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1 Sequences

1.1 What is one?

A sequence is a list which goes on forever. Here’s an example.

31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, . . .

This sequence lists the number of days in each month starting in October
2017. There are some things we can demonstrate with this sequence.

• There’s not a particular nice formula for this sequence and that doesn’t
matter.

• We often write an for the n-th term of a sequence. In this case,

a1 = 31, a2 = 30, a3 = 31, a4 = 31, a5 = 28, . . . .

• We often write (an) or (an)∞n=1 for a sequence, so in this case (an)∞n=1

stands for

31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, . . .

Here are some other examples of sequences:

• 1, 2, 3, 4, 5, . . .

• 1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . .

• 2, 4, 8, 16, 32, . . .

• 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 , . . .

1



The above sequences have nice formulas for their n-th term. We have

an = n, an =
1

n
, an = 2n, an =

1

2n
,

respectively.

1.2 What does convergence mean?

If the sequence has a nice formula for its n-th term then one way you can
figure out its limit (if it exists) is by typing in the formula into a calculator
and then plugging in a massive positive integer for n.

In the examples above we have the following.

1. Plugging in a massive postive integer into an = n gives back the same
huge positive integer. The sequence diverges to ∞.

2. Plugging in a big enough postive integer into the formula an = 1
n will

force a rubbish calculator to return 0. The sequence converges to 0.

3. Plugging in a massive positive integer into an = 2n will return an even
bigger huge positive integer. The sequence diverges to ∞.

4. Plugging in a big enough positive integer into the formula an = 1
2n will

force a rubbish calculator to return 0. The sequence converges to 0.

There is a formal definition of what it means for a sequence (an) to converge
to a number L. We can visualize a sequence (an)∞n=1 on a graph by putting
a dot at the point (n, an) for n = 1, 2, 3, . . . Without using mathematical
symbols, the definition says, “if some annoying person (Cauchy) puts their
arms either side of the line y = L, then you can specify how far off to the
right someone else (Weierstrass) has to walk until all the subsequent points
of the sequence lie between Cauchy’s arms.” When this definition is satisfied
we write

lim
n→∞

an = L.

This definition (due to Monsieur Cauchy) is clever: although we say “an
tends to L as n tends to ∞,” the formal definition does not depend on any
hand-waving about ∞. This is good because ∞ is not a real number!

Writing the definition just mentioned out in symbols and learning how to
use it is the best way to understand the convergence of sequences. However,
many students (including myself, 12 years ago) take a long to get to grips
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with the formal definition. There is not much time, and so I will not expect
you to come to terms with the formal definition, but you might still find it
useful to think about.

Similarly, there is formal definition of what it means for a sequence (an)
to diverge to ∞. When this definition is satisfied we write

lim
n→∞

an =∞.

Even more similarly, we can make sense of limn→∞ an = −∞, too.
If (an) is a sequence and none of the above conditions hold, we say (an)

diverges and that limn→∞ an does not exist.

1.3 The function case

Something you may be more familiar with is the limit of a function f(x) as
x goes to ∞, limx→∞ f(x). This can help you!

Sequences via functions. Suppose an = f(n) for some function f(x) and
that limx→∞ f(x) = L. Then limn→∞ an = L.

The point of this theorem is that a sequence only has values for each posi-
tive integer: it is a list. A function takes on even more values: it can make
sense at

√
2, e, π, 1010

3 . This means that the condition limx→∞ f(x) = L is
a stronger one than limn→∞ f(n) = L. However, once we have a function,
methods of calculus (e.g. L’Hôpital’s rule) might be applicable, whereas,
before they were not.

For example, if you want to calculate limn→∞(1 + 1
n)n, then it is enough

to calculate limx→∞(1 + 1
x)x. We have seen, using L’Hôpital’s rule, that

limx→∞(1 + 1
x)x = e, and so limn→∞(1 + 1

n)n = e.

1.4 Your friends

When we differentiate, we rarely have to go near the definition of the deriva-
tive. When we differentiate, our friends are xn, cosx, sinx, ex, lnx, arcsinx,
and arctanx. Once we know how to differentiate our friends, and know some
rules about differentiation, we can differentiate almost any function we want
to. It’s like all our friends showed up at some product rule, quotient rule,
chain rule party, got on really swell, and had a load of babies - isn’t ex cos(2x)
cute?! Now they’re our friends too.
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The same is true for sequences. We remember the limits of our sequence
friends, and most other limits will follow from some rules about convergent
sequences. Here are your two best sequence friends.

1. The sequence with n-th term an = 1
n converges to 0. That is,

lim
n→∞

1

n
= 0.

2. If r is a number with −1 < r < 1, then the sequence with n-th term
an = rn converges to 0. That is,

lim
n→∞

rn = 0.

If |r| > 1 then the sequence with n-th term an = rn diverges.

1.5 Rules for sequences

Here are the rules your sequence friends use to make babies.
Suppose (an) and (bn) are covergent sequences, that (cn) is a divergent

sequence, that k is a real number, and f(x) is a continuous function defined
at all an and limn→∞ an.

1. limn→∞ k = k;

2. limn→∞(kan) = k · (limn→∞ an);

3. limn→∞(an + bn) = (limn→∞ an) + (limn→∞ bn);

4. (an + cn) diverges;

5. limn→∞(anbn) = (limn→∞ an) · (limn→∞ bn);

6. limn→∞(anbn ) = limn→∞ an
limn→∞ bn

, as long as limn→∞ bn 6= 0;

7. limn→∞ f(an) = f(limn→∞ an).

As an example, we can use the rules to verify that

lim
n→∞

√
4n2 + 2n+ 1√

9n2 + 3n+ 227
=

2

3
.

First, we note that

√
4n2 + 2n+ 1√

9n2 + 3n+ 227
=

√
4 + 2 · 1n + 1

n ·
1
n√

9 + 3 · 1n + 227 · 1n ·
1
n
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Next, we calculate

lim
n→∞

[
9 + 3 · 1

n
+ 227 · 1

n
· 1

n

]
= lim

n→∞
9 + lim

n→∞

[
3 · 1

n

]
+ lim
n→∞

[
227 · 1

n
· 1

n

]
= lim

n→∞
9 + 3

[
lim
n→∞

1

n

]
+ 227 lim

n→∞

[
1

n
· 1

n

]
= lim

n→∞
9 + 3

[
lim
n→∞

1

n

]
+ 227

[
lim
n→∞

1

n

][
lim
n→∞

1

n

]
= 9 + 3 · 0 + 227 · 0 · 0 = 9.

The first equality uses 3; the second uses 2; the third uses 5; the final equality
uses 1 and the fact that limn→∞

1
n = 0.

Since
√
x is continuous, 7 tells us that

lim
n→∞

√
9 + 3 · 1

n
+ 227 · 1

n
· 1

n
=

√
lim
n→∞

[
9 + 3 · 1

n
+ 227 · 1

n
· 1

n

]
=
√

9 = 3.

Similarly, we can verify that limn→∞

√
4 + 2 · 1n + 1

n ·
1
n = 2. Finally,

lim
n→∞

√
4n2 + 2n+ 1√

9n2 + 3n+ 227
= lim

n→∞

√
4 + 2 · 1n + 1

n ·
1
n√

9 + 3 · 1n + 227 · 1n ·
1
n

=
limn→∞

√
4 + 2 · 1n + 1

n ·
1
n

limn→∞

√
9 + 3 · 1n + 227 · 1n ·

1
n

=
2

3
.

