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1 Rings and fields

1.1 The definition

Consider the following list of properties that some collection of numbers might satisfy.

e (Al)a+ (b+c¢) = (a+0b)+ cfor all a,b,c (associativity of addition)

A2) a+b="0b+a for all a,b (commutativity of addition)

A3) there is an element 0 with the property that a +0=a =0+ a for all a
identity for addition)

A4) for each a there is an element (—a) with the property that a + (—a) =0 = (—a) + a

inverses for addition)

M2) ab = ba for all a,b (commutativity of multiplication)
M3

3) there is an element 1 with the property that a-1=a=1"-a for all a
identity for multiplication)

1 -1

(
(
(
(
(i
(M1) a(bc) = (ab)c for all a,b, ¢ (associativity of multiplication)
(
(
(
(M4) for each a # 0 there is an element a~! with the property that a-a ' =a"!-a =1
(i

inverses for multiplication)
e (D) a(b+c) =ab+ ac and (b+ c)a = ba + ca for all a,b, ¢ (distributivity)
Definition 1.1.1. A set R equipped with an addition
+:RxR— R, (a,b)—>a+b
and multiplication
-:RxR— R, (a,b)—>a-b

satisfying (A1)-(A4), (M1), (M3), and (D) is called a ring.
If, in addition, the multiplication satisfies (M2), then R is called a commutative ring.
A commutative ring for which (M4) is also satisfied is called a field.

1.2 Lots of examples

Example 1.2.1. The integers Z are a commutative ring but they are not a field since (M4) fails:
there is not an integer n with the property that

Example 1.2.2. The rationals Q are a field. You have known this for a long time.

mp | Mg ming +mong

n na ninz
my M2 mims

ni mg  ning

)




Example 1.2.3. The real numbers R are a field. You have known this for a long time. The reals
are actually more confusing though. To think coherently about what a real number is you have to
do math 131A.

Example 1.2.4. Fix an n € N. The n x n matrices with real entries M, (R) form a ring. If n > 2
they are not a commutative ring since

1 0y/0 1\ (0 1 ” 0 0y _ (0 1)\/1 O
0 0)\0 0/ \0 0 0 0/ \0o 0/\0o 0/
(M4) also fails since not all matrices have non-zero determinant.

Example 1.2.5. Fix an n € N. More generally we can look at n X n matrices with coefficients in
a commutatative ring R: M, (R). Is the following matrix invertible in My(Z)?

6 )

Example 1.2.6. If V is a vector space over R. Then the set
Endgr(V)={T:V — V : T is linear}

can be made into a ring using pointwise addition and composition:
(S+T)(v)=Sv+Tv, (ST)(v) = S(Tv).

If V is finite dimensional then, by choosing a basis, this is basically the same as Myj, v(R). If V' is
not finite dimensional it is something you may not have encountered before. Kevin will talk about
this in discussion.

Example 1.2.7. Suppose a,b € R with a < b. The continuous real-valued functions on the open
interval (a,b) form a commutative ring C°(a,b) under pointwise addition and multiplication:

(f +9)(x) = f(2) + 9(z), (f9)(z) = [(x)g(x).
Is C%a,b) a field? (Homework.)

Example 1.2.8. Suppose a,b € R with a < b. The differentiable real-valued functions on the open
interval (a,b) form a commutative ring C'(a,b) under pointwise addition and multiplication. Is
C*(a,b) a field? (Homework.)



2 The rationals (a discussion from lectures elaborated)

Now just relax. Settle back in your chair. Take a deep breath. Relax your arms. Relax your legs.
Relax your nerves. Relax all over. Look at the center of this disk I am holding in my hand. Do not
look off. Do not say anything. Keep your mind on my words. Think of nothing else. Gaze right at
the center of this disk. Soon your eyes will get heavy, and you wish to close them and go to sleep.
Your eyes are getting heavy, very heavy and tired. You are getting very sleepy. Soon you will be
sound asleep. .. Now focus carefully on what I am about to say.

YOU NO LONGER KNOW WHAT A RATIONAL NUMBER IS.

Awake.

I think we’ve all been really frustrated recently... You have a cookie. You and a friend both
want a piece, but there’s just no way for you both to enjoy it: only whole cookies exist. Thankfully,
I just came up with a new number system that is going to change the world and cookie enjoyment
forever! Here goes. ..

Okay. So we’re happy with the integers Z. Wow, though. .. do you remember when only positive
integers N = {1,2,3,...} existed and keeping track of debt was really arduous? Thank goodness
that’s over. ..

Consider the set

Z xN={(m,n) :meZ, neN}.

I'm going to construct my new numbers by viewing some of these elements as the same.

Definition 2.1. Suppose (m1,n1) and (meo,n2) are in Z x N. We'll say (my,n;1) and (mg,n2) are
rationally congruent and write

(m1,n1) =g (mg,n2) or [(m1,n1)]g = [(m2,n2)lg
if ming = mang.
Example 2.2. (1,2) =q (2,4) =q¢ (3,6) =g (4,8) =g ... or saying the same thing
[(1,2)lg = [(2,4)]e = [(3,6)lo = [(4,8)lg = - .-
This is because 1-4=2-2,2-6=3-4,3-8=4-6.
Definition 2.3. My new numbers, which I call the rational numbers are the set
Q= {l(m,n)lg : (m,n) € Z x N}.

Remark 2.4. Notice that my new numbers contain the integers. If [(m1,1)]g = [(m2,1)]g. Then
mi1=mq-1=mo-1=ms. So the subset

{[(m, D]g:meZ} CQ
is a copy of the integers.

I even know how to add and multply my new numbers.



Definition 2.5. I add and multiply rationals using the following formulae.

