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1 Fundamental concepts

Definition 1.1. A (locally small) category C consists of the following data:

• a class of objects ob(C);

• for objects a, b ∈ C, a hom-set
C(a, b) = {f : a −→ b}

containing all morphisms from a to b;

• for objects a, b, c ∈ C, a composition function

C(a, b)× C(b, c) −→ C(a, c), (f, g) 7−→ g ◦ f.

We require composition to be associative, and there to exist identity morphisms 1a ∈ C(a, a).

Definition 1.2. Suppose C and D are categories.
A functor F : C −→ D consists of the following data:

• a (class-)function F : ob(C) −→ ob(D), c 7−→ Fc;

• for objects a, b ∈ C, a function on hom-sets C(a, b) −→ D(Fa, Fb), f 7−→ F (f).

If f : a −→ b and g : b −→ c, we require that F (g ◦ f) = F (g) ◦ F (f).
Moreover, for every object c ∈ C, we demand that F (1c) = 1Fc.

Example 1.3.

1. The free vector space functor Set −→ VectR.

2. The dual vector space functor (−)∗ : Vectop
R −→ VectR.

3. The forgetful functors Ab −→ Grp −→ Set.

4. The functor SmMan −→ SmMan which takes M to its tangent bundle TM , and a smooth
map f to its derivative Df .

5. The DeRham cochain complex Ω∗ : SmManop −→ coChR.

Definition 1.4. The category of topological spaces Top.
The category of based topological spaces Top∗.

Definition 1.5. f0, f1 : X −→ Y are homotopic if there exists a map F : X × I −→ Y such that

X × 0

��

f0

''
X × I // Y

X × 1

OO

f1

77

commutes. F is called a homotopy. We often write Ft : X −→ Y for the restriction of F to X × t.
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Suppose A ⊂ X. f0, f1 : X −→ Y are homotopic rel A if they are homotopic via a homotopy F
such that f0|A = Ft|A = f1|A for all t ∈ I.

f0, f1 : (X,x)→ (Y, y) are based homotopic if the underlying maps f0, f1 : X → Y are homotopic
rel x.

Definition 1.6. The homotopy category of space Ho(Top).
The homotopy category of based space Ho(Top∗).
The isomorphisms in Ho(Top) are called homotopy equivalences.
The isomorphisms in Ho(Top) are called based homotopy equivalences.

Definition 1.7. A space X is called a CW-complex if it can be written as a union
⋃
n∈NX

n and
the following conditions hold.

1. X0 is a discrete topological space.

2. The n-skeleton Xn is built from Xn−1 by attaching n-cells. That is,

• we have a collection of attaching maps {ϕα : Sn−1
α −→ Xn−1};

• Xn =
⊔
αD

n
αtXn−1

x∈∂Dnα∼ϕα(x) .

3. A ⊂ X is closed if and only if for all n ∈ N, A ∩Xn is closed in Xn.

A based CW-complex (X, ∗) is a CW-complex together with a choice of basepoint ∗ ∈ X0.

Definition 1.8. Suppose X is a CW-complex.
Xn is called the n-skeleton of X. By convention, X−1 = ∅ (or ∗ in the based setting).
As a set, Xn =

⊔
α e

n
α tXn−1, where enα = Dn

α \ ∂Dn
α. enα is called an n-cell.

We have characteristic maps Φ : Dn
α −→ Xn making the following diagram commute:

⊔
α S

n−1
α

⊔
α ϕα //

��

Xn−1

��⊔
αD

n
α

⊔
α Φα // Xn.

In fact, this diagram is a pushout in Top (in case you know more category theory). Moreover, X
is the colimit of the Xns.

2 The functor π1 : Ho(Top∗) −→ Grp

Definition 2.1. Suppose X is a space. A path in X is a map p : I −→ X.
Two paths p0, p1 : I −→ X are path homotopic if they are homotopic rel ∂I. We write p0 ' p1.
A path l : I −→ X with l(0) = l(1) is called a loop.

Definition 2.2. Suppose p, q : I −→ X are paths and that p(1) = q(0). We write p · q : I −→ X
for the path

(p · q)(x) =

{
p(2s) if s ∈ [0, 1

2 ];

q(2s− 1) if s ∈ [1
2 , 1].

p ·q is called the concatenation of p and q. We write p : I −→ X for the inverse path p(s) = p(1−s).
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Lemma 2.3. The relation of homotopy on paths with fixed endpoints in any space is an equivalence
relation.

Definition 2.4. Suppose (X,x) is a based space. Then π1(X,x) is the set of equivalence classes
of loops starting (and ending) at x.

Theorem 2.5. Suppose (X,x) is a based space. Then π1(X,x) is a group under the operation

[l][l′] = [l · l′].

The constant loop c : I −→ x −→ X is the identity element.
We call π1(X,x) the fundamental group.

Theorem 2.6. Suppose f : (X,x) −→ (Y, y) is a map of based spaces. Then

f∗ : π1(X,x) −→ π1(Y, y), [l] −→ [f ◦ l]

is a group homomorphism. We call f∗ the homomorphism induced by f .
Moreover, π1 defines a functor

Ho(Top∗) −→ Grp.

It is a categorical argument to see that a based homotopy equivalence induces an isomorphism
on fundamental groups. Unbased homotopy equivalences also induce isomorphisms on fundamental
groups but seeing this requires a little more thought.

Proposition 2.7. Suppose X is a space, x0, x1 ∈ X, and that p : I −→ X is a path from x0 to x1.
Then

βp : π1(X,x1) −→ π1(X,x0), [l] 7−→ [p · l · p]

is an isomorphism of groups.

Definition 2.8. We call a space X simply-connected if it is path-connected and has trivial funda-
mental group.

Proposition 2.9. A space X is simply-connected if and only if there is a unique homotopy class
of paths connecting any two points in X.

Lemma 2.10. Suppose X,Y are spaces, x ∈ X, and F : X×I → Y is a homotopy. Let p : I −→ X
be defined by p(t) = F (x, t). Then

π1(Y, F0(x))

π1(X,x)

(F0)∗
77

(F1)∗ ''
π1(Y, F1(x))

∼= βp

OO

commutes. In particular, (F0)∗ is an isomorphism if and only if (F1)∗ is an isomorphism.

Theorem 2.11. Suppose X and Y are spaces, x ∈ X, and f : X −→ Y is a homotopy equivalence.
Then the induced homomorphism f∗ : π1(X,x) −→ π1(Y, f(x)) is an isomorphism.
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3 Basic covering space theory and π1(S
1, ∗)

Definition 3.1. Suppose X is a space. A covering space of X is a space X̃ together with a map
π : X̃ −→ X. The map is required to have the following property:

• for all x ∈ X, there exists an open set Ux in X containing x such that

π−1(Ux) =
⊔

x̃∈π−1(x)

Ux̃

and for all x̃ ∈ π−1(x), π|Ux̃ : Ux̃ −→ Ux is a homeomorphism.

Such a Ux is called an evenly covered neighborhood of x.

Example 3.2. π : R −→ S1, t 7−→ (cos(2πt), sin(2πt)) is a covering map.

Theorem 3.3. Suppose π : X̃ −→ X is a covering space.