The middle equality follows from 6, which is okay to use because 3 6= 0.
I would never expect you to do this in so much detail on the exam, but I

do think it is beneficial for you to see where everything is coming from. The
point is that all we used was knowledge of our friend (an) = ( 1

n). Everything
else followed from the rules.

Even if you’re not amazing at saying exactly what rules you’re using,
you MUST be able to see that

lim
n→∞

√
4n2 + 2n+ 1√

9n2 + 3n+ 227
=

2

3
,

and I think the best way of doing this is writing

√
4n2 + 2n+ 1√

9n2 + 3n+ 227
=

√
4 + 2 · 1n + 1

n ·
1
n√

9 + 3 · 1n + 227 · 1n ·
1
n

.
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In calculating such a limit, this is the standard technique to show that the
highest degree terms in the numerator and denominator are all that matter.

1.6 Ignoring terms at the beginning of a sequence

Since calculating a limit requires understanding what happens late on in the
sequence, the limit won’t change if we delete or change some terms at the
beginning. Since limn→∞

1
n = 0, the sequences

20, 20, 20, 20, 20, 20, 20,
1

8
,

1

9
,

1

10
,

1

11
,

1

12
,

1

13
,

1

14
, . . .

1

100
,

1

101
,

1

102
,

1

103
,

1

104
,

1

105
,

1

106
,

1

107
,

1

108
,

1

109
,

1

110
, . . .

also converge to 0.

1.7 The squeeze theorem

The squeeze theorem is a useful result for calculating limits. It is a gateway
theorem before we get hooked on the tests for the convergence and divergence
of series because the type of thinking used to apply such theorems is similar.

Squeeze theorem. Suppose (LOWERn), (SQUEEZEDn) and (UPPERn)
are sequences with

LOWERn ≤ SQUEEZEDn ≤ UPPERn

for each n. If limn→∞ LOWERn = L = limn→∞UPPERn, then

lim
n→∞

SQUEEZEDn = L.

Example. limn→∞
sinn
n = 0 since − 1

n ≤
sinn
n ≤ 1

n , and limn→∞± 1
n = 0;

we can take

LOWERn = − 1

n
, SQUEEZEDn =

sinn

n
, and UPPERn =

1

n

in the squeeze theorem.
Example. limn→∞

8n

n! = 0 because 0 ≤ 8n

n! ≤
88

8! · (
8
9)n−8; you could also

use the inequality 0 ≤ 8n

n! ≤
88

8! ·
8
n .

We’ll expand on the second example after the discussion.
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HELP! Students always struggle with finding the lower and upper sequences
in the squeeze theorem. Here are some pointers to help you.

The first thing to note is the purpose of the squeeze theorem. It is used
to formalize intuition you have about why a sequence converges to a limit.
In the previous example, (8

n

n! ), I’d have said, “I think that n! grows faster
than exponents, so my guess is 0.” This is the first part of using the squeeze
theorem.

• Make a sensible guess about what the sequence in question converges
to. For the rest of the discussion let’s call that guess “L.”

As soon as you have made a sensible guess, L, for the limit of the sequence
in question, this imposes conditions on what your lower and upper sequences
can be. If the following bullet points are not fulfilled then you have gone
badly wrong.

• You’d better be able to calculate what (LOWERn) and (UPPERn)
converge to easily. For this to be true, they need to be “friends” or at
least things closely related to friends. For example, the limits of (100n ),
((56)n), (1 + 1

n), (0) are 0, 0, 1, and 0, respectively.

• In light of the previous bullet point, (LOWERn) and (UPPERn) should
probably look a little dissimilar to (SQUEEZEDn): if (SQUEEZEDn)
looks like a friend, then you don’t need the squeeze theorem; if it
doesn’t look like a friend but (UPPERn) looks similar to it, then the
limit of (UPPERn) is too difficult to calculate.

• (LOWERn) and (UPPERn) must have the SAME limit, and that limit
better be your guess L; otherwise, you’re not squeezing! For example,
suppose limn→∞ LOWERn = 0 and limn→∞UPPERn = 1. If we take
0 to be BROAD2160E and 1 to be the hill, this is like asking “can your
friends both be huggging you if one is in my lecture, and the other is
up the hill?” They’d need bloody long arms!

With all of these points in mind, the most difficult part is the following.

• Make sure that the inequality

LOWERn ≤ SQUEEZEDn ≤ UPPERn

holds for each n.

Let’s return to the example (8
n

n! ). Going through the bullet points. . .
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• This sequence should converge to 0 since I think n! grows faster than
exponents.

• (LOWERn) and (UPPERn) must be “friends.”

• (LOWERn) and (UPPERn) should not involve complicated things like
n!, (though fixed numbers expressed in factorials are okay).

• We need limn→∞ LOWERn = 0 = limn→∞UPPERn.

• We need LOWERn ≤ SQUEEZEDn ≤ UPPERn.

It is hopefully clear that LOWERn = 0 is a fine choice. (0) has the easiest of
all limits to calculate, it is 0, and it is trivially true that 0 ≤ SQUEEZEDn

because the sequence under consideration consists of positive terms.
To figure out (UPPERn) requires more thought about the sequence under

consideration. Imagine that you bet your mother’s house on the fact that
this sequence converges and you start writing down the terms in the sequence
one after another.

8

1
,

8

1
· 8

2
,

8

1
· 8

2
· 8

3
,

8

1
· 8

2
· 8

3
· 8

4
,

8

1
· 8

2
· 8

3
· 8

4
· 8

5
, . . .

OH NOOOOOO! We keep multiplying by a number bigger than 1. This is a
disaster. What am I gonna tell her? Why wasn’t I better at math? Why’d
a make a stupid bet? “Never bet,” she told me, “unless it’s selling all your
pounds before the EU referendum.” Fingers crossed. The 9-th term. . .[

8

1
· 8

2
· 8

3
· 8

4
· 8

5
· 8

6
· 8

7
· 8

8

]
· 8

9
.

HOLY CRAP! We just multiplied by a number less than 1 to get from the
8-th term to the 9-th term! Maybe it’s gonna be alright? Maybe I should
go to Vegas after class?! Buy her a condo on Wilshire Blvd?

8n

n!
=

[
8

1
· 8

2
· 8

3
· 8

4
· 8

5
· 8

6
· 8

7
· 8

8

]
·
[

8

9
· 8

10
· 8

11
· · · 8

n− 1
· 8

n

]
OH WOW! It just keeps getting better! I keep multiplying by numbers less
than 1, in fact, numbers less than or equal to 8

9 . This is great! Maybe I’ll
make sure my first child is born on August 9th? Oof. I gotta calm myself.
That all got a little much.

So when I write out 8n

n! , there are eight crappy terms at the beginning,
which almost gave me a heart attack, and then, the rest are lovely and less
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than or equal to 8
9 . If there are n terms in total, and eight crappy terms,

then there are n− 8 lovely terms. We just said:

8n

n!
=

[
8

1
· 8

2
· · · 8

7
· 8

8

]
·
[

8

9
· 8

10
· 8

11
· · · 8

n− 1
· 8

n

]
=

88

8!
·
[

8

9
· 8

10
· 8

11
· · · 8

n− 1
· 8

n

]
≤ 88

8!
·
[

8

9

]n−8

Can we take UPPERn = 88

8! · (
8
9)n−8? Well, it is a friend: we can see this by

writing it as
88

8!

(89)8
·
[

8

9

]n
.

It doesn’t involved any n!; sure, there’s an 8!, but this is not depending on
n, it’s a FIXED number. Since 8

9 < 1, the sequence converges to 0. We just
proved the requisite inequality. DONE!