[(m1,m1)]q + [(m2, n2)lg = [(m1n2 + mani, nang)lg, [(ma,m)]g - [(m2, n2)lg = [(Mame, ning)lg
Let me convince you that makes sense.
Theorem 2.6. The addition and multiplication just defined make sense.

Proof. What do we need to show? Suppose that

[(m1,n1)]g = [(M1,71)]@, [(m2,n2)]g = [(M2, 72)]o- (2.7)

We need to show that
[(ming + mani, nine)lg = [(M172 + Moy, iMa)]g, [(M1m2,n1ng2)]g = (M2, M172)]q.

What we’re checking is that renaming our rationals does not change the result of adding or multi-
plying them, since our definition depends very explicitly on the name we’re using.
By definition of [—]g this means we must show

(ming +maony) - Mg = (M17T2 + Maly) - N1N2, MIM2NI Ty = T M2NINY.
Multiplying the first one out, we see that we want the following.
minaNing + ManiNiNg = MN2N1N2 + MaN1NIN

The right hand side is obtained from the left hand side by shifting the bar from the ny to the m;
in the first term and shifting the bar from the ns to the ms in the second expression. We need
mimy = miny and mofy = Mang and this is exactly what [2.7) says, by definition.

The second equality follows by mulitplying together these last two equations. O

I claim that these numbers give what we have been looking for all this time: an example of a
field containing the integers; we can finally divide our cookies!

Theorem 2.8. The rational numbers Q that I've just constructed are a field.

Proof. T'll leave you to check (Al).
(A2)

[(m1,m1)]q + [(m2,n2)lg = [(Ming + mani, ning)lg
= [(man1 + ming, nom)]g = [(m2, n2)lg + [(m1, 7))o

where the first and last equality follows from the definition of addition and the middle equality
follows from (A2) and (M2) for Z.
(A3) My 0 element is [(0,1)]q since

[(m, )] +[(0,D)]g = [(m - 1+0-n,n-1)g = [(m,n)]g

where the first equality follows from the definition of addition and the second from (M3) for Z, the
fact that 0-n = 0 (your homework shows this follows from axioms), and (A3) for Z.



(A4) We have —[(m,n)]g = [(—m, n)|g since

[(m,m)lg + [(=m, n)lg = [(mn + (=m)n,n)lg = [(0,7*)]g = [(0, D]g

where the first equality follows from definition of addition, the last follows from definition of [—]g
since 0-1 = 0-n? and the middle inequality follows from addition laws in Z.

(M1) and (M2) follow quickly from (M1) and (M2) for Z. My 1 element is [(1, 1)]g, which can
be verified using (M3) for Z. I'll leave it to you to check (D).

We're just left with checking (M4). Suppose [(m,n)]g # 0. This means [(m,n)]g # [(0,1)]g so
that m-1#£0-n,ie. m # 0. We claim

[(m,n)]g" = [(n - sgn(m), Im])],

m

= Tl This is because

where sgn(m)

[(m,n)]g[(n - sgn(m), [m|)]q = [(mn - sgn(m), n - |m|)lo = [(1,1)]g
where the first equality follows from definition of multiplication and the second follows from the
definition of [—]g since m - sgn(m) = |m|.
[If we had constructed Q using Z x (Z\ {0}) we could have taken [(m,n)]™! = [(n,m)]g instead,
which would have been easier, probably better even, but I preferred typing N over Z \ {0}.] O

Notation 2.9. Write ™ for [(m,n)]g so that

Q:{Z: meZ,nEN}.

We're now back to where we were before I hypnotized you.

Remark 2.10. What was the point in all of this? In the next section, we’ll check addition on Z/n
is well-defined and it will actually be much easier. If you had have been taught modular arithmetic
when you were younger as opposed to adding and dividing fractions, you would be awesome at it
by now.

When you were younger, you believed some older authority that the addition and multiplication
of fractions makes sense; now you have seen why it works. How could it have failed? Maybe, when
you first learned to add fractions, you tried the “rule”

mq m2 My + mo
n1 n9g ni + ng

Your teacher will have told you this is wrong, but maybe they didn’t give you a good reason as to
why. Suppose we try to define addition this way. Then

0 n 1 1
11 2
However, % also has the name % Using this name, with the definition we get
0 . 2 2
1 2 3

Uh oh... % #* % This definition of addition leads to nonsense since renaming elements changes the
answer we get.
Thank you to Chris Jeon for inspiring this!



3 Modular arithmetic

Modular arithmetic is
“usual integer arithmetic” + “ignoring multiples of some integer.”

If it’s 10am and someone asks you what time it will be in 5 hours, you answer, “3pm” because
10+ 5 =3 (mod 12).

Upon taking the remainder of 15 upon division by 12, you get 3.

Definition 3.1. If a,b € Z and n € N we say that a is congruent to b modulo n and write

a=b(modn), a=b(n) or la]l,=[bl,

if there is a ¢ € Z such that a = b+ cn.

Definition 3.2. If n € N, we write Z/n for the set of integers modulo n, that is
Z/n = {[z], : x € Z}.

Example 3.3. What is Z/7? Well,

L=E2l=-4=-T=0=7T=14=21=... (7)
=-20=-13=-6=1=8=15=22=... (7)
=-19=-12=-5=2=9=16=23=... (7)
=-18=-11=-4=3=10=17T=24=... (7)

. =-1T=-10=-3=4=11=18=25=... (7)

L.=-16=-9=-2=5=12=19=26=... (7)

=-1=-8=-1=6=13=20=27T=... (7)

= [-21]7 = [-14]7 = [-7]z = [0]7 = [T]r = [14]r = [21]r =
= [-20]7 = [-13]7 = [-6]7 = [1]r = [8]r = [15]7 = [22]r =
= [-19]7 = [-12]7 = [-5]7 = [2]r = [9]r = [16]7 = [23]7 =
= [-18]7 = [-11]7 = [-4]r = [3]r = [10]r = [17]7 = [24]7 =
= [-17]7 = [-10]7 = [=3]7 = [4]7 = [11]r = [18]7 = [25]7r =
= [-16]7 = [-9]7 = [-2]7 = [5]7 = [12]7 = [19]7 = [26]7 =
= [-15]7 = [=8]7 = [-1]7 = [6]7 = [13]7 = [20]7 = [27)7r =

