}^{3}-(z$-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(-y, x, 0)}{\sqrt{x^{2}+y^{2}}}
$$

(a) Direct calculation gives

$$
\nabla \times \mathbf{F}=\left(0,0, \frac{1}{\sqrt{x^{2}+y^{2}}}\right)
$$

(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Direct calculation gives $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi$.
(c) \mathbf{F} is NOT conservative on $\mathbb{R}^{3}-(z$-axis $)$.
(d) I found the line integral to be the quicker calculation.

A vector field with a non-zero circulation is not conservative. The curl calculation also tells you \mathbf{F} is NOT conservative.
2. Consider the following vector field with domain $\mathbb{R}^{3}-(z$-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(-y, x, 0)}{x^{2}+y^{2}}
$$

(a) Direct calculation gives $\nabla \times \mathbf{F}=\mathbf{0}$.
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Direct calculation gives $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi$.
(c) \mathbf{F} is NOT conservative on $\mathbb{R}^{3}-(z$-axis $)$.
(d) A vector field with a non-zero circulation is not conservative.
3. Consider the following vector field with domain $\mathbb{R}^{3}-(z$-axis $)$:

$$
\mathbf{F}(x, y, z)=\frac{(x, y, 0)}{\sqrt{x^{2}+y^{2}}}
$$

(a) Direct calculation gives $\nabla \times \mathbf{F}=\mathbf{0}$.
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(\cos t, \sin t, 0)$ where $0 \leq t \leq 2 \pi$. Direct calculation gives $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$.
(c) \mathbf{F} is conservative on $\mathbb{R}^{3}-(z$-axis $)$.
(d) $f(x, y, z)=\sqrt{x^{2}+y^{2}}$ is a potential for \mathbf{F}.
4. Consider the following vector field with domain $\mathbb{R}^{3}-(\{0\} \times[-1,1] \times \mathbb{R})$:

$$
\mathbf{F}(x, y, z)=\frac{(-(y+1), x, 0)}{x^{2}+(y+1)^{2}}-\frac{(-(y-1), x, 0)}{x^{2}+(y-1)^{2}} .
$$

(a) Question 3a together with the chain rule give $\nabla \times \mathbf{F}=\mathbf{0}$.
(b) Let C be the oriented curve parametrized by $\mathbf{r}(t)=(2 \cos t, 2 \sin t, 0)$ where $-\pi \leq t \leq \pi$.

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=\frac{4+2 \sin t}{5+4 \sin t}-\frac{4-2 \sin t}{5-4 \sin t}
$$

so $\mathbf{F}(\mathbf{r}(-t)) \cdot \mathbf{r}^{\prime}(-t)=-\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$. Thus, $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$.
(c) \mathbf{F} is conservative on $\mathbb{R}^{3}-(\{0\} \times[-1,1] \times \mathbb{R})$.
(d) \mathbf{F} has zero curl. The domain has a hole, but we checked that the circulation around that hole is zero, so \mathbf{F} is conservative.

Perhaps you'd feel better if we defined a potential for \mathbf{F}.
Define a function with domain $\mathbb{R}^{3}-(\{0\} \times[-1,1] \times \mathbb{R})$ by

$$
f(x, y, z)=\left\{\begin{array}{cl}
\arctan \left(\frac{y+1}{x}\right)-\arctan \left(\frac{y-1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Direct calculation shows that for $x \neq 0, \nabla f(x, y, z)=\mathbf{F}(x, y, z)$.
We worry though. Is f even continuous when $x=0$?
A point $(0, y, z)$ in the domain has either $y>1$ or $y<-1$.
Suppose $y>1$.
Then $\lim _{x \rightarrow 0+} f(x, y, z)=\frac{\pi}{2}-\frac{\pi}{2}=0$
and $\lim _{x \rightarrow 0-} f(x, y, z)=-\frac{\pi}{2}+\frac{\pi}{2}=0$, so $\lim _{x \rightarrow 0} f(x, y, z)=0=f(0, y, z)$.
Suppose $y<-1$.
Then $\lim _{x \rightarrow 0+} f(x, y, z)=-\frac{\pi}{2}+\frac{\pi}{2}=0$
and $\lim _{x \rightarrow 0-} f(x, y, z)=\frac{\pi}{2}-\frac{\pi}{2}=0$,
so $\lim _{x \rightarrow 0} f(x, y, z)=0=f(0, y, z)$.
Yes, f is continuous when $x=0$.