If we’d have enjoyed the thrill of betting and not celebrated 8
9 so much,

we might have let UPPERn = 88

8! ·
8
n . This works since

8n

n!
=

[
8

1
· 8

2
· · · 8

7
· 8

8

]
·
[

8

9
· 8

10
· 8

11
· · · 8

n− 1

]
· 8

n
≤ 88

8!
· 1 · 8

n
.

1.8 Bounded, monotone sequences (non-examinable)

Here’s a couple of useful results for guaranteeing that a sequence converges.

The driving-a-car-at-a-wall theorem. Suppose (an) is a sequence and
that there is an M such that an ≤ an+1 ≤M for all n. Then (an) converges
to some L which is less than or equal to M . That is, “a sequence, which is
increasing and bounded above, converges.”

The reversing-a-car-at-a-wall theorem. Suppose (an) is a sequence
and that there is an m such that m ≤ an+1 ≤ an for all n. Then (an) con-
verges to some L which is bigger than or equal to m. That is, “a sequence,
which is decreasing and bounded below, converges.”

If one cares about the development of the real numbers, then these results
are actually incredibly important. We wouldn’t know e existed without such
theorems. In Math 31B, we just need to know these results are out there.
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1.9 Recursively defined sequences (non-examinable)

Let a1 = 1 and for n > 1, an =
√

2an−1. This means

a1 = 1, a2 =
√

2, a3 =

√
2
√

2, a4 =

√
2

√
2
√

2, . . .

To get a feel for this you could press “1,” then “=” on your calculator,
then enter “

√
2 ·ANS,” and press “=” over and over again. What does your

answer end up at? It should be 2.
To prove this mathematically there are two steps.

1. Pretend there is an answer, and figure out what it must be using limit
laws.

2. Demonstrate there is an answer.

You’ve actually done this sort of thing before. I know you’d tell me that

the solutions to ax2 + bx+ c = 0 are x = −b±
√
b2−4ac
2a . To write this formula,

you assumed there were solutions. After that, you must consider whether
they make sense: if b2− 4ac < 0, then there are no real roots, and it turned
out the calcuation was a bit illegal (unless you know complex numbers).

Here’s the “pretend there is an answer, and figure out what it must be
using limit laws” part. This is the most important for exam purposes.

Suppose that (an) converges to some number L. Since limn→∞ an = L,
we have limn→∞ an+1 = L; this is because the sequence (bn) with bn = an+1

is the same sequence with the first term missing. Since an+1 =
√

2an, taking
limits gives

L =
√

2L, so that L2 = 2L, and L(L− 2) = 0.

We can see that an ≥ 1 for all n and so L cannot be zero. Thus, L = 2, i.e.
limn→∞ an = 2.

To verify that such an L actual exists, we use the driving-a-car-at-a-wall
theorem. We will show that an ≤ an+1 ≤ 2 for all n. Driving-a-car-at-a-wall
will then say that (an) converges to some L ≤ 2. It is important that you
know that you can use such a theorem. But I will never ask you to show
that a sequence is increasing and bounded above; I would always tell you
such information.

a1 = 1 ≤
√

2 = a2 and, if n > 1 and an−1 ≤ an, then

an =
√

2an−1 ≤
√

2an = an+1.
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Also, a1 ≤ 2 and, if n > 1 and an−1 ≤ 2, then

an =
√

2an−1 ≤
√

2 · 2 = 2.

From this (and induction) we learn that an ≤ an+1 ≤ 2 for all n. The keen
student would ask how I guessed 2 was an upper bound. The way I have
presented the problem answers that question: I knew what the sequence had
to converge to before I even showed it converges.
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2 Series

2.1 What is one?

A series is an infinite sum. The difference with a sequence is that the commas
are replaced by addition signs. For example,

1 + 2 + 3 + 4 + 5 + . . .

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

2 + 4 + 8 + 16 + 32, . . .

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ . . .

2.2 Σ-notation

If p, q are integers, p ≥ q, and ap, ap+1, . . . , aq−1, aq are real numbers, we
write

∑q
n=p an for

ap + ap+1 + . . .+ aq−1 + aq.

Here, n is the “indexing number.” You can think of this just as you think of
the x in

∫ b
a f(x) dx. p and q tell you where to start and end the summation.

You can think of these like the limits in a definite integral. Just like with
integration, and anything in math, we can use different letters. Sometimes
it is useful to index by k instead. I will try to stick with n unless I have to
use another letter.

We can use Σ-notation for series too. For the above series, we write

∞∑
n=1

n,
∞∑
n=1

1

n
,

∞∑
n=1

2n,

∞∑
n=1

1

2n
.

2.3 What does this mean? What does convergence mean?

A common strategy in math is to make sense of something new using some-
thing old; we’re too unimaginative/lazy to come up with new ideas (jk! ).
Since we got so good at sequences it’d be great if we could reduce a series
to a sequence. We can.
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We’d like to make sense of
∞∑
n=1

an = a1 + a2 + a3 + . . .

Let

sN =
N∑
n=1

an = a1 + a2 + a3 + . . .+ aN .

Then (sN )∞N=1 is called the sequence of partial sums, and we can talk about
its convergence or divergence. This is exactly the same as talking about the
convergence or divergence of the series

∑∞
n=1 an. In one equation:

∞∑
n=1

an = lim
N→∞

N∑
n=1

an = lim
N→∞

sN .

Later on, you will see the similarity to improper integrals. In that case, we
will make sense of an improper integral as a limit of proper integrals. Now,
we’re making sense of an infinite sum as a limit of finite sums. Considering
the series

∑∞
n=1 an is exactly the same as considering the sequence

a1, a1 + a2, a1 + a2 + a3, a1 + a2 + a3 + a4, . . .

As an example of the content of the previous discussion, let’s turn to our
old sequence friend, the one with an = 1

n . We love this sequence and will
never forget how grateful we are that it converges to 0.

Its cousin series,
∑∞

n=1
1
n , has a different personality. We love it too,

but for different reasons. This series is so special that it has a name: the
harmonic series. Let’s show it diverges.

s1 = 1 =
2

2

s2 = s1 +
1

2
=

2

2
+

1

2
=

3

2

s4 = s2 +

(
1

3
+

1

4

)
≥ 3

2
+

1

2
=

4

2

s8 = s4 +

(
1

5
+

1

6
+

1

7
+

1

8

)
≥ 4

2
+

1

2
=

5

2

s16 = s8 +

(
1

9
+

1

10
+ . . .+

1

16

)
≥ 5

2
+

1

2
=

6

2

s32 = s16 +

(
1

17
+

1

18
+ . . .+

1

32

)
≥ 6

2
+

1

2
=

7

2
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We find that s2n ≥ n+2
2 so that the sequence (sn)∞n=1 diverges. By definition,

this means the harmonic series diverges.
This is important. Most people do not expect this result. It is tempting

to think that the series will converge since the terms get smaller; far along
in the summation, you are adding on a very small amount. The calculation
above shows, that although the terms start becoming very small, by grouping
them together cleverly, in sums which are a power of 2 long, they are still
significant.

If you are happier with the improper integral stuff, think about the fact
that

∫∞
1

1
x dx diverges. It is the same deal: the curve gets real close to the

x-axis, the area available under it is less and less, but there’s still enough
that there is an infinite area overall, since limS→∞ lnS =∞.

2.4 Your friends

The series we know and love are the p-series and the geometric series.
By a p-series we mean one of the form

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ . . .

This converges if p > 1 and diverges if p ≤ 1. We can check this by using
the integral test which we’ll talk about later. When a p-series converges, we
rarely know what to (see philosphical discussion later). Ramanujan would
have known by now.