2]T =A{lzl7 : x € Z} = {[0]7, (1], [2]7, [3]7, [4]7, [5]7, [6]7}-
We have found that we have lots of names for the same element. Actually, this is not new. You
have known for a long time that in Q

that is, we have many names for %



We can add and multiply elements modulo n. We just do the normal addition and multiplication
in the integers, add or substract multiples of n if we wish, and then say “modulo n.” For instance,

243=5(7), 445=2(7), 2-4=1(7), 4-5=-1(7).
We have to check that this makes sense though.

Theorem 3.4. Addition and multiplication on the integers 7. “descends to” a well-defined addition
and multiplication on the integers modulo n, Z/n.

Proof. The phrase “descend to” means we are trying to define an addition by

[2]n + [yn] = [2 + yln

and a multiplication by
We worry that something could go wrong because we have different names for the same thing and

our definition depends on the name used. For instance, [2]; = [9]7 and [3]7 = [10]7;. On the one
hand our definition says

2]7 - [3]7 = [2- 3]z = [6].

On the other hand our definition says
97 - [10]7 = [9 - 10]7 = [90]7.

Thankfully [6]; = [90]7 because 6 = 90 — 12 - 7 (we're taking ¢ = —12 in the definition) and so all
is right with the world.

Again, one can remark that, back when we were little boys and girls being taught to add and
multiply fractions, we should have checked something similar. Does the formula in Q

mq n ma  min2 + mang
ny n2 ning

depend on the way we named our fractions? Thankfully not! This is theorem
Okay, we’ve chatted for a long time; better actually prove something. ..
Suppose [z, = [2'], and [y], = [¢]n. This tells us, by definition, that there are ¢,d € Z such
that
r=a4+cn, y=1y +dn.

Thus,
z+y=@"+y)+(c+dn and zy=2z"y + (2'd+cy + cdn)n.

By definition, this tells us that
[z +yln = [2" + 9], and  [zyl, = [2"y]n.
So whatever name we pick to do the calculation, we get the same answer. ]

Theorem 3.5. Z/n is a commutative ring.



Proof. (Al):

[2]n + ([Wln + [2]n) = [#]n + [y + 2]l = [+ (y + 2)]n
=[(z +y) + 2ln =[x+ yln + [2]ln = ([2]n + [Y]n) + [2]n,

where the first, second, fourth and fifth equality follow from the definition and the third follows
from (A1) for Z.
(A2):
[2]n + [Yln = [z 4+ yln = [y + 2]n = [y)n + [2]n,
where the first and last equality follow from the definition and the middle inequality follows from
(A2) for Z.
(A3): 0 = [0],, since

[Zn] + [0l =[x + 0], = [z]5, = [0 + 2], = [0], + [2]5,

where the first and last equality follow from the definition and the middle two follow from (A3) for
Z.
(A4): —[z], = [—x], since

[2]n + [=2]n = [z + (=2)]n = [0ln = [(=2) + 2] = [=2]n + [2]n

where the first and last equality follow from the definition and the middle two follow from (A4) for
Z.
(M1)-(M3) and (D) are left for the homework. O

Example 3.6. Z/2 = {[0]2, [1]2}. The addition is described by

[0]2 + [0]2 = [1]2 + [1]2
[0]2 + [1]2 = [1]2 + [0]2

[0]2
[1]2

and the multiplication is described by

[0]2[0]2 = [0]2[1]2 =

1]2[0]2 = [0]2, [1]2[1]2 = [1]2.

Since [1]2 is the only non-zero element and [1]2[1]2 = [1]2, Z/2 is a field.

A good way to think of Z/2 is as the set {even, odd}; the addition and multiplication rules are
exactly the rules for adding and multiplying even and odd integers.

Often we write 0 and 1 for [0]2 and [1]2, respectively, to avoid cumbersome notation. After all,
these elements are the 0 and 1 that appear in the axioms for a ring. If we are feeling lazy in other
settings we may miss out the [—],, too.

Example 3.7. Z/6 = {[0]¢, [1]6, [2]6. [3]6, [4]6, [D]6, } and in class I'll write out the multiplication
table. Tt is not a field since [2]g - = is never equal to [1]s.

10



4 Polynomials

You have encountered polynomials throughout your math education. Up until now, they probably
will have had real coefficients, or maybe complex coefficients. We can actually allow coefficients in
any commutative ring.

4.1 Polynomial rings

Definition 4.1.1. Let R be a commutative ring. We write R[z] for the set of polynomials
{f(z) = a0+ a1z +asx® + ...+ ayz”™ : n € NU{0}, ag,...,a, € R}.

Remark 4.1.2. As before we can name things in more than one way by omitting or inserting
expressions like 0z%. For example, in Z[z],

7 — x4 322+ 22° =7+ (—1)z + 322 + 023 + 02* + 22° + 02° + 027,

We can also change the order in which we write monomials so that, in Z[z], 1 + z = x + 1.
Two polynomials are the same if the coefficients of each of their z* terms are equal.

Definition 4.1.3. If f(x) = ag + a1z + asz? + ... + a,z™ is a non-zero element of R[x] then the
largest k such that ay, # 0 is called the degree of f(z). If ageg f(2) = 1, then f(z) is called monic.

Example 4.1.4. Consider the polynomials Z/2[z]. Since Z/2 only has two elements we can write
down all the polynomials of degree less than or equal to 2 quickly.