Y
f̃ //

y 7−→(y,0)

��

X̃

π

��
Y × I F //

F̃

==

X

Given a homotopy F : Y ×I → X, and a map f̃ : Y → X̃ lifting F0, there exists a unique homotopy
F̃ : Y × I −→ X̃ lifting F with F̃0 = f̃ .

Proof. First, fix y0 ∈ Y . We’ll construct the lift near y0.
Let t ∈ I. We can find an open Vt ⊂ Y containing y0 and an open (in I) interval Wt containing

t such that F (Vt ×Wt) is contained in an evenly covered neighborhood of F (y0, t). Compactness
implies that we can cover y0× I with finitely sets from {Vt×Wt : t ∈ I}. Taking the relevant finite
intersection of the Vt’s we obtain an open V ⊂ Y containing y0. Using the finitely many Wt’s, we
obtain a partition of I: 0 = t0 < t1 < . . . < tn−1 < tn = 1. For each i ∈ {1, . . . , n}, F (V × [ti−1, ti])
is contained in an evenly covered neighborhood Ui.

Assume we’ve defined F̃ on V × [0, ti−1]. We have F (V × [ti−1, ti]) ⊂ Ui, and a Ũi containing
F̃ (y0, ti−1) mapping homeomorphically to Ui. We would like to define F̃ on V × [ti−1, ti] to be F
composed with the inverse homeomorphism. To make sure this agrees with what has already been
defined we should replace V by F̃ |−1

V×ti−1
(Ũi). After finitely many steps, this defines F̃ on V × I

for some open set V containing y0.
First, argue uniqueness on y0×I. This means that by varying y0, the construction above defines

F̃ uniquely.

Corollary 3.4. Suppose π : X̃ −→ X is a covering space. Let p : I −→ X be a path and x0 = p(0).
For every lift x̃0 of x0, there is a unique path p̃ : I −→ X̃ lifting p with p̃(0) = x̃0.

Corollary 3.5. Suppose π : X̃ −→ X is a covering space. Given a homotopy of paths pt : I −→ X,
and a lift p̃0 : I −→ X̃ of the path p0, there exists a unique homotopy p̃t : I −→ X̃ of paths lifting
pt which starts at p̃0.
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Theorem 3.6. Let ∗ = (1, 0) ∈ S1. We have an isomorphism IS1 : Z −→ π1(S1, ∗) defined by

n 7−→
[
t 7−→ (cos(2πnt), sin(2πnt))

]
.

Proof. When n ∈ Z, write ωn for the loop t 7−→ (cos(2πnt), sin(2πnt)), so IS1(n) = [ωn].
One checks IS1 is a homomorphism.
We make use of the covering map π : (R, 0) −→ (S1, ∗).
First, we show that IS1 is surjective. Suppose l : (I, ∂I) −→ (S1, ∗) is a loop. l lifts uniquely to

a path p : (I, 0) −→ (R, 0). Note that p(1) ∈ π−1(∗) = Z; let n = p(1). We claim IS1(n) = [l]. To
see this, note that p is homotopic via the straight line homotopy to the path t 7−→ nt. Composing
this homotopy with π, we obtain a homotopy from l to ωn.

We now show that IS1 is injective. Suppose [ωn] = [ωm]. Then ωn ' ωm, and we can lift such
a homotopy to a homotopy of paths in R starting at 0. The endpoints must be fixed throughout
the homotopy, and this shows n = m.

4 The fundamental group of a CW-complex

Since {0} −→ Rn and Rn −→ {0} are homotopy inverses we have:

Theorem 4.1. Rn is simply-connected.

Theorem 4.2. For n ≥ 2, Sn is simply-connected.

Proof. Recall Sn = {x ∈ Rn+1 : ‖x‖ = 1}. Let

E = {(x1, . . . , xn, xn+1) ∈ Sn : xn+1 = 0}, HU = {(x1, . . . , xn, xn+1) ∈ Sn : xn+1 > 0},

pN = (0, . . . , 0, 1), and pS = (0, . . . , 0,−1). Stereographic projection defines a homeomorphism
(Sn \ pN , pS) −→ (Rn, 0). Thus, π1(Sn \ pN , pS) = 0. To prove the theorem, it is enough to show
that the inclusion Sn \ pN −→ Sn induces a surjection π1(Sn \ pN , pS) −→ π1(Sn, pS).

Let l : I −→ Sn be a loop and note l−1(pN ) ⊂ l−1(HU ) ⊂ I. l−1(HU ) is open, so can be written
as

l−1(HU ) =
⊔
j∈J

(aj , bj).

l−1(pN ) is compact and so J ′ := {j ∈ J : (aj , bj)∩ l−1(pN ) 6= ∅} is finite. For each j ∈ J ′, consider
l|[aj ,bj ]. Its image is contained in E ∪H, and l(aj), l(bj) ∈ E. E is homeomorphic to Sn−1 which is
path-connected because n ≥ 2. Moreover, E∪H is homeomorphic to Dn which is simply-connected.
These two facts mean that we can homotope l|[aj ,bj ] rel ∂[aj , bj ] to a path in E. Doing this for all
j ∈ J ′, defines a homotopy from l to another loop whose image is in Sn \ pN .

The previous theorem is also a consequence of Van Kampen’s theorem which we’ll see shortly.

Theorem 4.3. Suppose (X, ∗) is a space, that n ≥ 2, and that we have a map ϕ : Sn−1 −→ X. Let
Y be the space obtained by attaching an n-cell to X using ϕ. Then the inclusion X −→ Y induces
a surjection π1(X, ∗) −→ π1(Y, ∗).
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Proof. Let Φ : Dn −→ Y be the characteristic map of the n-cell, let y = Φ(0), and notice that Y \y
deformation retracts onto X.

π1(X, ∗)

∼=

��

&&
π1(Y, ∗)

π1(Y \ y, ∗)

88

Thus, the inclusionX −→ Y \y is a homotopy equivalence, and induces an isomorphism π1(X, ∗) −→
π1(Y \y, ∗). We just have to show π1(Y \y, ∗) −→ π1(Y, ∗) is surjective. This is the same argument
as the previous theorem: let l : I −→ Y be a loop and note l−1(y) ⊂ l−1(1

2e
n) ⊂ I.

Theorem 4.4. Suppose (X, ∗) is a space, and that {ϕα : Snα−1
α −→ X} is a collection of attaching

maps with each nα ≥ 2. Let Y be the space obtained by attaching cells to X using {ϕα}. Then the
inclusion X −→ Y induces a surjection π1(X, ∗) −→ π1(Y, ∗).

Proof. Same as before, but deal with all cells simultaneously.

Theorem 4.5. Suppose (X, ∗) is a CW-complex. Then the inclusions X1 −→ X2 and X2 −→ X
induce surjections π1(X1, ∗) −→ π1(X2, ∗) and π1(X2, ∗) −→ π1(X, ∗), respectively.

Proof. The previous theorem tells us that π1(X1, ∗) −→ π1(X2, ∗) is surjective.
Suppose l : (I, ∂I) → (X, ∗) is a loop. Since its image is compact, it lies entirely within some

n-skeleton Xn. Thus, its homotopy class is in the image of π1(Xn, ∗) −→ π1(X, ∗). The previous
theorem tells us that each of the maps

π1(X2, ∗) −→ π1(X3, ∗) −→ . . . −→ π1(Xn, ∗)

is surjective, so [l] is in the image of π1(X2, ∗) −→ π1(X, ∗).