By a geometric series we mean one of the form (notice the sum starts
at 0)

∞∑
n=0

crn = c+ cr + cr2 + cr3 + . . .

The point is that to get from one term to the next you multiply by r, so to
spot one you see if the ratio between successive terms is a constant. Suppose
c 6= 0, since otherwise it is not very interesting. The series converges if
−1 < r < 1 and diverges if |r| ≥ 1. When it converges, it converges to

c

1− r
.

[This is because, for r 6= 1,

sN = c+ cr + . . .+ crN = c(1 + r + . . .+ rN ) =
c(1− rN+1)

1− r
.]
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2.5 Rules for series

Suppose
∑∞

n=1 an and
∑∞

n=1 bn are convergent series,
∑∞

n=1 cn is a divergent
series, and that k is a real number.

1.
∑∞

n=1 kan converges to k
∑∞

n=1 an; if k 6= 0,
∑∞

n=1 kcn diverges.

2.
∑∞

n=1(an + bn) converges to

[∑∞
n=1 an

]
+

[∑∞
n=1 bn

]
.

3.
∑∞

n=1(an + cn) diverges.

Notice, that there are far fewer rules. For instance, there is not one for∑∞
n=1 anbn. This is because, even in the finite case, it is not always true

that (a1 + a2)(b1 + b2) = a1b1 + a2b2; only a Freshman dream would allow
such a thing.

An example of these rules (and recognizing geometric series) is as follows.

∞∑
n=1

8 + 2n+5

5n
=
∞∑
n=1

[
8

5n
+

2n+5

5n

]

=

[ ∞∑
n=1

8

5n

]
+

[ ∞∑
n=1

2n+5

5n

]

=

[
8
∞∑
n=1

(
1

5

)n]
+

[
25
∞∑
n=1

(
2

5

)n]
=

8 · 15
1− 1

5

+
25 · (25)

1− 2
5∑∞

n=1
2
n2 and

∑∞
n=1

1
n3 converge (by the p-test) and the rules say that

∞∑
n=1

[
2

n2
+

1

n3

]
=

∞∑
n=1

2

n2
+

∞∑
n=1

1

n3
.

We can also use the rules to show
∑∞

n=1
(n+1)2

n3 diverges. First, notice

∞∑
n=1

(n+ 1)2

n3
=

∞∑
n=1

n2 + 2n+ 1

n3
=

∞∑
n=1

[
1

n
+

(
2

n2
+

1

n3

)]
.

Since
∑∞

n=1
1
n diverges and

∑∞
n=1

[
2
n2 + 1

n3

]
converges part 3. applies.

It is true that
∑∞

n=1
1

2n−1 and
∑∞

n=1−
1

2n+1 diverge (later on, you will be
able to prove this using the limit comparison test). However, it is NOT true
that

∑∞
n=1

[
1

2n−1 −
1

2n+1

]
diverges; it converges to 1 (see the homework).

The rules say nothing about this situation and they cannot because of the
following silly series:

∑∞
n=1(1 + 1) and

∑∞
n=1(1− 1).
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3 A philosophical discussion

This section is completely non-examinable but some of the things mentioned
are important to understand. Without thinking about some of these issues,
I don’t think you can really understand any of the questions I’m asking you
about series!

3.1 Why are series more difficult than sequences?

We reduced the question of talking about the convergence/divergence of a
series

∑∞
n=1 an to that of talking about the sequence of partial sums (sN ),

that is, the sequence (sN ) with

sN =

N∑
n=1

an = a1 + a2 + a3 + . . .+ aN .

So, you ask, aren’t series just a special case of sequences? And, if so, why
do we bother talking about them?

Well, yes, series are just a special type of series. But, here’s the issue. . .
A non-series-type sequence often has a nice and simple formula attached to
it; in this case, it is often possible to calculate the limit of the sequence. On
the other hand, when we use sums to define the terms of a sequence, our
formula often becomes complicated so that it is difficult or even impossible
to calculate what the limit might be.

For example, what do you think

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . . and

∞∑
n=1

1

n3
= 1 +

1

8
+

1

27
+

1

64
+ . . . ,

converge to?
A sensible guess for the first was made by Euler using an infinite product

sinx = x ·
∞∏
n=1

[
1− x2

n2π2

]
.

I say “guess,” but, at the time (Euler lived from 1707 to 1783), his argument

was accepted as a proof. His answer was π2

6 and this turned out to be correct.
You can also let x = π

2 in his product formula to see that

2 · 2
1 · 3

· 4 · 4
3 · 5

· 6 · 6
5 · 7

· 8 · 8
7 · 9

· 10 · 10

9 · 11
· 12 · 12

11 · 13
· 14 · 14

13 · 15
· · · = π

2
.
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This is Wallis’ product for π (1655). On wikipedia, there is a proof of this
result using integration by part and the squeeze theorem: you’ve made it to
17th century mathematics!

The second number is called Apéry’s constant. In 1978, it was proved
that this number is irrational, meaning not a fraction. It took until then to
know this!

3.2 Convergent things we cannot calculate

For both integral and series, we talk about convergence and divergence. In
many instances, we will be able to show that an integral or series converges
but we will not be able to calculate the value which it converges to.

Why on earth it would be useful to know an integral or series converges if
we cannot calculate its value exactly? Here’s a question: “do you even know
what π is?” Answer: no, but you know arbitrarily good approximations to
it. Once it is known that an integral or series converges, you can calculate
approximations to it and these can be useful.

Here are two crazily important examples:

N(x) =
1√
2π

∫ x

−∞
e
−t2

2 dt, cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!
.

The integral defines the normal distribution with mean 0 and variance 1;
normal distributions describe many things in real life. The integral is im-
possible to evaluate exactly. However, it is important to know it converges.
Approximations to it are very useful and can be found in any statistics book.
[We will see, later, that it converges by comparing with the integrand with
function e1−|t|.]

The series defines the cosine function. Mathematicians can prove all the
familiar formulae involving cosine using this definition. The pitfall of the
formula is that it doesn’t allow us to know the values of cos exactly. But,
this never phased you before; you were happy with your calculator giving
you a decimal to 10 decimal places. Now, you can always use Taylor’s Error
Bound to calculate values of cosine as accurately as you need. [We will see,
later, that the series defining cosine converges using the ratio test.]

In lecture, I will note that decimals only make sense because of series!!
My favorite application of infinite series is called Fourier series, which

tells you about the amplitude of the harmonics in a periodic signal: part of
the reason musical instruments sound different to one another.

Having said all this, I think I now feel less bad about telling you all the
tests for convergence/divergence of integrals and series.
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4 Tests for convergence/divergence of a series

4.1 The n-th term test

In the previous section, we remarked that most people do not expect for the
harmonic series to diverge: the terms get smaller and smaller; we’re adding
on less and less. It is important to remember the harmonic series.

The terms getting small is not enough for a series to converge.

On the other hand, you would not expect

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + . . .

to converge. The terms do not get small; we are always adding on a sig-
nificant amount; we cannot expect the series to converge. To see this even
more explicitly, let’s consider the sequence of partial sums.

s1 = 1

s2 = 1 + 1 = 2

s3 = 1 + 1 + 1 = 3

s4 = 1 + 1 + 1 + 1 = 4

s5 = 1 + 1 + 1 + 1 + 1 = 5

We have sn = n, and so (sn) is very definitely divergent.
The n-th term test. If limn→∞ |an| 6= 0, then

∑∞
n=1 an diverges.

4.2 Ignoring terms at the beginning of a series when checking
convergence or divergence

The convergence or divergence of a series is dictated by the behaviour of the
later terms. Consider the following series.