0,1, z, z+1, 2%, 2>+ 1, 2+ 2, 2>+ z + 1.
Some good lessons can be learned from this example.

1. When one encounters polynomials in lower division courses they are often real-valued poly-
nomials and we think of them as the same as the real-valued function they define, i.e. we
think of the polynomial 22 — 2z + 5 € R[x] as the same as the function f : R — R, defined
by f(z) =22 — 2z + 5.

A polynomial in Z/2[z] does define a function Z/2 — Z/2, but different polynomials can

give rise to the same function. For instance, the polynomials  and 22 both give the identity

function Z/2 — 7 /2. However, they are different polynomials since the coefficients of x and
2 .

x~ differ.

2. When one wishes to factor a polynomial in R[z] one looks for roots to the polynomial. The
same trick works here. 1 is a root of 22 + 1 and indeed, because [2]; = 0, 2% + 1 factors as
(z+1)2. This “trick” is corollary We can try plugging in 0 and 1 to see that z2 4+ 2+ 1
has no roots. Thus, 22 + = + 1 does not factor.

Example 4.1.5. In Z/2[z] we have
dt—r=z@ -1 =2@-1)@>+2+1)

and cannot factor any further.

11



Example 4.1.6. In Z/2[x] we have

B —r=z@ - =z@@-)@+22+2' + 23 22 +24+1)

=x(x—1)(a® + o +1)(2® + 2% +1)
and cannot factor any further.

Example 4.1.7. In Z/3[z] we have

2 —rx =2 1) =z - )@+ 1) =20 - 1D)@*+ 1)@ +1)

(24 1)(@? +1) (@t + 1)
(z+ 1)@ +1D)@2* —2—D(@*+2z-1)
and cannot factor any further.
Example 4.1.8. In Z/5[z] we have
2® g = z(a? 1)
= l‘(ﬂ?u — D22 +1)
(2% = 1) (2% + 1)(2'2 + 1)
x(:c3 D)(2® +1)(2% +1)(='* + 1)
(1)@ +z+D+ D@ —z+1)@*+ D)@ — 22+ D@t + 1)@ -2t +1)
2z —1)(@? + 2+ 1)@+ 1)(2? — 2 +1)(@ — [25)(z + [2)5)
(zt — 22 + 1) (2 — [2]5) (2 + [2]5)(a® — 2t + 1)
= z(z — 1)(z + 1)(z — [2]5)(z + [2]5)(2* — 2z + 1)(2® + & + 1) (2® — [2]5)(«® + [2]5)
gt — 2?4 1) (2% — 2t +1)
= z(z — 1)(z + 1)(z — [2]5) (@ + [2]5)(@® — 2 + 1)(® + 2 + 1)(2? — [2]5)(2? + [2]5)
(2 = 252 — 1) (2 + [2]52 — 1) (2* — [2]522 — 1) (2 + [2]52% — 1)
You can actually factor into degree 2 polynomials. Good luck factoring the final two quartics!

Example 4.1.9. In Z/4[x], (z+[2]4)? = 22+ ([2]4+ [2]4)7 + [2]4 - [2]4 = 2. Because [2]4]2]4 = 0 we
get some strange looking formulae. The formula says that either we should regard 0 as a repeated
root, or [2]4 as a repeated root, but not 0 and [2]; as both being roots since x? # z(x + [2]4). Our
usual terminology does not make sense, the reason being that unique factorization does not occur

in Z/4[x].
Theorem 4.1.10. If R is a commutative ring, then so is R[z].

Proof. Suppose f(x) = ag + a1x + ax?® + ... 4+ apz” and g(z) = by + bz + box? + ... + bpz™. By
inserting terms like 0z* we can make sure n = m. Then we define

f(z)+ g(z) = (ap + bo) + (a1 + by)x + (ag + bo)x® + ... + (an + bp)z"

and f(z)g(z) = co+ 17 + caw® + . .. + copx®™ where ¢, = > it @ibj ((Al) for R tells us we don’t
need to use brackets when adding, and (A2) says we don’t care about the order so this summation
is well-defined).

One then checks the axioms. T’ll get you to do some of this in the homework. O

Definition 4.1.11. If R is a commutative ring, R[z] is called the polynomial ring over R.

12



4.2 Modular arithmetic with polynomials

Modular arithmetic with polynomials is
“usual polynomial arithmetic” 4 “ignoring multiples of some polynomial.”

Definition 4.2.1. If f(z), g(z),q(z) € R[z] we say that f(z) is congruent to g(x) modulo q(x) and
write

f(z) = g(x) (mod q(x)), or [f(@)]y) = [9(2)lg)
if there is a h(z) € R[x] such that f(z) = g(z) + h(z)q(x).

Definition 4.2.2. If ¢(z) € R[x], we write R[x]/(¢(z)) for the set of polynomials with coefficients
in R modulo ¢(x), that is

Rlzl/(q(x)) = {[f (@)lg) : f(x) € Rlz]}.

Theorem 4.2.3. Addition and multiplication on the polynomial ring Rlz| “descends to” a well-
defined addition and multiplication on the polynomial ring modulo q(x), R[z]/(q(z)). These opera-
tions make R[x]|/(q(z)) into a ring.

Proof. “Descends to” means we define
[f(x)]q(x) + [g(x)]q(m) = [f(x) + g(‘r)]q(x) and [f(l‘)]q(m) ) [g(x)]q(a:) = [f(l')g(x)]q(x)
The rest of the proof is the same as the proof of theorem [3.4] and In particular,
0= [O]q(z) and 1= [1]q(:c)7

where the 0 and 1 inside the brackets denote the 0 and 1 of R[z]. We showed in the first homework
that these are the zero polynomial and the constant polynomial with value 1, respectively. ]

Example 4.2.4. What is R[z]/(22 4+ 1)? We start with R, adjoin an element x, and then make
some stuff equal by using the brackets [—],2, ;. Everything is determined by the fact that

[2° 4+ 1241 = [0]5241 = 0.