In order to be able to calculate fundamental groups, we need to prove the following theorems.
Theorems 4.6, 4.10, 4.12 can be proved using Van Kampen’s theorem which we will mention shortly;
they can also be proved using covering space theory.

Theorem 4.6. Suppose (X, ∗) is a space, that n ≥ 3, and that we have a map ϕ : Sn−1 −→ X. Let
Y be the space obtained by attaching an n-cell to X using ϕ. Then the inclusion X −→ Y induces
an injection π1(X, ∗) −→ π1(Y, ∗). In fact, in light of theorem 4.3, it induces an isomorphism.

Theorem 4.7. Suppose (X, ∗) is a space, and that {ϕα : Snα−1
α −→ X} is a collection of attaching

maps with each nα ≥ 3. Let Y be the space obtained by attaching cells to X using {ϕα}. Then the
inclusion X −→ Y induces an injection π1(X, ∗) −→ π1(Y, ∗).

In fact, in light of theorem 4.4, it induces an isomorphism.

Proof. Same as the proof just omitted before, but deal with all cells simultaneously.

Theorem 4.8. Suppose (X, ∗) is a CW-complex. Then the inclusion X2 −→ X of the 2-skeleton
induces an injection π1(X2, ∗) −→ π1(X, ∗).

In fact, in light of theorem 4.5, it induces an isomorphism.
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Proof. Suppose l : (I, ∂I)→ (X2, ∗) is a loop and that its image under π1(X2, ∗) −→ π1(X, ∗) is 0,
that is, it is nullhomotopic in X. Since the image of the nullhomotopy is compact, it lies entirely
within some n-skeleton Xn. Thus, the image of [l] under π1(X2, ∗) −→ π1(Xn, ∗) is 0. The previous
theorem tells us that each of the maps

π1(X2, ∗) −→ π1(X3, ∗) −→ . . . −→ π1(Xn, ∗)

is injective, so [l] is 0 in π1(X2, ∗).

Remark 4.9. The map I → S1, t 7−→ (cos(2πt), sin(2πt)) induces a homeomorphism I/∂I → S1.
Thus, a loop l : (I, ∂I) −→ (X,x0) is the same as a map ϕ : (S1, ∗) −→ (X,x0).

Theorem 4.10. Suppose (X,x0) is a based space, that p : I −→ X is a path with p(0) = x0, and
that ϕ : (S1, ∗) −→ (X, p(1)). Let Y be the space obtained by attaching a 2-cell to X using ϕ, and l
be the loop corresponding to ϕ. Then the kernel of π1(X,x0) −→ π1(Y, x0) is the normal subgroup
generated by [p · l · p].

Theorem 4.11. Suppose (X,x0) is a based space, that {pα : I −→ X} is a collection of paths with
pα(0) = x0 for all α, and that {ϕα : (S1

α, ∗) −→ (X, pα(1))} is a collection of attaching maps. Let Y
be the space obtained by attaching 2-cells to X using {ϕα}, and {lα} be the loops corresponding to
{ϕα}. Then the kernel of π1(X,x0) −→ π1(Y, x0) is the normal subgroup generated by {[pα · lα ·pα]}.

Proof. Same as the proof just omitted before, but deal with all cells simultaneously.

Recall theorem 3.6. We also have the following result.

Theorem 4.12. We have an isomorphism

∗α Z −→ π1

(∨
α

S1, ∗
)
.

The map is determined by the fact that the following diagram commutes for all α:

Z
IS1 //

iα

��

π1(S1, ∗)

(iα)∗
��

∗αZ // π1

(∨
α S

1, ∗
)
.

Theorem 4.13. The 1-skeleton of a path-connected CW-complex is homotopy equivalent to a wedge
of circles.

Proof. A tree is contractible. Quotienting out by a maximal subtree is a homotopy equivalence to
a wedge of circles.

Corollary 4.14. Suppose (X, ∗) is a path-connected CW-complex. Then π1(X, ∗) has a presenta-
tion in which the relations correspond to the attaching maps of 2-cells.
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5 Van Kampen’s Theorem

Definition 5.1. Free product of groups as in Hatcher page 41.

Suppose (X, ∗) is a based space and that A,B are subsets of X containing ∗. Then we have a
commutative diagram induced by inclusions:

π1(A ∩B, ∗)
(iBA)∗ //

(iAB)∗
��

π1(B, ∗)

(jB)∗
��

π1(A, ∗)
(jA)∗ // π1(X, ∗).

(5.2)

Suppose we started with just

π1(A ∩B, ∗)
(iBA)∗ //

(iAB)∗
��

π1(B, ∗)

π1(A, ∗)

and wanted to create a commutative square. We could take

G =
π1(A, ∗) ∗ π1(B, ∗)〈

(iAB)∗(ω)−1(iBA)∗(ω) : ω ∈ π1(A ∩B, ∗)
〉 .

In fact, this group is the “best” such group in the sense that commutativity of (5.2) guarantees the
existence of a unique homomorphism G −→ π1(X, ∗) such that the composites π1(A, ∗) −→ G −→
π1(X, ∗) and π1(B, ∗) −→ G −→ π1(X, ∗) are (jA)∗ and (jB)∗, respectively:

π1(A ∩B, ∗)
(iBA)∗ //

(iAB)∗
��

π1(B, ∗)

�� (jB)∗

##

π1(A, ∗) //

(jA)∗
,,

G

))
π1(X, ∗).

Theorem 5.3 (Van Kampen). Suppose that (X, ∗) is a based space and that A,B are subsets of X
containing ∗. Suppose, in addition, that A, B, and A ∩ B are open and path-connected, and that
A ∪B = X. Then the map

π1(A, ∗) ∗ π1(B, ∗)〈
(iAB)∗(ω)−1(iBA)∗(ω) : ω ∈ π1(A ∩B, ∗)

〉 −→ π1(X)

determined by (jA)∗ and (jB)∗ is an isomorphism.
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Proof. Surjectivity isn’t so bad.
Let l : (I, ∂I) −→ (X, ∗) be a loop. Using compactness of I, we can find a partition

0 = s0 < s1 < . . . < sn−1 < sn = 1

such that for all i ∈ {1, . . . , n}, f([si−1, si]) is a subset of either A or B. Since A ∩ B is path-
connected, we can find paths pi : I −→ A ∩B, with pi(0) = ∗ and pi(1) = f(si). We have

[l] =
[
p0 · f |[s0,s1] · p1

][
p1 · f |[s1,s2] · p2

]
· · ·
[
pn−1 · f |[sn−1,sn] · pn

]
which is in the image of the map determined by (jA)∗ and (jB)∗.

Injectivity is more difficult. See Hatcher for a proof.

Example 5.4. π1(S1 ∨ S1, ∗) ∼= Z ∗ Z.

Theorem 4.12 follows by induction for finite indexing sets. It follows for arbitrary indexing sets
from the stronger version of Van Kampen’s theorem stated in Hatcher.

We turn to the proofs of theorem 4.10 and theorem 4.6.

Proof of theorem 4.10 and theorem 4.6. Suppose (X,x0) is a based space. Because the fundamental
group of (X,x0) only “sees” the path-component of x0, we may as well assume that X is path-
connected.