0 + 0 + 0 + . . .+ 0 + 0 + 0 +
1

1001
+

1

1002
+

1

1003
+

1

1004
+

1

1005
+ . . .

1000 + 1000 + . . .+ 1000 + 1000 +
1

2100
+

1

2101
+

1

2102
+

1

2103
+

1

2104
+ . . .

The first is the harmonic series, with its first 1000 terms replaced by 0.
This does not miraculously save the harmonic series from diverging. This is
because (I’m very naughty for writing this down: infinity is not a number!)

“∞−
1000∑
n=1

1

n
=∞− some finite number =∞.”
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The second is the geometric series, with r = 1
2 , with its first 100 terms

replaced by 1000. This does not suddenly make it diverge. It just changes
its value by the number

100, 000−
99∑
n=0

1

2n
.

When someone asks you about the convergence of a series, it is useful to
know that you can ignore the first 1, 000, 000, 000 terms if it is convenient.
For this reason, in later theorems, you only have to check hypothesis “for
sufficently large n” even if it says “for all n.”

Ignoring the first 100 values in a convergent sequence, will change the
value which it converges to, however. So if you’re asked for a value, don’t
randomly ignore the first 100 terms; you’d be silly to do so.

4.3 Integral test (inaccessible until after 8.7)

Normally, the last test I try is the integral test. However, this test is useful
for proving when our friends, the p-series, converge, something we have not
done yet. Also, there is a nice picture associated to the theorem. The pic-
ture demonstrates a comparison between two areas, and understanding this
idea will help in understanding later ideas. I drew it in lectures.

The integral test. Suppose
∑∞

n=1 an is a series and that an = f(n) where

1. f(x) is defined for x ≥ 1 and continuous;

2. f(x) ≥ 0;

3. f(x) is decreasing, that is, for x ≥ y we have f(x) ≤ f(y).

Then

1.
∑∞

n=1 an converges if and only if
∫∞
1 f(x) dx converges.

2.
∑∞

n=1 an diverges if and only if
∫∞
1 f(x) dx diverges.

Example.
Let f(x) = 1

xp , where p > 0. Then f(x) satisfies the hypothesis of the
integral test. Thus,

1.
∑∞

n=1
1
np converges if and only if

∫∞
1

1
xp dx converges.

2.
∑∞

n=1
1
np diverges if and only if

∫∞
1

1
xp dx diverges.
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This means
∑∞

n=1
1
np converges if p > 1 and diverges if p ≤ 1 (this includes

p ≤ 0, although we are not using the integral test for this).

Important. The integral test can be used to show a series converges, but
it does not say much about what it converges to. For example,∫ ∞

1

1

x2
dx = 1 and

∞∑
n=1

1

n2
=
π2

6
.

If one is careful, and understands the proof of the integral test, all it says
about

∑∞
n=1

1
n2 is that

∑∞
n=1

1
n2 = 1+

∑∞
n=2

1
n2 ≤ 1+

∫∞
1

1
x2
dx = 1+1 = 2.

Additional. In light of the remarks made in section 4.2, one can relax
all the assumptions in the integral test, demanding only that they are true
eventually. How does one express this mathematically? We mean that there
is an M ≥ 0 such that:

• an = f(n) when n ≥M ;

• f(x) is defined and continuous for x ≥M ;

• f(x) ≥ 0 for x ≥M ;

• f(x) is decreasing when x ≥M .

In this case,

1.
∑∞

n=1 an converges if and only if
∫∞
M f(x) dx converges.

2.
∑∞

n=1 an diverges if and only if
∫∞
M f(x) dx diverges.

Honest thoughts. I like the integral test because it has an intuitive proof
that highlights many of the ideas which are going on in this stuff. However,
this course is not dedicated to proofs. For this reason, I feel the integral test
is verging on useless for us. After using it to say when p-series converge, one
almost never needs it; other tests are more practical. Did I waste your time
by setting questions on it? No! Thankfully, the saving grace is that to use
the integral test one has to practice improper integrals, u-subs with them,
integration by part with them, and L’Hôpital’s rule, so it is good for review.
Also, it gets you to grips with checking hypotheses. In the integral test, the
first few are normally very easy, but the decreasing condition might require
a little work. Since I don’t care much for the integral test, I won’t grill you
on this on the exam.
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Example. Here’s one example where I would choose the integral test over
other tests. . .

∑∞
n=2

1
n lnn diverges. This is because∫ ∞

e

1

x lnx
dx = lim

S→∞

∫ S

e

1

x lnx
dx

= lim
S→∞

∫ lnS

1

1

u
du

= lim
S→∞

[
ln |u|

]lnS
1

= lim
S→∞

[
ln(lnS)− ln(1)

]
= lim

S→∞
ln(lnS) =∞.

and, letting f(x) = 1
x lnx , we have

1. f(x) is defined for x ≥ e and continuous;

2. f(x) ≥ 0 for x ≥ e;

3. f ′(x) = − 1+lnx
(x lnx)2

≤ 0 for x ≥ e, so that f(x) is decreasing for x ≥ e.

(You could also deduce this from the fact that x and lnx are increasing
and positive for x > 1, but the derivative is a tool that will pretty much
always work for you.)

Example. Here’s one other example where I would choose the integral test
over other tests. . .

∑∞
n=2

1
n(lnn)2

converges. This is because∫ ∞
e

1

x(lnx)2
dx = lim

S→∞

∫ S

e

1

x(lnx)2
dx

= lim
S→∞

∫ lnS

1

1

u2
du

= lim
S→∞

[
− 1

u

]lnS
1

= lim
S→∞

[
1− 1

lnS

]
= 1,

and, letting f(x) = 1
x(lnx)2

, we have

1. f(x) is defined for x ≥ e and continuous;

2. f(x) ≥ 0 for x ≥ e;

3. f ′(x) = − 2+lnx
x2(lnx)3

≤ 0 for x ≥ e, so that f(x) is decreasing for x ≥ e.
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4.4 Direct comparison test

The direct comparison test is my favorite test. It is the most theoretically
useful by a long way; it is, arguably, the most practically useful. However,
it is also the one that students find the most difficult.

The direct comparison test. Suppose
∑∞

n=1 an and
∑∞

n=1 bn are two
series and that an ≥ bn ≥ 0 for all n.

1. If
∑∞

n=1 an converges then
∑∞

n=1 bn converges.

2. If
∑∞

n=1 bn diverges then
∑∞

n=1 an diverges.

It might be helpful to remember this more descriptive statement of the
theorem.

Suppose
∑∞

n=1 BIGn and
∑∞

n=1 SMALLn are two series and that BIGn ≥
SMALLn ≥ 0 for all n.

1. If
∑∞

n=1 BIGn converges then
∑∞

n=1 SMALLn converges.

2. If
∑∞

n=1 SMALLn diverges then
∑∞

n=1 BIGn diverges.

The theorem says, if you are less than or equal to a finite number then you’re
finite; if you’re bigger than or equal to infinity, then you’re infinity.

The idea of the theorem is similar to the squeeze theorem. We compare
things which are too complicated for us to argue about directly, with familiar
things, our friends. For this reason, you MUST know your friends super well.
We definitely don’t want one of those embarassing moments when you come
to introduce a friend and you can’t even remember their name, their ma-
jor, and think they like Taylor Swift when, in fact, they just love Meshuggah.

Example 1.
How do we use this theorem? Well, suppose we want to prove the con-

vergence or divergence of

∞∑
n=1

1√
n3 + 3n+ 2

.