We worry more. Does $\nabla f(x, y, z)=\mathbf{F}(x, y, z)$ hold when $x=0$?

$$
\mathbf{F}(0, y, z)=\left(\frac{2}{y^{2}-1}, 0,0\right)
$$

We quickly see that $\frac{\partial f}{\partial y}(0, y, z)=\frac{\partial f}{\partial z}(0, y, z)=0$.
By definition, $\frac{\partial f}{\partial x}(0, y, z)=\lim _{x \rightarrow 0} \frac{f(x, y, z)-f(0, y, z)}{x}=\lim _{x \rightarrow 0} \frac{f(x, y, z)}{x}$.
By L'Hôpital's rule, $\lim _{x \rightarrow 0} \frac{f(x, y, z)}{x}=\lim _{x \rightarrow 0} \frac{\partial f}{\partial x}(x, y, z)$.
Finally,
$\lim _{x \rightarrow 0} \frac{\partial f}{\partial x}(x, y, z)=\lim _{x \rightarrow 0}\left(\frac{-(y+1)}{x^{2}+(y+1)^{2}}-\frac{-(y-1)}{x^{2}+(y-1)^{2}}\right)=\frac{2}{y^{2}-1}$.
So $\frac{\partial f}{\partial x}(0, y, z)=\frac{2}{y^{2}-1}$.
Yes, $\nabla f(x, y, z)=\mathbf{F}(x, y, z)$ holds when $x=0$.
Phew!! You can see the end for other approaches.
5. Let $\mathbf{F}_{1}(x, y, z)=\frac{(-(y+1), x, 0)}{x^{2}+(y+1)^{2}}$ and $\mathbf{F}_{2}(x, y, z)=\frac{(-(y-1), x, 0)}{x^{2}+(y-1)^{2}}$.
(a) Question 3a together with the chain rule give $\nabla \times \mathbf{F}_{2}$.
$\left\{(x, y, z) \in \mathbb{R}^{3}: y<\frac{1}{2}\right\}$ has no holes,
so \mathbf{F}_{2} is conservative on $\left\{(x, y, z) \in \mathbb{R}^{3}: y<\frac{1}{2}\right\}$.
Let C be parametrized by $\mathbf{r}(t)=(\cos t,-1+\sin t, 0), 0 \leq t \leq 2 \pi$.
(b) $\int_{C} \mathbf{F}_{2} \cdot d \mathbf{r}=0$ since \mathbf{F}_{2} is conservative on $\left\{(x, y, z) \in \mathbb{R}^{3}: y<\frac{1}{2}\right\}$.
(c) Direct calculation gives $\int_{C} \mathbf{F}_{1} \cdot d \mathbf{r}=2 \pi$.
(d) Let $\mathbf{F}=\mathbf{F}_{1}-\mathbf{F}_{2}$. $\int_{C} \mathbf{F} \cdot d \mathbf{r}=2 \pi$ so \mathbf{F} has a non-zero circulation on

$$
\mathbb{R}^{3}-(\{0\} \times\{-1\} \times \mathbb{R})-(\{0\} \times\{1\} \times \mathbb{R})
$$

which means it is NOT conservative on this domain.
Notice that trying to define a potential as in 4(d) would result in a discontinuous function since

$$
\lim _{x \rightarrow 0+} f(x, 0,0)=\pi \neq-\pi=\lim _{x \rightarrow 0-} f(x, 0,0) .
$$

(e) Putting a wall between $\{0\} \times\{-1\} \times \mathbb{R}$ and $\{0\} \times\{1\} \times \mathbb{R}$), makes \mathbf{F} change from not conservative to conservative.
F "detects" loops which are nontrivial and pass through the region being blocked by the wall.
6. Another formula for the potential I gave in 4.(d) is

$$
\operatorname{sgn}(x)\left[\arcsin \left(\frac{y+1}{\sqrt{x^{2}+(y+1)^{2}}}\right)-\arcsin \left(\frac{y-1}{\sqrt{x^{2}+(y-1)^{2}}}\right)\right] .
$$

Another way to prove that f is differentiable on the plane $x=0$ is to note that for $|y|>1$, we have

$$
f(x, y, z)=\arctan \left(\frac{x}{y-1}\right)-\arctan \left(\frac{x}{y+1}\right) .
$$

This formula is not valid when $-1 \leq y \leq 1$. We have

$$
f(x, y, z)= \begin{cases}\arctan \left(\frac{x}{y-1}\right)-\arctan \left(\frac{x}{y+1}\right)+\pi & \text { if } x>0,-1<y<1 \\ \arctan \left(\frac{x}{y-1}\right)-\arctan \left(\frac{x}{y+1}\right)-\pi & \text { if } x<0,-1<y<1\end{cases}
$$

7. How do question 4 and 5 change for the domain

$$
\mathbb{R}^{3}-(\{0\} \times(-\infty,-1] \times \mathbb{R})-(\{0\} \times[1, \infty) \times \mathbb{R}) ?
$$