Suppose p : I → X is a path with p(0) = x0, and ϕ : (S1, ∗) −→ (X, p(1)). Let Y be the space
obtained by attaching a 2-cell to X using ϕ, Φ : D2 −→ Y be the characteristic map of the 2-cell,
and y = Φ(0). Let l be the loop corresponding to ϕ. To see that the kernel of π1(X,x0) −→ π1(Y, x0)
is the normal subgroup generated by [p · l · p], we will apply Van Kampen’s theorem to a space
which deformation retracts to Y . The reason for fattening up Y is that we do not know what Y
looks like near x0, and so describing opens sets containing x0 is not possible.

Let

Z =
(I × I) t Y

(s, 0) ∈ I × I ∼ p(s) ∈ Y, (1, t) ∈ I × I ∼ Φ(1− t
2 , 0) ∈ Y

,

z0 ∈ Z be the image of (0, 1) ∈ I×I, X ′ be the image of (0×I)tX, Y ′ be the image of (0×I)tY ,
A = Z − y, and B = Z \X. Let C be the image of I × 1 t Φ(1

2S
1) and c0 be the image of (1, 1).

The inclusions X → X ′, Y → Y ′, X ′ → A, z0 → B, Φ(1
2−) : S1 → C, C → A∩B, and Y ′ → Z

are homotopy equivalences, we have an obvious path q1 from z0 to x0 in X ′, and an obvious path
q2 from z0 to c0 in C. Thus, we obtain the following commutative diagram.

π1(S1, ∗) ∼= Z
[p·l·p] //

∼=
��

Φ( 1
2
−)∗
��

π1(X,x0) //

∼=
��

π1(Y, x0)

∼=
��

π1(C, c0)

βq2 ∼=
��

π1(X ′, x0) //

βq1
∼=
��

π1(Y ′, x0)

βq1
∼=
��

π1(C, z0)

∼=
��

π1(X ′, z0) //

∼=
��

π1(Y ′, z0)

∼=
��

π1(A ∩B, z0) // π1(A, z0) // π1(Z, z0)
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Since π1(B, z0) = 0, Van Kampen’s theorem says π1(Z, z0) is the quotient of π1(A, z0) by the normal
subgroup generated by the image of π1(A∩B, z0). This fact together with the commutative diagram
finishes the proof of 4.10. The same proof works for 4.6, but in that case π1(A ∩B, z0) = 0.

6 Further covering space theory

Proposition 6.1. Suppose π : (X̃, x̃) −→ (X,x) is a covering map.
The induced map π∗ : π1(X̃, x̃) −→ π1(X,x) is injective, and its image consists of the homotopy

classes of loops in X based at x whose lifts to X̃ starting at x̃ are loops.

Proposition 6.2. Suppose π : (X̃, x̃) → (X,x) is a covering space and that f : (Y, y) → (X,x) is
a map where Y is path-connected and locally path-connected.

(X̃, x̃)

π

��
(Y, y)

f //

f̃
;;

(X,x)

Then a lift f̃ : (Y, y) −→ (X̃, x̃) exists if and only if f∗(π1(Y, y)) ⊂ π∗(π1(X̃, x̃)).

Proof. If a lift f̃ exists then f∗(π1(Y, y)) = π∗f̃∗(π1(Y, y)) ⊂ π∗(π1(X̃, x̃)).
Conversely, suppose f∗(π1(Y, y)) ⊂ π∗(π1(X̃, x̃)). Given y′ ∈ Y , we can find a path p : I −→ Y

from y to y′. Lift fp starting at x̃ to obtain f̃p : I −→ X̃. Define f̃(y′) = f̃p(1).
First, we argue that f̃ is well-defined. Suppose q : I −→ Y is a second path from y to y′. Then

p·q is a loop based at y. So fp·fq is loop based at x in f∗(π1(Y, y)), thus, in π∗(π1(X̃, x̃)). Therefore

fp · fq lifts to a loop in X̃ based at x̃. We conclude that f̃p(1) = f̃ q(1). So f̃ is well-defined.
The map is continuous because locally it looks like π−1f .

Proposition 6.3. Suppose π : (X̃, x̃) −→ (X,x) is a covering space and f : (Y, y) −→ (X,x) is a
map from a connected space Y . Any two lifts f̃1, f̃2 : (Y, y) −→ (X̃, x̃) of f are equal.

Proposition 6.4. Suppose (X,x) is path-connected and locally path-connected. Two path-connected
covering spaces p1 : (X̃1, x̃1) −→ (X,x) and p2 : (X̃2, x̃2) −→ (X,x) are isomorphic if and only if

(p1)∗(π1(X̃1, x̃1)) = (p2)∗(π1(X̃2, x̃2)).

Theorem 6.5. Suppose (X,x) is path-connected, locally path-connected, and semilocally simply-
connected. Then there exists a covering map π0 : (X̃0, x̃0)→ (X,x) in which X̃0 is simply-connected.

Proof. Suppose X is path-connected, locally path-connected, and semilocally simply-connected.
Let

X̃0 = {[p] : p is a path starting at x},

where [p] denotes the homotopy class of p with respect to homotopies that fix the end-points. Let
x̃0 the homotopy class of the constant path starting at x. Let π0([p]) := p(1).

It is possible to put a topology on X̃0 so that π0 : (X̃0, x̃0) −→ (X,x) is a covering map.
Given [p] ∈ X̃0. Let pt : I → X be the path such that pt|[0,t] = p|[0,t] and pt is constant on [t, 1].

Then t 7−→ [pt] is a path from x̃0 to [p] in X̃0. Thus, X̃0 is path-connected.
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Let l : (I, ∂I) −→ (X,x) be a loop. p̃ : t 7−→ [lt] is a lift of l to X̃0 starting at x̃0. If [l] is in the
image of (π0)∗, then p̃ is a loop, so [l] = [l1] = p̃(1) = x̃0, which means l is nullhomotopic. Thus,
the image of π1(X̃0, x̃0) under (π0)∗ is 0. So π1(X̃0, x̃0) = 0, and X̃0 is simply-connected.

Definition 6.6. Suppose (X,x) is path-connected, locally path-connected, and semilocally simply-
connected. The (X̃0, x̃0) constructed in the previous theorem is called the universal cover of (X,x).

The construction gives (X̃0, x̃0) a left π1(X,x)-action: [l][p] = [l · p].

Remark 6.7. From now on we’ll always assume (X,x) is path-connected, locally path-connected,
and semilocally simply-connected, so that it has a universal cover.

Definition 6.8. Suppose π : (X̃, x̃) −→ (X,x) is a covering map.
Suppose f ∈ π−1(x) and that [l] ∈ π1(X,x). By lifting l to a path starting at f and recording

where the path ends, we obtain another point f ′ ∈ π−1(x). Define

f [l] := f ′.

Thus, π−1(x) is a right π1(X,x)-set with x̃ as a distinguished point.
This is a called the action of π1(X,x) on the fiber π−1(x).
This procedure defines a functor Fib from Cov∗(X,x) to π1(X,x)-Set∗.

Definition 6.9. Suppose (X,x) is a based space and that F is a π1(X,x)-set with a distinguished
point ∗. Then we can construct a covering map π : (X̃, x̃) −→ (X,x) as follows.