Where can we start? We go to our friends: the p-series and the geometric
series. Does it look like either? It definitely looks more like a p-series, but it
sort of looks like lots of them and that is confusing. A couple of Freshman
dreams down the line, you might say

1√
n3 + 3n+ 2

=
1√
n3

+
1√
3n

+
1√
2

(NOOOOOO!!!!).
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These are, indeed, Freshman dreams, and you should check that you do
not do this. However, they do highlight what the difficulty is. We have
a sum underneath a square root, at the bottom of a fraction. Square roots
play badly with sums, and sums play badly with fractions if they are on the
bottom. The only thing we can really do is to try and ignore terms or pair
them up together in some way. Let’s try ignoring them and see if we get
anywhere.

Do we know about the convergence of any of

∞∑
n=1

1√
n3
,

∞∑
n=1

1√
3n

=
1√
3

∞∑
n=1

1√
n
,

∞∑
n=1

1√
2

=
1√
2

∞∑
n=1

1?

YES! They are all our friends; they are all p-series. The first converges since
3
2 > 1. The others diverge since 0, 12 ≤ 1.

Now we need to figure out what effect ignoring the various terms had.
In each case, we forgot about a positive quantity, under the square root of
the bottom of a fraction. In each case, this makes the bottom of the fraction
smaller, and so the whole thing bigger. That is,

1√
n3 + 3n+ 2

≤ 1√
n3
,

1√
3n
,

1√
2
.

We now see that
∑∞

n=1
1√

n3+3n+2
is smaller than a convergent thing, so we

can apply the direct comparison test to say it converges.
Here’s what you write. Let

SMALLn =
1√

n3 + 3n+ 2
and BIGn =

1√
n3
, so BIGn ≥ SMALLn ≥ 0.

Because 3
2 > 1, the p-series test tells us

∑∞
n=1 BIGn converges. The direct

comparison theorem tells us
∑∞

n=1 SMALLn converges, i.e.
∑∞

n=1
1√

n3+3n+2
converges.

Example 2.
Suppose we want to prove the convergence or divergence of

∞∑
n=1

1
5
√
n4 + 6n+ 3

.

Do we know about the convergence of any of

∞∑
n=1

1
5
√
n4
,

∞∑
n=1

1
5
√

6n
=

1
5
√

6

∞∑
n=1

1
5
√
n
,

∞∑
n=1

1
5
√

3
=

1
5
√

3

∞∑
n=1

1?
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YES! They are all our friends; they are all p-series. They all diverge since
4
5 ,

1
5 , 0 ≤ 1.
This suggests that

∑∞
n=1

1
5√n4+6n+3

diverges. To use the comparison test

we better have

BIGn =
1

5
√
n4 + 6n+ 3

.

We need SMALLn. To make 1
5√n4+6n+3

smaller we need to make the things

under the square root bigger. We’d like it if they paired up nicely, so that
no freshman dreams are required. Here’s how.

1
5
√
n4 + 6n+ 3

≥ 1
5
√
n4 + 6n4 + 3n4

=
1

5
√

10

1
5
√
n4

We let

SMALLn =
1

5
√

10

1
5
√
n4
.∑∞

n=1 SMALLn diverges by the p-test since 4
5 ≤ 1. The direct comparison

test tells us that
∑∞

n=1 BIGn diverges, i.e.
∑∞

n=1
1

5√n4+6n+3
diverges.

Notice that the term we compared to was the one “closest” to making∑∞
n=1

1
5√n4+6n+3

converge.

4.5 Limit comparison test

In the last example of the direct comparison theorem, wouldn’t it have been
great if, after realizing that 1

5√
n4

was the important term, we did not have

to do as much messing around? The limit comparison theorem makes this
whole process far easier.

Limit comparison theorem. Suppose
∑∞

n=1 an and
∑∞

n=1 bn are two
series consisting of positive terms and that limn→∞

an
bn

= L 6= 0,∞.

1.
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.

2.
∑∞

n=1 an diverges if and only if
∑∞

n=1 bn diverges.
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Example.
Let an = 1

5√n4+6n+3
and bn = 1

5√
n4

. Then

lim
n→∞

an
bn

= lim
n→∞

5
√
n4

5
√
n4 + 6n+ 3

= lim
n→∞

1

5

√
1 + 6

n3 + 3
n4

=
1

5
√

1 + 0 + 0
= 1 6= 0,∞.

Thus, the limit comparison theorem says that
∑∞

n=1 an diverges if
∑∞

n=1 bn
diverges, i.e.

∑∞
n=1

1
5√n4+6n+3

diverges if
∑∞

n=1
1

5√
n4

diverges.∑∞
n=1

1
5√
n4

diverges by the p-test, since 4
5 ≤ 1, so

∞∑
n=1

1
5
√
n4 + 6n+ 3

diverges.

There are also versions of the limit comparison test which account for
the cases when L = 0 or L =∞. The first time I taught this class, I found
that students would often misuse these versions, and so, the second time I
taught the class, I didn’t encourage their use as much. Since I found that
some students still wanted to use them, I’ve compromised. Questions on the
final will not require these versions - another test will always be applicable
- but if you like them, you are free to use them, and they might help you.
Look up the statements in the textbook. Here’s an example of when L = 0.

Example.
Let an = 10 lnn

n2 and bn = 1

n
3
2

. Then

lim
n→∞

an
bn

= lim
n→∞

10 lnn√
n

= lim
x→∞

10 lnx√
x

= lim
x→∞

(10x )

( 1
2
√
x
)

= lim
x→∞

20√
x

= 0.

This limit calculation says that for large values of n, an is much smaller than
bn. (WolframAlpha shows that an < bn as long as n > 8100.)

The p-test says
∑∞

n=1 bn =
∑∞

n=1
1

n
3
2

converges and the L = 0 version of

the limit comparison test allows us to conclude that

∞∑
n=1

an =

∞∑
n=1

10 lnn

n2

converges.
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4.6 Ratio and root test

All of our tests so far have relied on comparison with one of our friends.
Wouldn’t it be great if we had a test that didn’t require us being so social?

Ratio test. Suppose
∑∞

n=1 an is a series consisting of non-zero terms, and
that limn→∞ |an+1

an
| = L.

1. If L < 1, then
∑∞

n=1 an converges (absolutely).

2. If L > 1 (including L =∞), then
∑∞

n=1 an diverges.

3. If L = 1, then we learn nothing.

Root test. Suppose
∑∞

n=1 an is a series, and that limn→∞
n
√
|an| = L.

1. If L < 1, then
∑∞

n=1 an converges (absolutely).

2. If L > 1 (including L =∞), then
∑∞

n=1 an diverges.

3. If L = 1, then we learn nothing.

The ratio test is particularly good if you see factorials. n! factorial grows
quicker than pretty much anything. The only way to beat it is with things
like, nn, double exponents, or double factorials. So, if you see a factorial on
the top of a fraction in the n-th term, then the series is likely to diverge,
and if you see it on the bottom of a fraction in the n-th term, the series is
likely to converge. The ratio test is then a good check, but, with the ra-
tio test, unlike the comparison tests, you do not even need an educated guess.

Example 1.
Consider the series

∑∞
n=0

1000n

n! . The n! on the bottom of the fraction
making up the n-th term makes us think it will converge, but even if we
didn’t think this, we can use the ratio test with an = 1000n

n! and we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

[
1000n+1

(n+1)!

][
1000n

n!

] = lim
n→∞

1000

n+ 1
= 0 < 1.