This relation holds by the definition of [~],2; and the fact that 22 +1=0+1- (22 +1). It forces

[2%]g241 = [#% + U241 — [Up21 = 0—1=—1,
[3«"3]x2+1 = [$2]z2+1 : [$]x2+1 =-1- [x]x2+1 = [—1]m2+1 : [5U]x2+1 = [_x]x2+17
[ p241 = [#7]20,, = (-1)* = 1.

In general, we have

4 An+1 An+2 4n+3
[J:]xTQLJrl =1, [x]ngr_l = [‘r]x2+17 [x]mgjr_l = -1, [SU]xgil = [_x]ocQ-H'

3

This means we can always eliminate 22, 2°, ... from inside [~],2,; and so

Rlz]/(2* + 1) = {[a + bx],241 : a,b € R}.

What did we do? We started with R, and adjoined an element i = [z],2,; with the property that

i* = [2]2,; = —1. This is C.
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Example 4.2.5. Z/2[z]/(z? + z + 1). The thing to notice is that
2> =z +1 (mod 2 +z +1).

This is because 22 = (z + 1) + 1 (22 + 2 + 1) since, in Z/2[x], z +x =1+ 1 =0.
Thus, for any n € NU {0} we have

2" = 2" 42" (mod 2 +x + 1)

and this allows us to write monomials z* with k& > 2 in terms of polynomials with lower degree.
Thus,

7/2[z]/(z* 4z + 1) = {0, 1, [2], [z + 1]},

where we have started omitting the subscript on the square brackets due to laziness.
In lecture, I went through the addition and multiplication table for this. I’ll ask you to repeat
this on the homework. The next example is similar, and slightly more involved.

Example 4.2.6. Z/3[z]/(z? + 1). Using the same argument as in the previous example we have
Z/3[z]/(z* +1) = {0,1, -1, 2], [z + 1], [z — 1], [~2], [~= + 1], [-2 — 1]}.
Suggestively call this ring Fy, since it turns out to be a field with 9 elements and let o = [z]. Then
Fo={0,1,-lL,,a+ 1, — 1, -, —x+ 1,—ax — 1}
and o? + 1 = [z]? + [1] = [2® + 1] = [0] = 0 so that
o®>=-1 and o*-1=1.

This means that in Fy[y]

Y—y=yy-Dy+ D+ -y -1 +y—1)
=yly—D(y+1)

(y—a)y+a)y—(a=1))y+ (a+1))(y+ (a—1)(y - (a+1)).

See example for the first equality. I have changed the polynomial indeterminant x to y to
avoid confusion with the previous .

It turns out that constructing the smallest thing containing Z/p where the polynomial y?" — y
factors into linear factors gives a field with p™ elements.

14



5 Division
5.1 The definition of “b divides a”

The definition of a commutative ring is based on the properties of Z. In Z we have the notion of
divisibility: 6 is divisible by 2. To say this another way: 2 divides 6. This notion makes sense in
any commutative ring.

Definition 5.1.1. Suppose R is a commutative ring. If a,b € R, we say b divides a and write b|a
if a = be for some ¢ € R.

Example 5.1.2. In Z, 2|6, (—5)|100, 3|(—30), 5 does not divide 26.

Example 5.1.3. In Z/5, [3]5 divides [2]5 since [2]5 = [3]5 - [4]5. In Z/6, [3]¢ does not divide [2]g,
since the only multiplies of [3]¢ are [0]g and [3]s.

Example 5.1.4. In Z/3[z], (x — 1)[(z® + x + 1) since 22 + z + 1 = (z — 1)%

5.2 Division in 7Z

In Z things are even better. Even when we cannot divide exactly we have the notion of remainder.

Theorem 5.2.1 (Division theorem). Suppose that a € NU{0} and b € N. Then there exist unique
q,r € NU{0} with the properties that a = ¢b+r and 0 <r < b.

Proof. First things first: the theorem stated in the book is wrong since it says ¢ > 0; we must allow
for ¢ = 0.

How did we do this when we were in primary school? We added b to itself as many times as
possible without it being bigger than a. This gave ¢ and then we let » = a — ¢b.

Let’s write this carefully in math. Let

S={xeNU{0}:zb<a}.
Since b > 1, if # > a then xb > a and so = ¢ S. By the contrapositive, if 2 € S then = < a and so
S c{o,1,...,a}.

Let ¢ =max S and r = a — gb. Since ¢ € S we have ¢gb < aandsor > 0. If r > bthena—qgb>b
so that (¢ + 1)b < a, giving ¢+ 1 € S, a contradiction. Thus, 0 < r < b.

For uniqueness, suppose that ¢b + r = ¢'b + v’ where ¢,¢, 7,7 € NU {0} and 0 < r,;7’ < b.
Without loss of generality assume that » < r’. Then

0<r —r<r <b.

Moreover, (¢ — ¢')b = r" — r so that 0 < (¢ — ¢’)b < b. Dividing by b gives 0 < (¢ — ¢') < 1. Since
q,q € NU {0}, this shows ¢ = ¢ and so r = 1. ]

15



Corollary 5.2.2. Suppose a,b € Z and that b # 0. Then there exist q,r € Z with a = gb+r and
r| < [b].

Proof. If we can do the case when b > 0, then we can do the case when b < 0 by changing the sign
of ¢, so suppose b € N.
Since |a| € NU {0} there exists ¢, € NU {0} with the properties that

la] = gb+r
and 0 <r <b. If a > 0, we are finished. If a < 0, then we change the sign of ¢ and 7. ]
Perhaps you would prefer the following stronger corollary.

Corollary 5.2.3. Suppose a,b € Z and that b # 0. Then there exist unique q,r € Z with a = gb+r
and 0 <1 < |b|.