Let π0 : (X̃0, x̃0) −→ (X,x) be the universal cover of (X,x). Let

X̃ =
F × X̃0

(f · [l], [p]) ∼ (f, [l · p])

and x̃ = [(∗, x̃0)]. Define π : (X̃, x̃) −→ (X,x) by [(f, [p])] 7−→ p(1).
This is called the Borel construction.
Notice that π−1(x) = F × x̃0/ ∼.
This procedure defines a functor Bor from π1(X,x)-Set∗ to Cov∗(X,x).

Theorem 6.10. Fib and Bor define an equivalence of categories Cov∗(X,x) ' π1(X,x)-Set∗.

Proof. Suppose π : (X̃, x̃) −→ (X,x) is a covering map.
Given p : I −→ X starting at x and f ∈ π−1(x), we can lift p starting at f , to obtain p̃ : I −→ X̃.

Then p̃(1) ∈ X̃. We can define

π−1(x)× X̃0

(f · [l], [p]) ∼ (f, [l · p])
−→ X̃, [(f, [p])] 7−→ p̃(1).

This is a homeomorphism (exercise).
Conversely, suppose (X,x) is a based space and that F is a π1(X,x)-set and construct

π : (X̃, x̃) −→ (X,x)

as in definition 6.9.
We have already remarked that F → π−1(x), f 7−→ [(f, x̃0)] is a bijection of sets. We show that

it is an isomorphism of π1(X,x)-sets. Suppose f ∈ F and that [l] ∈ π1(X,x0). Then p : I −→ X̃,
t 7−→ [(f, [lt])] is a path from [(f, x̃0)] to [(f, [l])] = [(f [l], x̃0)] lifting l. This shows that [(f, x̃0)][l] =
[(f [l], x̃0)], so that the bijection is indeed a map of π1(X,x)-sets.
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Proposition 6.11. Fib and Bor restrict to an equivalence of categories

PathConnCov∗(X,x) ' Trans-π1(X,x)-Set∗.

Proof. Suppose π : (X̃, x̃) → (X,x) is a covering map, that X̃ is path-connected, and let f, f ′ be
in the fiber π−1(x). We can choose a path p from f to f ′. Then l = π ◦ p is a loop in X and we
have f [l] = f ′, so the action of π1(X,x) on π−1(x) is transitive.

Conversely, suppose (X,x) is a based space, that F is a transitive π1(X,x)-set and construct

π : (X̃, x̃) −→ (X,x)

as in definition 6.9. Given two points in X̃, because the π1(X,x)-action on F is transtive, we can
choose their representatives so that the F -coordinates are the same; we can then connect them by
a path because X̃0 is path-connected. Thus, X̃ is path-connected.

Recall from elementary group theory that transitive G-sets with a distinguished point are de-
termined up to isomorphism by the stabilizer of of that disinguished point.

Theorem 6.12. We have an equivalence of categories

PathConnCov∗(X,x) // {subgroups of π1(X,x)}oo(
π : (X̃, x̃) −→ (X,x)

)
� // im

(
π∗ : π1(X̃, x̃) −→ π1(X,x)

)
H\X̃0 H.�oo

Proof. Suppose π : (X̃, x̃)→ (X,x) is a covering map. Under the action of π1(X,x) on π−1(x), the
stabilizer of x̃ consists of the loops in X starting at x which lift to loops in X̃ starting at x̃. This
is precisely

im

(
π∗ : π1(X̃, x̃) −→ π1(X,x)

)
.

Also,

(
H\π1(X,x0)

)
× X̃0

/
∼ = H\X̃0.

Corollary 6.13. Let π : (X̃, x̃)→ (X,x) be a covering space in which X̃ and X are path-connected.
The number of sheets of the covering equals the index of π∗(π1(X̃, x̃)) in π1(X,x).

Remark 6.14. Forgetting the basepoint in a covering space of (X,x) causes us to forget about the
distinguished point in the corresponding π1(X,x)-set. This means that the corresponding stabilizer
is only defined up to conjugacy class.

The geometric reason for this is as follows. Suppose (X,x) is a based space, π : X̃ −→ X is a
covering space, and x̃1, x̃2 ∈ π−1(x). If p is a path from x̃1 to x̃2, then l = πp is a loop based at x,
and the following diagram commutes. Thus, changing the basepoint in a path-connected covering
space corresponds to changing the image subgroup to a conjugate subgroup.

π1(X̃, x̃1)

π∗
��

π1(X̃, x̃2)

π∗
��

∼=
βhoo

π1(X,x) π1(X,x)∼=

c[l]oo
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Corollary 6.15. We have an equivalence of categories

PathConnCov(X,x) // {conjugacy classes of subgroups of π1(X,x)}.oo

Definition 6.16. Let π : X̃ −→ X be a covering map. The automorphisms of a covering π are
called deck transformations. The group of deck transformations Aut(π) acts on X̃ on the left. π is
called normal if for all x ∈ X, the action of Aut(π) on π−1(x) is transitive.

Proposition 6.17. Suppose (X,x) is a space, that π : X̃ → X is a path-connected covering space,
x̃1, x̃2 ∈ π−1(x), p is a path from x̃1 to x̃2, and l = πp. Then there is a deck transformation taking
x̃1 to x̃2 if and only if conjugating by [l] is trivial on π∗(π1(X̃, x̃1)).

Proof. There is a deck transformation taking x̃1 to x̃2 if and only if π∗(π1(X̃, x̃1)) = π∗(π1(X̃, x̃2))
and the previous remark tells us that these groups are related by conjugation by [l].

Proposition 6.18. Suppose (X,x) is a space, that π : X̃ → X is a path-connected covering space,
and x̃ ∈ π−1(x). Let H = π∗(π1(X̃, x̃)).

π is a normal covering if and only H is a normal subgroup of π1(X,x).
In any case, we have an isomorphism N(H)/H −→ Aut(π), where N(H) denotes the normalizer

of H.

Proof. The claim about normality follows from the previous proposition.
First note that by connectedness, a deck transformation is determined by the image of x̃. Define

Φ : N(H)→ Aut(π) by Φ[l](x̃) = x̃[l], that is, given [l] ∈ N(H), lift l to a path p which starts at x̃,
and let Φ[l] be the deck transformation which takes x̃ to p(1). The first sentence of this paragraph
together with the previous proposition ensure that Φ is well-defined and surjective.

We check Φ is a homomorphism. Suppose [l1], [l2] ∈ π1(X,x) and that p1 : (I, 0)→ (X, x̃) and
p2 : (I, 0) → (X, x̃) lift l1 and l2, respectively. We have Φ[l1](x̃) = p1(1) and Φ[l2](x̃) = p2(1). So
Φ[l1]p2 : (I, 0) −→ (X̃, p1(1)) lifts l2, and p1 · (Φ[l1]p2) lifts l1 · l2. Thus,

Φ[l1 · l2](x̃) = (p1 · (Φ[l1]p2))(1) = (Φ[l1]p2)(1) = Φ[l1](p2(1)) = Φ[l1](Φ[l2](x̃)) = Φ[l1]Φ[l2](x̃)

which implies Φ[l1 · l2] = Φ[l1]Φ[l2]. Finally, ker Φ = stab(x̃) = H.