Thus,
∑∞

n=0
1000n

n! converges. In fact, it converges to e1000.
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Example 2.
Consider the series

∑∞
n=1

en

nn . Using the ratio test becomes a little com-
plicated: we have∣∣∣∣an+1

an

∣∣∣∣ =

[
en+1

(n+1)n+1

][
en

nn

] =
e · nn

(n+ 1) · (n+ 1)n
=

1

n+ 1
· e

(1 + 1
n)n

which converges to 0 · ee = 0 < 1 and so the series converges.
The root test is far easier.

lim
n→∞

n
√
|an| = lim

n→∞
n

√
en

nn
= lim

n→∞

e

n
= e · lim

n→∞

1

n
= e · 0 = 0 < 1

so the series converges.

Note. If the ratio or root test is inconclusive because the calculation gives
L = 1, the other will not help you. Don’t waste time trying both.

4.7 Alternating series test

If we forget all but one thing about series, then what we remember is that
the harmonic series diverges. Funnily enough, by inserting some minus signs,
we get a convergent series.

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ . . . = ln 2.

Alternating series test. Suppose
∑∞

n=1 bn is a series where bn = (−1)n−1an
and

1. an+1 ≤ an for all n;

2. limn→∞ an = 0.

Then
∑∞

n=1 bn =
∑∞

n=1(−1)n−1an converges.

Example.
The alternating harmonic series satisfies the hypothesis for the alternat-

ing series test, since 1
n+1 ≤

1
n and limn→∞

1
n = 0. Thus,

∞∑
n=1

(−1)n−1

n
converges.
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Example.∑∞
n=1(−1)n−1 n2

n3+1
converges. Let an = n2

n3+1
. One can see that a2 ≤ a1.

Also, if f(x) = x2

x3+1
, then f ′(x) = −x(x3−2)

(x3+1)2
≤ 0 when x ≥ 3

√
2 so that

an+1 ≤ an for n ≥ 2. Finally, 0 ≤ an ≤ 1
n , so the squeeze theorem tells us

that limn→∞ an = 0. We can now apply the alternating series test.

4.8 Absolutely and conditionally convergent series

The alternating harmonic series is strange. By changing the order of the
summation we can get any answer we like. For example,

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+

1

13
+

1

15
− 1

8
+ . . . =

3

2
ln 2.

The reason for this is that the harmonic series diverges, i.e. once we change
all the negative signs to be positive it diverges.

Definition. If
∑∞

n=1 an but
∑∞

n=1 |an| diverges, then
∑∞

n=1 an is said to
be conditionally convergent.

Conditionally convergent series always have the bizarre aforementioned
property. One could view this as an interesting but bad property. If we de-
mand that

∑∞
n=1 |an| converges, then the order of summation never matters.

Definition. If
∑∞

n=1 |an| converges, then
∑∞

n=1 an is said to be absolutely
convergent.

Absolutely convergent series are convergent.

Example.
Consider the series

∑∞
n=1

cosn
n2 . We stare at this and think that, other

than the cosn, it looks a lot like our friend
∑∞

n=1
1
n2 , which converges since

2 > 1. cosn varies between positive and negative, but it is always between
−1 and 1. By letting

BIGn =
1

n2
and SMALLn =

| cosn|
n2

we have BIGn ≥ SMALLn ≥ 0, and
∑∞

n=1 BIGn converges. The direct
comparison test tells us that

∑∞
n=1 SMALLn converges,

i.e.

∞∑
n=1

| cosn|
n2

converges.

This tells us
∑∞

n=1
cosn
n2 is absolutely convergent, and thus convergent.
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4.9 The hierachy of tests

I don’t generally have an order of tests which I apply to figure out whether
a series converges or diverges. With enough practice and experience, you
almost always know straightaway. But. . . if I had to give a suggested order
of things to try on

∑∞
n=1 an, it’d be this. . . This is a fail-safe method; not

the most efficient.

1. The n-th term test: if limn→∞ |an| 6= 0 the series diverges.

This is the best initial check to do. What if you can see limn→∞ |an| 6=
0 but find that limit difficult to explain? Well, you can say that you
think limn→∞ |an| 6= 0 so that you think

∑∞
n=1 an diverges. Then use

another test. At least you know what your answer should be!

If limn→∞ |an| = 0, move along, and try something else.

2. Look out for friends. If it’s a p-series or a geometric series you have
been handed a gift. You understand the convergence and divergence
of p-series, and, in the case of geometric series, when they converge,
you even know what they converge to.

Also, look out for things which are just sums or multiples of such
things, and apply series rules. For example,

∑∞
n=1[

2
n2 + 100

n3 ] converges,

and
∑∞

n=0[
6n−2n
3n ] diverges.

What if you can kind of see a friend? Hands rub together. . . Compar-
ison tests might apply!!

3. If you have negative terms, first, check to see if the alternating series
test applies. If it doesn’t, apply absolute values to every term in the
hope that the series is absolutely convergent; then do subsequent tests
on
∑∞

n=1 |an|.

4. Try the direct comparison test. If you get really good at these then this
will pretty much always work, since the proofs of the ratio test, the root
test, and limit comparison test, all depend on the direct comparison
test. In spirit, this is more like number one on my non-existent list.

5. Perhaps, while trying to use the comparison test, you see that it is one
of those ones where the limit comparison test is a little easier. If so,
use the limit comparison test instead. Beware of the L = 0,∞ cases, if
you use them. I avoided them in lecture since I did not want to cause
additional confusion. If you’re confident, then feel free to use them.
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6. If there are factorials or powers of n in sight, the ratio test might work.
If there are n-th powers, the root test might work. These could also
work in other situations too. Sometimes a factorial might make you
head to the ratio test straightaway, one way in which you can see this
list is a little too inflexible.

7. Use the integral test, an almost last resort.

A good exercise is to check that for
∑∞

n=2
1

n lnn and
∑∞

n=2
1

n(lnn)2
, the

integral test is the only option, i.e. check why all the other tests don’t
help for these series.

8. Sometimes you might have to rewrite the series a little before you can
apply a test to it. For instance, how would you prove

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+

1

13
+

1

15
− 1

8
+ . . .

converges? Use parentheses cleverly!

Sometimes using more than one test one after another can work too.

4.10 Examples

1.
∑∞

n=1(−1)n−13n2e−n
3

This converges for pretty much every reason! e−n
3

decays really quickly
so. . . However, some tests are easier than others. I’ll make a couple of
observations before beginning.

Let f(x) = 3x2e−x
3
. Then f ′(x) = 3xe−x

3
(2 − 3x3) and so f ′(x) ≤ 0

when x ≥ 1. This means f(x) is decreasing when x ≥ 1. Also,

lim
x→∞

f(x) = lim
x→∞

3x2

ex3
= lim

x→∞

6x

3x2ex3
= lim

x→∞

2

xex3
= 0,

where the second equality used L’Hôpital’s rule.

Let an = f(n) = 3n2e−n
3
. We care about

∑∞
n=1(−1)n−1an.

(a) By using the calculations above, we have

lim
n→∞

an = lim
x→∞

f(x) = 0.

So limn→∞(−1)n−1an = 0 and
∑∞

n=1(−1)n−1an passes the n-th
term test. This required L’Hôpital’s rule; since we expected it to
pass, I wouldn’t have bothered doing such a careful calculation.
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(b) We don’t see any friends.

(c) By using the calculations above, we have

lim
n→∞

an = lim
x→∞

f(x) = 0,

and an+1 ≤ an for all n. The alternating series test tells us that∑∞
n=1(−1)n−1an =

∑∞
n=1(−1)n−13n2e−n

3
converges.

This required some calculus and L’Hôpital’s rule: a bit annoying.