Proof. Homework. It is probably best to prove it directly; I have called it a corollary because the
proof is so similar. O

One way in which division in Z helps us is that it allows us to express numbers in different
bases. How does our usual base 10 number system work? To express = in base 10 we find n so that
10" < x < 10™*!; divide by 10" and take the remainder; divide the remainder by 10"~! and take
the remainder; and so on.

53796 = 5 - 10* + 3796
3796 = 3 - 10% + 796
796 = 7-10% + 96

96=9-10'+9
6=6-10"+0
Similarly, for base 3.
53796 = 2 - 37 + 14430
14430 = 2 - 3% + 1308
1308 = 0 - 37 + 1308
1308 = 1-3% + 579
579 =2-3° 493
93=1-3*+12
12=0-3%+12
12=1-32+3
3=1-3'+0
0=0-3°+0

In base 3, 537961¢ looks like 22012101105.
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5.3 Division in F[z] when F is a field

In a polynomial ring with coefficients in a field we can also divide with remainder.
Recall the definition of the degree of a polynomial. The following lemma is intuitive.

Proposition 5.3.1. Suppose F is a field and f(x),g(x) € F[z| are non-zero polynomials. Then

deg(f(z)g(x)) = deg f(z) + deg g(x).
Proof. Suppose deg(f(x)) =n and deg(g(z)) = m. Then we have
fl@)=ap+ar1x+ ...+ apz", gx) =by+brx+ ...+ bypa™
where an, by, # 0. f(2)g(z) = co+ 12+ ... + Cprma™™™ where ¢pim = anby, # 0. This is because

non-zero elements of a field multiply to be non-zero (homework). Thus, f(x)g(z) # 0. O

Theorem 5.3.2. (Division theorem for polynomials) Suppose F is a field and that f(z ), g(x) € Flx]
with g(z) # 0. Then there exist unique q(z),r(x) € Flx] with the properties that f(x) = q(z)g(x) +
r(z), and either r(z) =0, or r(x) # 0 and degr(x) < deg g(z).

Proof. If f(z) =0 or f(z) # 0 and deg f(x) < deg ¢g(x), then writing f(x) =0 g(x) + f(x) shows
we can take ¢(x) =0 and r(x) = f(x).

Suppose f(x) # 0 and let k = deg f(x) — deg g(x). We have just shown that we are done when
k < 0. We proceed by induction on k. So suppose k > 0. Let m = deg g(z) and write

m—&-k_‘_'

f(x) = amqr ot az+ag, gx) =bp™ 4+ ...+ bix + by

where G4k, bm # 0.
Observe that

Am+k
R R g(2) = aman
bm m m m

Thus, f(z) = f(z) — am*’“ 2% g(z) satisfies deg f(x) < deg f(x) and thus
deg f(x) — deg g(x) < deg f(z) — deg g(x) = k.
By induction we can find ¢(z),r(x) € F[z] with the properties that
f(z) = q(x)g(z) + r(x)
and either r(z) =0, or r(z) # 0 and degr(z) < degg(z). Now

o) = 5 Eabg(o) + o) = | %t 4 (o) |ate) + (),

so we can take q(z) = '”M o* + G(x).

For uniqueness, suppose that qo(z)g(x)+7ro(z) = q1(x)g(x)+ri(x) where go(x), g1(x), ro(x), ri(x)
€ Flx] and ro(z), 1 (x) have the relevant properties. We have

(00(7) — q1(%))g(x) = ri(z) — ro(z).
If go(z) — qi(x) # 0 then r1(z) — ro(x) # 0 giving
deg g(z) < deg((qo0(z) — q1(x))g(x)) = deg(r1(z) — ro(x)) < degg(x),
a contradiction. Thus, qo(z) = ¢1(x) and so ro(x) = r1(z). O

a _ a a
m+k+ m+kbm_1$m+k 1++ m+kb1$k+1+ m+kb0$k.
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A picture to accompany the proof of theorem

b ™ + by 12™ 4+ 4+ b

Am+k .k 5

(s q(z)
U™ 4+ ™R apr® + ap_12F1 + ..+ ap
ik gmth  Gmiky o gmbk=lo g4 Smikpogk L 0kl 40 40
b bom bm

0 f(x)




Corollary 5.3.3. Suppose F' is a field, that f(x) = ag + a1z + ...+ apz™ € Flz|, and that b € F.
Then
fb)=ap+ab+...+ayb" € F C Flz]

is the remainder when dividing f(x) by (x —b). Thus (x — b)|f(x) precisely when f(b) =0 ¢€ F.
Proof. Since deg(z — b) = 1, the division theorem gives us ¢(z) € F[x] and r € F such that

f(@) = q(x)(z—b) +r
Setting x = b gives f(b) = r. O
Example 5.3.4. Let f(z) = 2* — 1022 + 10z — 1 and g(x) = 2% + 3z — 2 in Q[z].

2 —3x +1

22 +3z—-2|2* +022 — 1022 + 10z — 1
xt + 323 — 222 l

— 323 — 822 + 10z

— 323 — 922 + 6z

22 4+ 4z —1
2 + 3x —2
+ x +1

So f(x) = q(x)g(x) + r(x) where ¢(z) = 2> — 3z + 1 and r(z) = = + 1.
Example 5.3.5. Let f(z) = 2* — 1 and g(x) = 22 — [2]57 — [2]5 in Z/5]x].

2 +2r +1

332—233—2‘$4 + 023 — 022 +0x — 1

xd — 223 — 222 l

+ 223 + 222 + Ox

+223 + 22 + =z

+ 22— z -1

+ 2?2 -2z —2

+ z +1
So f(x) = q(x)g(x) + r(x) where ¢(z) = 2° + 2z + 1 and r(z) = = + 1.