A covering space proof of theorem 4.10. Suppose (X,x0) is a based connected CW-complex.
Suppose p : I → X is a path with p(0) = x0, and ϕ : (S1, ∗) −→ (X, p(1)). Let Y be the space

obtained by attaching a 2-cell to X using ϕ, let l be the loop corresponding to ϕ, and let N be the
normal subgroup generated by [p · l · p].

Let π : X̃ −→ X be the covering space corresponding to N . Because N is normal, ϕ : (S1, ∗) −→
(X, p(1)) has lifts to X̃ indexed by G/N . Attach a 2-cell for each element of G/N to get a covering
Ỹ −→ Y .

It is clear that N is in the kernel of π1(X,x0) −→ π1(Y, x0). Conversely, suppose [l] is in the
kernel of π1(X,x0) −→ π1(Y, x0). This means we have a nullhomotopy of l in Y . This means that
l lifts to a loop in Ỹ , and hence in X̃. This means [l] is in the image of the map induced by π, i.e.
it is in N .
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Example 6.19. Consider X = S1 ∨ S1. Then π1(X, ∗) is a free group on two generators σ and τ .
We have π1(X, ∗)-sets:

E = {∗}.
Σ = {lΣ, rΣ}, σ acts trivially, and τ acts non-trivially.
T = {cT , lT , rT }, σ : cT 7−→ lT 7−→ rT 7−→ cT , τ swaps lT and rT and fixes cT .
G = {1, 1′, 2, 2′, 3, 3′}, τ swaps prime and unprimed, σ = (123)(1′2′3′)−1.

Taking stabilizers:
Stab(∗) ⊃ 〈σ, τ〉.
Stab(lΣ),Stab(rΣ) ⊃ 〈τ2, σ, τ−1στ〉.
Stab(cT ) ⊃ 〈σ3, τ, στσ, στ−1σ〉.
Stab(lT ) ⊃ 〈σ3, σ−1τσ, τσ2, τ−1σ2〉.
Stab(rT ) ⊃ 〈σ3, στσ−1, σ2τ, σ2τ−1〉.
Stab(1), Stab(1′), . . . ,Stab(3), Stab(3′) ⊃ 〈σ3, τ2, σ−1τ2σ, στ2σ−1, στστ, τστσ, στσ−1τσ〉.

By constructing covers you find that we have equality and that the groups are generated freely.
Attaching 2-cells to X according to the words σ3, τ2, στστ , we obtain a CW-complex Y with

π1(Y, ∗) = 〈σ, τ |σ3, τ2, στστ〉 ∼= Σ3. The sets above are also Σ3-sets; we obtain the complete Galois
correspondence for Y and Σ3.
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7 Hawaiian Earring

Let S1
n = {x ∈ R2 : ‖x− 1

n‖ = 1
n} and H =

⋃∞
n=1 S

1
n. We will calculate π1(H, 0).

Notice that for N ∈ N,
⋃N
n=1 S

1
n
∼=
∨N
n=1 S

1. We will use this identification throughout.

We have retractions rN : H −→
∨N
n=1 S

1. Moreover, these retractions are compatible with the

collapse maps cN :
∨N+1
n=1 S

1 −→
∨N
n=1 S

1, that is the following square commutes for all N ∈ N:

H
rN+1 //

=

��

∨N+1
n=1 S

1

cN
��

H rN //
∨N
n=1 S

1.

Thus, these retractions give compatible surjections (rN )∗ : π1(H, 0) −→ π1(
∨N
n=1 S

1, ∗).
We obtain a map {(rN )∗} : π1(H, 0) −→ limN π1(

∨N
n=1 S

1, ∗).
In case you’re not familiar with (inverse) limits:

lim
N

π1

( N∨
n=1

S1, ∗
)

=

{
{gN}∞N=1 : ∀N ∈ N, gN ∈ π1

( N∨
n=1

S1, ∗
)
, (cN )∗(gN+1) = gN

}
.

Let a1, a2, a3, . . . be chosen so that for each N ∈ N, π1(
∨N
n=1 S

1, ∗) is a free group on a1, . . . , aN .

Given {gN}∞N=1 ∈ limN π1(
∨N
n=1 S

1, ∗), we can make sure that each gN is a reduced word. We can
then write dn(gN ) for the number of times that a±1

n appears in gN . Let

H =

{
{gN}∞N=1 ∈ lim

N
π1

( N∨
n=1

S1, ∗
)

: ∀n ∈ N, lim
N→∞

dn(gN ) is finite

}
.

We claim that {(rN )∗} is an injection with image H.

• im{(rN )∗} ⊆ H.

Suppose l : (I, ∂I) −→ (H, 0) is a loop in H.

l is uniformly continuous, so for each n ∈ N, we can find a δn > 0 such that

∀s ∈ I, ∀t ∈ I, |s− t| < δn =⇒ ‖l(s)− l(t)‖ < 1

n
.

Thus, limN→∞ dn((rN )∗[l]) ≤ 1
δn

, and {(rN )∗}[l] = {(rN )∗[l]} ∈ H.

As an example, let hn = a1an and gN = h1h2h3 . . . hN−1hNa
−N
1 . Then it should be clear that

{gN} is not in the image of {(rN )∗}.

• H ⊆ im{(rN )∗}.
Suppose {gN} ∈ H. Choose an increasing sequence of natural numbers (Nk)

∞
k=1 such that

dk(gNk) = lim
N→∞

dk(gN ).

Chop the interval I into 2N1 + 1 pieces. Chop the 1-st, 3-rd, 5-th, . . ., (2N1 + 1)-st pieces
into 2N2 + 1 pieces. Chop the 1-st, 3-rd, . . ., (2N2 + 1)-st of each of these pieces into 2N3 + 1
pieces. Keep going.
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We now define a loop l : (I, ∂I)→ (H, 0) as follows. Use gN1 to define what happpens on the
2-nd, 4-th, . . ., 2N1-th piece of the interval in the first level of chopping: either do a1 or a−1

1 .
Use the elements gN2 to define things on the even pieces of next level of chopping. I chopped
more than necessary and there will be some constant paths. Keep going to get a loop l with
{(rN )∗}[l] = {gN}.
The idea above was simply to put in the correct amount of looping around the k-th circle S1

k ,
while leaving space to do the loops around smaller circles. Checking continuity of the loop
using ε-δ would make explicit use of the sequence (Nk)

∞
k=1.

• ker {(rN )∗} = 1.

Suppose l : (I, ∂I) −→ (H, 0) is a loop in H and that {(rN )∗}[l] = 1.