We will show
∑∞

n=1 an converges so that
∑∞

n=1(−1)n−1an is ab-
solutely convergent.

(d) The direct comparison test is applicable. We can let SMALLn =
an and LARGEn = 3e−n. Proving SMALLn ≤ LARGEn is a bit
annoying.

(e) The limit comparison is possible, though my choice of bn = e−n

results in limn→∞
an
bn

= 0 and calculating this requires L’Hôpital:
a bit annoying.

(f)

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3(n+ 1)2e−(n+1)3

3n2e−n3

= lim
n→∞

[
n+ 1

n

]2
lim
n→∞

e−3n
2−3n−1 = 1 · 0 = 0 < 1

so the ratio test says the series converges relatively painlessly.

The root test is applicable but requires knowing limn→∞ n
√
n = 1,

which requires L’Hôpital: a bit annoying.

(g) The integral test is applicable since∫ ∞
0

f(x) dx = lim
S→∞

[−e−x3 ]S0 = lim
S→∞

[1− e−S3
] = 1

and we proved that f(x) is decreasing for x ≥ 1; it’s a bit annoy-
ing that we had to do this.

In summary, the ratio test was the best; in fact, I would have gone for
it straight away since powers play well with the ratio test.
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2.
∑

n=1
e

n
1000+n
n2+2

.

Since e
n

1000 grows faster than everything in sight I would expect this
to diverge. It also diverges for pretty much every reason, but some are
easier to check than others.

Let an = e
n

1000+n
n2+2

.

(a) Using L’Hôpital’s rule twice gives

lim
n→∞

an = lim
x→∞

e
x

1000 + x

x2 + 2
= lim

x→∞

e
x

1000

1000 + 1

2x
= lim

x→∞

e
x

1000

1,000,000

2
=∞

so it fails the n-th term test.

(b) We vaguely see our friend
∑∞

n=1
n
n2 =

∑∞
n=1

1
n . However, we

ignored e
n

1000 to see this friend which is a little risky. We will see
later that the inequality “goes the right way.”

(c) All terms are positive.

(d) e
n

1000+n
n2+2

≥ e
n

1000+n
n2+2n2 = e

n
1000+n
3n2 ≥ n

3n2 = 1
3n . So the direct compari-

son test with
∑∞

n=1
1
3n shows it diverges.

(e) Limit comparison with
∑∞

n=1
1
n works. Letting bn = 1

n , we have

limn→∞
an
bn

= limn→∞
e

n
1000+n
n+ 2

n

=∞.

Limit comparison with a friend will always result in the ∞ case
so this is a little annoying.

(f) limn→∞ |an+1

an
| = limn→∞

n2+2
(n+1)2+2

limn→∞
e
n+1
1000+(n+1)

e
n

1000+n
= e

1
1000 >

1 so the ratio test tells us it diverges.

The root test is annoying.

(g) The integral test is terrible.

I think the direct comparison was easiest. The n-th term test wasn’t
so bad either.
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5 Direct Comparison for Integrals

Suppose that BIG(x) and SMALL(x) are continuous on a < x < b and that
for these values we have

BIG(x) ≥ SMALL(x) ≥ 0.

1. If
∫ b
a BIG(x) dx converges, then

∫ b
a SMALL(x) dx converges.

2. If
∫ b
a SMALL(x) dx diverges, then

∫ b
a BIG(x) dx diverges.

These are separate statements so you will use one of 1 or 2.
The assumption that the functions are positive is very important.

Example 1:
∫∞
0 e−x

2
dx is convergent.

Let SMALL(x) = e−x
2

and note that SMALL(x) ≥ 0. We must choose
BIG(x) so that

BIG(x) ≥ e−x2 when x > 0, and

∫ ∞
0

BIG(x) dx converges.

Someone in lecture wisely suggested letting BIG(x) = e−x. Is it true that
e−x ≥ e−x2 when x > 0? Sadly not :( Why? Suppose x > 0. We find that

e−x ≥ e−x2 ⇐⇒ −x ≥ −x2 ⇐⇒ x2 ≥ x ⇐⇒ x ≥ 1.

(The first equivalence uses the fact that et is an increasing function of t; the
last equivalence makes use of the fact that x > 0.)

Do we give up? Never! We just avoid our problems. Notice that∫ ∞
0

e−x
2
dx =

∫ 1

0
e−x

2
dx+

∫ ∞
1

e−x
2
dx.

The first integral in the sum is fine because:

• e−x2 is a continuous function;

• the limits of the integral are finite.

We’re left with the second integral, and the argument that we just tried to
make does work now. We have BIG(x) ≥ SMALL(x) ≥ 0 when x ≥ 1, and∫ ∞

1
BIG(x) dx = lim

R→∞

∫ R

1
e−x dx = lim

R→∞
(e−1 − e−R)
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converges to 1
e . So the comparison theorem says that

∫∞
1 SMALL(x) dx =∫∞

1 e−x
2
dx converges. We have now completed the proof.

An alternative proof, avoiding dividing the integral up, would have been
to take BIG(x) = e

1
4
−x:

e
1
4
−x ≥ e−x2 ⇐⇒ 1

4
− x ≥ −x2

⇐⇒ x2 − x+
1

4
≥ 0 ⇐⇒

(
x− 1

2

)2

≥ 0.

Example 2:
∫∞
2

1
lnxdx diverges.

Let BIG(x) = 1
lnx and SMALL(x) = 1

x .∫∞
2 SMALL(x) dx diverges by the p-test. To apply the comparison test,

we just need to show that BIG(x) ≥ SMALL(x) ≥ 0 when x > 2.
If x ≥ 1, then

d

dx
(x) = 1 ≥ 1

x
=

d

dx
(lnx).

Since 1 ≥ ln(1), this shows that for x > 2, x ≥ lnx, and so

1

lnx
≥ 1

x
when x > 2.

(By using the prime number theorem (a very difficult theorem) this example
gives a very roundabout proof that there are infinitely many prime numbers.)
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6 More 8.7 help.

Here are the type of inequalities I use for solving questions 61-75 in section
8.7.

1. (a) If f(x) > 0, g(x) ≥ 0, and a ≥ 0, then

1

(f(x) + g(x))a
≤ 1

(f(x))a
.

(b) If f(x) > 0, g(x) ≥ k > 0, then

1

(f(x)g(x))a
≤ 1

(kf(x))a
.

2. (a) If f(x) > g(x) ≥ 0, and a ≥ 0, then

1

(f(x)− g(x))a
≥ 1

(f(x))a
.

(b) If nf(x) ≥ g(x) > 0 and a ≥ 0, then

1

(f(x) + g(x))a
≥ 1

((n+ 1)f(x))a
.

(c) If f(x) > 0, k ≥ g(x) > 0, and a ≥ 0, then

1

(f(x)g(x))a
≥ 1

(kf(x))a
.

This is used in 75 with f(x) = x, g(x) = ex +x, k = e+ 1, a = 1,
on the interval 0 < x ≤ 1.

3. (a) ex ≥ 1 for x ≥ 0.

(b) If f(x) ≥ 0, g(x) ≥ 0, then

e−(f(x)+g(x)) ≤ e−f(x).

4. (a) | cosx|, | sinx| ≤ 1.

(b) | sinx| ≤ |x|; this is useful when x is near 0.

5. If p(x) = Axn + q(x) where q(x) is a polynomial of degree less than n,
then it is possible to find a positive constant C with the property that

1

p(x)
≤ C

xn

for all x. One can do something similar with non-integer powers.∑∞
n=1

(−1)n
n
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