If you look at these two examples carefully you’ll notice the second is just the first taken modulo
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6 Zero divisors, units

In Z we are used to the notion of cancellation: if ab = ac, and a # 0, we can cancel to get b = c.
The argument for this is really as follows. Suppose ab = ac. Then a(b — ¢) = ab — ac = 0. Since
a # 0, then b — ¢ = 0 and thus b = ¢. What we need is the fact that “ab = 0 implies either a = 0
or b =0.” This is not true in other commutative rings.

Example 6.1. In Z/6 we have [2]g[3]s = [6]¢ = [0]s. Two non-zero numbers multiply to give 0.
We say [2]¢ and [3]g are zero divisors, since they divide 0 (and they’re non-zero).

Definition 6.2. Suppose R is a commutative ring and that a € R. We say that a is a zero divisor
if a # 0 and there is a b € R with b # 0 such that ab = 0.

Rings where we are allowed to cancel are called integral domains.

Definition 6.3. A commutative ring R is said to be an integral domain if there are no zero divisors,
ie. if a,b € R and a,b # 0, then ab # 0; alternatively, if a,b € R and ab = 0, then either a = 0 or
b=0.

Proposition 6.4. Fields are integral domains.
Proof. Homework. O

Proposition 6.5. If R is an integral domain then so is R[z].
Proof. Homework. O

Just as numbers which divide 0 have a special name, so do numbers which divide 1.

Definition 6.6. Suppose R is a commutative ring. We say u € R is a unit if there exists a v € R
such that uv = 1.

Example 6.7. In Z the only units are 1 and —1.

Example 6.8. In Z/5, [1]5, [2]5, [3]5, [4]5, are units since
[15[1]5 = [2]5[3]5 = [4]5[4]s = 1.

Example 6.9. In a field every non-zero element is a unit.

Example 6.10. If F is a field, the units of F'[x]| are the non-zero degree zero polynomials: indeed,
non-zero elements of F' C F'[z] are units; because deg(f(x)g(z)) = deg f(z)+deg g(z) and deg1 = 0,
units better have degree zero. Similarly, the units of Z[x] are 1 and —1.

It is familiar that we can factor any natural number into primes uniquely (up to reordering).
When we extend this result to the integers, it basically says the same thing, except we are allowed
to multiply our primes by —1 so that

10=2-5=(-2)(=5), =35 =(=5)-7=5-(-T7).

2 and —2, 5 and —5, 7 and —7 are called associates. In a commutative ring we make the following
definition.

Definition 6.11. Suppose R is a commutative ring and a,b € R. We say that a is an associate of
b if there is a unit u € R with a = bu.

Remark 6.12. If R is a commutative ring, a,b € R, and a is an associate of b, then b is an associate
of a, and so we can say a, b are associates. [If uv =1, then a = bu if and only if av = b.]
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7 Greatest common divisors

7.1 The definition

For the natural numbers prime decompositions help us to find the greatest common divisor of a
collection of numbers: we just read off common prime factors and multiply them. In fact, we should
prove such a prime decomposition exists and we will do this eventually.

We can define the concept of a ged in a commutative ring.

Definition 7.1.1. Let R be a commutative ring and let ay,...,a, € R. Then we say an element
d € R is a greatest common divisor or gcd of aq, ..., a, if

1. dlay, ..., da, (it is a common divisor of ay, ..., ay).

2. If ¢ € R satisfies claq, ..., clay, then c|d (it is a greatest common divisor).

To get the definition straight here are two examples, assuming we know prime decompositions
exist and are unique.

Example 7.1.2. In Z, 6 and —6 are greatest common divisors for 30 and 42. Let’s check 6.
1. 6[30, 6[42.

2. If ¢|30, ¢ can only have prime factors 2, 3, and 5, and they can occur at most once. If ¢[42, ¢
can only have prime factors 2, 3, and 7, and they can occur at most once. Thus, if ¢|30 and
|42, ¢ can only have prime factors 2 and 3, and they can occur at most once. Thus ¢ divides

6.
Example 7.1.3. In Q[z], z(x — 1) is a ged for (x 4+ 1)z(x — 1) and z(z — 1)(z — 2).

Remark 7.1.4. Let R be a commutative ring and suppose d is a ged of aq,...,a, € R. Then so
is any associate of d (homework).

In the case of the integers this says that if d is a greatest common divisor of a1, ..., a,, then so
is —d, which is hopefully clear. In the case of polynomials over a field this says, that if g(z) is a
greatest common divisor of f(z),..., fn(x), then so is cg(x) for any nonzero element c of the field.

Remark 7.1.5. Let R be an integral domain and suppose d and d’ are both geds of aq,...,a, € R.
Then d and d’ are associates (homework).

So for integers greatest common divisors can only differ by a sign, and for polynomials defined
over a field greatest common divisors can only differ by a nonzero element of the field.

As the remarks which follow will show, the existence of ged’s is not entirely obvious. It turns out
that for Z and polynomials over a field, they do exist, and we we can make the following definition.

Definition 7.1.6. In Z, we will write ged(ay, ..., ay) for the positive ged of ay,. .., ay, € Z.
If F is a field, we will write ged(f1(z), ..., fn(x)) for the monic ged of fi(x),..., fo(x) € Flx],
(when it is non-zero).

Remark 7.1.7. There are commutative rings where greatest common divisors do not always exist.
Let R = Z/4[z] and let

fla) =2 = (x+[202)°, g(z)=z(z+[2).

One can check that the ged of f(x) and g(x) does not exist.
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Remark 7.1.8. There are even integral domains in which greatest common divisors do not always
exist. Here is an example. Let R = Z[v/—3]| = {x + yv/—3 : 2,y € Z} and let

a=4=2-2=(1+v=-3)(1-vV=3), b=2-(1++v-3).

One can check that the ged of a and b does not exist.