We must show [l] = 1. This is difficult.
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8 The prism proof

∆n × I is built from (n+ 1)-simplices.
Label the vertices of ∆n × 0 = [v0, . . . , vn] and ∆n × 1 = [w0, . . . , wn].
Let Γ[v0, . . . , vn] =

∑n
i=0(−1)i[v0, . . . , vi, wi, . . . , wn]. Then

∂Γ[v0, . . . , vn] =

n∑
i=0

(−1)i∂[v0, . . . , vi, wi, . . . , wn]

=
n∑
i=0

(−1)i
[ i∑
j=0

(−1)j [v0, . . . , v̂j , . . . , vi, wi, . . . , wn] +

n∑
j=i

(−1)j+1[v0, . . . , vi, wi, . . . , ŵj . . . , wn]

]

Γ∂[v0, . . . , vn] =

n∑
j=0

(−1)jΓ[v0, . . . , v̂j , . . . , vn]

=
n∑
j=0

(−1)j
[ j−1∑
i=0

(−1)i[v0, . . . , vi, wi, . . . , ŵj , . . . , wn] +

n∑
i=j+1

(−1)i−1[v0, . . . , v̂j , . . . , vi, wi . . . , wn]

]
and

(∂Γ + Γ∂)[v0, . . . , vn] =

n∑
i=0

(−1)i
[
(−1)i[v0, . . . , vi−1, wi, . . . , wn] +

(−1)i+1[v0, . . . , vi, wi+1, . . . , wn]

]
=

n∑
i=0

[
[v0, . . . , vi−1, wi, . . . , wn]− [v0, . . . , vi, wi+1, . . . , wn]

]
= [w0, . . . , wn]− [v0, . . . , vn].

Thus, h : Cn(X) −→ Cn+1(X × I), σ 7−→ (σ × 1)#(Γ) defines a chain homotopy from (i0)# to
(i1)# where i0, i1 : X −→ X × I are the inclusions X 7−→ (x, 0) and x 7−→ (x, 1).
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9 Poincaré Duality

Let M be an oriented smooth manifold without boundary, which is not necessarily compact. Let us
also assume that M has the structure of a ∆-complex in which the characteristic maps are smooth,
and that the homology of M is finitely generated.

We have inclusions of chain complexes C∆
∗ (M) −→ Csm

∗ (M) −→ Csing
∗ (M). The whole compos-

ite induces an isomorphism on homology. One can use a relative version of smooth approximation
to show each individual map induces an isomorphism on homology, and we can use homology based
on smooth chains in place of singular homology.

We have a homomorphism ρk : Ωk(M) −→ Hom(Csm
k (M),R) defined by

ρk(ω)(σ) =

∫
∆k

σ∗ω.

Moreover, by Stokes’ theorem

ρk+1(dω)(σ) =

∫
∆k+1

σ∗(dω) =

∫
∆k+1

d(σ∗ω) =

∫
∂∆k+1

σ∗ω = ρk(ω)(∂σ) = δ(ρk(ω))(σ)

so ρk induces Hk
DR(M) −→ Hk(M ;R). De Rham’s theorem says this is an isomorphism.

Moreover, the UCT gives an isomorphism Hk(M ;R) −→ Hom(Hk(M ;R),R).
Thus, we have an isomorphism

Hk
DR(M) −→ Hom(Hk(M ;R),R), [ω] 7−→

([∑
i

xiσi

]
7−→

∑
i

xi

∫
∆k

σ∗i ω

)
.

By our finiteness assumption, we also have an isomorphism

Hk(M ;R) −→ Hom(Hk
DR(M),R),

[∑
i

xiσi

]
7−→

(
[ω] 7−→

∑
i

xi

∫
∆k

σ∗i ω

)
.

Poincaré duality in the smooth setting tells us that the map

PDsm : Hk
DR(M) −→ Hom(Hn−k

DR,c(M),R), [ω] 7−→
(

[η] 7−→
∫
M
η ∧ ω

)
is an isomorphism. By our finiteness assumption, we also have an isomorphism

Hn−k
DR,c(M) −→ Hom(Hk

DR(M),R), [η] 7−→
(

[ω] 7−→
∫
M
η ∧ ω

)
is an isomorphism.

Thus, we have an isomorphism

Hk(M ;R) −→ Hom(Hk
DR(M),R)←− Hn−k

DR,c(M).[∑
i xiσi

]
corresponds to an element [η] such that

∑
i

xi

∫
∆k

σ∗i ω =

∫
M
η ∧ ω
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for all ω ∈ Ωk(M). In fact, such an isomorphism exists without a finiteness assumption. Moreover,
in the case that

∑
i xiσi is a submanifold S we can describe [η] nicely. Let T be a tublar neighbor-

hood of S so that T is isomorphic to the normal bundle of S in M . We can take η to be a form
which is a bump (n− k)-form on each fiber Rn−k.

Now let M be a compact manifold without boundary. Let us also assume that M has the
structure of a ∆-complex. We’ll describe an isomorphism Hn−k(M ;Z/2) −→ Hk(M ;Z/2). When
M is oriented we’ll describe an isomorphism Hn−k(M) −→ Hk(M). This map will be chosen so
that

Hk(M ;R) −→ Hom(Hk(M ;R), R) −→ Hom(Hn−k(M ;R), R)

is closely related to the cup product just like the map PDsm.
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10 Final

10.1 Questions

1. (a) As concisely as possible, while giving essential details, describe the definition of cellular
homology for CW-complexes and why it is isomorphic to singular homology.

(b) Calculate, as groups, the homology of RP∞ and CP∞ with Z and Z/2-coefficients, care-
fully justifying any degree calculations.

(c) Use the UCT to calculate, as groups, the cohomology of RP∞ and CP∞ with Z and
Z/2-coefficients. Describe the natural maps

H∗(RP∞;Z) −→ H∗(RP∞;Z/2), H∗(CP∞;Z) −→ H∗(CP∞;Z/2).

(d) Explain how the UCT and Poincaré duality can be used to calculate the rings

H∗(RP∞;Z/2), H∗(CP∞;Z).

(e) Calculate the rings H∗(RP∞;Z) and H∗(CP∞;Z/2).

(f) Let q : RP∞ −→ CP∞ be the natural quotient map obtained by regarding both spaces
as quotients of S∞.

Describe the square

H∗(RP∞;Z)

��

H∗(CP∞;Z)
q∗oo

��
H∗(RP∞;Z/2) H∗(CP∞;Z/2)

q∗oo

Describe q∗ : H∗(RP∞;Z) −→ H∗(CP∞;Z) and q∗ : H∗(RP∞;Z/2) −→ H∗(CP∞;Z/2).

(g) CPn can be regarded as polynomials of degree ≤ n modulo multiplication by a non-zero
complex number. Multiplication of polynomials determines a map

µ : CP∞ × CP∞ −→ CP∞.

Calculate µ∗ : H∗(CP∞ × CP∞;Z) −→ H∗(CP∞;Z) justifying everything carefully.

(h) Similarly, there is a map µ : RP∞ × RP∞ −→ RP∞.

Calculate µ∗ : H∗(RP∞ × RP∞;Z/2) −→ H∗(RP∞;Z/2) justifying everything carefully.
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2. (a) The homology H∗(X;Z) of a space X is a graded abelian group.

Which graded abelian groups arise as the homology of a space? Prove your claim.

(b) SupposeM is a simply-connected closed 4-dimensional manifold (compact without bound-
ary), and that

rank H2(M ;Z) ≤ 2.

Based on this information, describe the possibilities for the cohomology ring H∗(M ;Z),
and find an example of M realizing each.

10.2 Solutions

1. (a) I’d copy pages 4 and 5 of

http://math.ucla.edu/~mjandr/Math225C/hand_lectures.pdf.

I’m a little sad that you all opted to copy Hatcher instead.

(b) The CP∞ calculations are straightforward because the non-trivial parts of the skeletal
filtration are given by

∗ = CP0 ⊂ CP1 ⊂ CP2 ⊂ CP3 ⊂ . . .

and CPn/CPn−1 = S2n. In particular, the odd-dimensional cellular groups are 0.

The skeletal filtration of RP∞ is given by

∗ = RP0 ⊂ RP1 ⊂ RP2 ⊂ RP3 ⊂ . . .

and RPn/RPn−1 = Sn. To understand the cellular chain complex, one needs to under-
stand the degree of the map f : Sn −→ RPn −→ RPn/RPn−1 = Sn. Pick x ∈ Sn−Sn−1,
and let y be its image. The preimage of y is {−x, x}. Near −x and x, f is a homeomor-
phism. These homeomorphisms agree up to composition with the antipodal map which
has degree (−1)n+1. So, when n is even, f has degree 0, and when f is odd, f has degree
2.

(c) I did it.

(d) The UCT together with Poincaré duality give isomorphisms

Hk(RPn;Z/2) −→ Hom(Hk(RPn;Z/2),Z/2) −→ Hom(Hn−k(RPn;Z/2),Z/2).

H2k(CPn;Z) −→ Hom(H2k(CPn;Z),Z) −→ Hom(H2n−2k(CPn;Z),Z).

This tells us that the cup products

Hk(RPn;Z/2)⊗Hn−k(RPn;Z/2) −→ Hn(RPn;Z/2)

H2k(CPn;Z)⊗H2n−2k(CPn;Z) −→ H2n(CPn;Z)

are perfect pairings.

Thus, the cup product structures on H∗(RPn;Z/2) and H∗(CPn;Z) are as non-trivial
as possible. Using the quotient maps,

H∗(RP∞;Z/2) −→ H∗(RPn;Z/2), H∗(CP∞;Z) −→ H∗(CPn;Z),

we conclude that H∗(RP∞;Z/2) = Z/2[w] and H∗(CP∞;Z) = Z[c] where |w| = 1 and
|c| = 2.
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(e) From part (c), it is immediate that

H∗(RP∞;Z) = Z[w2]/(2w2), H∗(CP∞;Z/2) = Z/2[c].

(f) Let q : RP∞ −→ CP∞ be the natural quotient. The square

Z[w2]/(2w2)

��

Z[c]
q∗oo

��
Z/2[w] Z/2[c]

q∗oo

is determined by the bottom map, which is determined by where c is mapped to.

q restricts to a map q| : RP2 = S2/±1 −→ S3/S1 = CP1. Let x ∈ RP2 − RP1, and let y
be its image under q. Then the pre-image of y is {x}, and q| is a local homeomorphism.
We conclude that c is mapped to w2.

q∗ : H∗(RP∞;Z) −→ H∗(CP∞;Z) is the only map it can be.

Since it’s the dual of q∗, q∗ : H∗(RP∞;Z/2)→ H∗(CP∞;Z/2) is as non-trivial as possible.

(g) Let µ : CP∞ × CP∞ −→ CP∞ be given by polynomial multiplication.

The following diagram commutes

CP0 × CP∞ //

∼= ((

CP∞ × CP∞

µ

��

CP∞ × CP0oo

∼=vv
CP∞

We have H∗(CP∞) = Z[c], and Künneth says that H∗(CP∞ ×CP∞) = Z[c]⊗ Z[c]. The
diagram just drawn gives µ∗(c) = 1⊗ c+ c⊗ 1. The binomial theorem says that

µ∗(cn) =
∑
i+j=n

(
n

i

)
ci ⊗ cj .

µ∗ is dual to µ∗: it takes e2i ⊗ e2j to (i+j)!
i!j! e2i+2j .

(h) Let µ : RP∞ × RP∞ −→ RP∞ be given by polynomial multiplication.

Then µ∗ : H∗(RP∞ × RP∞;Z/2) −→ H∗(RP∞;Z/2) takes ei ⊗ ej to (i+j)!
i!j! ei+j .

2. (a) The homology H∗(X;Z) of a space X is free abelian in dimension 0 and of rank greater
than or equal to 1. In dimensions bigger than 1 it can be any abelian group.

Let G be such a graded abelian group and let n ∈ {1, 2, 3, . . .}. First, find a CW-complex
Xn such that H̃n(X) = Gn and H̃m(Xn) = 0 when m 6= n. Let X =

∨
n∈{1,2,3,...}Xn. If

necessary, add some disjoint points to X. To find the CW-complexes Xn, just do what
you did for fundamental groups in higher-dimensions.

(b) SupposeM is a simply-connected closed 4-dimensional manifold (compact without bound-
ary), and that rank H2(M ;Z) ≤ 2. Since M is simply-connected, M is orientable and
Poincaré duality applies. Together with the UCT, we obtain

H1(M) = H1(M) = H3(M) = H3(M) = 0,
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H0(M) ∼= H0(M) ∼= H4(M) ∼= H4(M) ∼= Z.

We also obtain H2(M) ∼= H2(M) ∼= Zr where r = 0, 1, or 2.

When r = 0, the cohomology ring is determined, and S4 realizes it.

When r = 1, Poicaré duality forces the cohomology ring to be Z/[c]/(c3) which is realized
by CP2.

When r = 2, Poincaré duality gives a perfect pairing H2(M) ⊗H2(M) → H4(M). We
claim that the only symmetric perfect pairings Z2 ⊗ Z2 −→ Z up to isomorphism are
given by (

0 1
1 0

)
,

(
1 0
0 1

)
,

(
1 0
0 −1

)
.

We see these are realized by S2×S2, CP2#CP2, CP2#CP2
. CP2

is CP2 with the opposite
orientation, which means that when we do the connected sum the gluing is different.

To show the perfect pairings are as described comes down to linear algebra over Z.
Let α be an element which can be extended to a basis for H2(M). There are two cases:

i. α2 generates H4(M).

ii. We can find a β ∈ H2(M)− Z〈α〉 such that αβ generates H4(M).

We deal with these in turn:

i. The matrix of the cup product with respect to a basis α, β ∈ H2(M) and γ ∈ H4(M)

looks like

(
1 b
b c

)
, with c− b2 = ±1.

Since x2 + 2bxy + cy2 = x2 + 2bxy + (b2 ± 1)y2 = (x+ by)2 ± y2, by changing basis,

we can convert the matrix to

(
1 0
0 ±1

)
.

ii. The matrix of the cup product with respect to a basis α, β ∈ H2(M) and γ ∈ H4(M)

looks like

(
a 1
1 d

)
, with ad− 1 = ±1. There are two cases.

A. ad = 0. Without loss of generality, d = 0.
When a is even, ax2 +2xy = 2x(a2x+y) shows by changing basis, we can convert

the matrix to

(
0 1
1 0

)
.

When a is odd, ax2 + 2xy = (a+1
2 x+ y)2− (a−1

2 x+ y)2 shows by changing basis,

we can convert the matrix to

(
1 0
0 −1

)
.

B. ad = 2. Without loss of generality, a = ±1, d = ±2.
Since ±x2 + 2xy ± 2y2 = ±(x± y)2 ± y2, by changing basis, we can convert the

matrix to

(
±1 0
0 ±1

)
. By changing γ, if necessary, we can convert it to

(
1 0
0 1

)
.

Notice

(
0 1
1 0

)
and

(
1 0
0 −1

)
are not isomorphic, even though they are isomorphic over

the reals.
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