In light of the previous remarks, how will we calculate greatest common divisors or even know
they exist? One way is to use prime decompositions, but in order to prove such things exist in the
cases we care about we need to do quite a bit of work. The most elementary things we can say are
the content of the next two lemmas.

The second lemma suggests that to show greatest common divisors exist for Z and polynomials
defined over a field, we might need to make use of the division algorithms we proved.

Lemma 7.1.9. Suppose R is a commutative ring and that a € R. Then a is a ged of a and 0.

Proof. a is a common divisor of a and 0, since ala and a|0; it is a greatest common divisor for if
cla and ¢|0, then c|a. O

Lemma 7.1.10. Suppose R is a commutative ring and that a,b,q,r € R satisfy a = qgb+r. Then
d is ged of a and b if and only if d is a gcd of b and 7.

Proof. This is because the equation a = ¢b+ r shows an element ¢ € R divides a and b if and only
it divides b and r.

To expand, suppose d is a ged for a and b. Then, in particular, d|a and d|b, which means d|b
and d|r, so that d is a common divisor of b and r. If ¢|b and c|r, then c|a and c|b. Since d is a ged
for a and b, this tells us that c|d. Thus, d is a ged for b and r. The other implication is proved in
an identical manner. O

7.2 Calculating gcds: the Euclidean algorithm

Definition 7.2.1. A Euclidean domain is an integral domain R endowed with a map
d: R\ {0} — NU{0}

such that for all a,b € R with b # 0 there exist ¢, € R with a = gb+ r and either r =0, or r # 0
and d(r) < d(b).

Theorem 7.2.2.
1. The integers Z are a Fuclidean domain when we define
d:7Z\ {0} — Nu{0}
by d(n) = [n].
2. Polynomials with field coefficients F|x] are a Euclidean domain when we define
d: Flz]\ {0} — NU{0}

by d(f(x)) = deg f(x).
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Proof. This follows from corollary [5.2.2] and theorem [5.3.2] O

Theorem 7.2.3. Suppose R is a FEuclidean domain and that a,b € R. There are elements c,x,y €
R such that

1. ¢ is a ged for a and b;
2. ax + by = ¢ (Bezout’s identity).

Proof. The proof is called the Fuclidean algorithm.
Suppose that R is a Euclidean domain with Euclidean function

d: R\ {0} — NU {0}

and let a,b € R.

If b =0, then a is a ged for ¢ and b (lemma and a-1+b-0=a, so we can take c = a,
z=1y=0.

Ifb #£ 0, let ro = a and 1 = b and perform division as many times as possible until the remainder
is 0: the d-value of the remainder strictly decreases each time we perform division with a non-zero
remainder; since d takes values in N U {0}, eventually the remainder must be zero. Supposing we
have to perform n divisions, we have

ro =q171 + 12
L =qor2 + T3

ro =q3r3+ 1y

Tn—1 = qnTn + Tnt+1

and r,4+1 = 0.

Because 1,41 = 0, 7y, is a ged for r, and 7,41 (lemma . The last equation, together with
lemma, tells us that r, is a ged for r,_1 and 7,. Applying lemma n — 1 more times
we see that r, is a ged for rg and rq, i.e. a ged for a and b. We take ¢ = r,,.

Let zog = 1 and yg = 0 so that we have axg + byg = 9. Let x1 = 0 and y; = 1 so that we have
axy + by =ry.

If n = 1, the proof is finished. Otherwise, let 1 < k < n and suppose inductively that for each
j€{0,1,...,k} we have z;,y; € R, such that ax; + by; = rj. Then

Tht1 = Th—1 — qkTk = (azk—1 + byr—1) — qr(axy + byx) = a(Tr—1 — @rxr) + b(Yr—1 — QL Yk)-

Thus letting r4+1 = k-1 — @2k and Yr+1 = Yp—1 — qrYr We complete the inductive step. Taking
r = xp and y = y, completes the proof. O

Remark 7.2.4. The Euclidean algorithm gives a particular ged for a and b; there are other geds
which are associates of this particular ged (remark .

The Euclidean algorithm for the integers is unique if we insist on using the stronger corollary
instead of corollary Using this corollary ensures all remainders are taken to be positive
and so we obtain our favorite gcd, that is, the positive ged. For this reason, we will insist on using
the stronger corollary and this is what we’ll mean by the Euclidean algorithm for Z.
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The Euclidean algorithm for polynomials defined over a field is unique since each division is so.
However, it is unlikely that the algorithm will return our favorite ged; to obtain the monic one, we
will have to multiply by a nonzero element of the field.

Example 7.2.5. Let’s calculate a ged for 42 and 30.

42 =1-30+412
30=2-1246
12=2-640

The last non-zero remainder was 6, so 6 is a ged for 42 and 30.
Moreover, rewriting the first two equations we get the following.

12=42-1-30
6=30—-2-12

Substituting the first into the second gives Bezout’s identity
6=30—2-(42—1-30) =42 (—2) +30-3.
Example 7.2.6. Let’s calculate a ged for 3 — 2 and 23 — 322 + 22 (elements of Q[z]).
23— =1- (23— 32% 4 22) + (32 — 3z)

1
333—33:2+2x:g(x—Q)-(Ba}Q—Bx)+O.

The last non-zero remainder was 322 — 3z so 3z — 3z is a ged for the two polynomials. Rescaling

by 3, we have ged(23 — z, 2% — 322 + 22) = 22 — .

Doing the algorithm the other way (swapping the polynomials) gives —3z2 + 3z as a ged.
2 — 322 422 =1 (23— )+ (=322 + 32)

1
-z = —g(x—i— 1) (=32 + 32) +0.
Bezout’s identity is obtained by rearranging the first equation we wrote down.

322 — 3z = (23 — x) — (23 — 32% + 22).
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8 Consequences of the Euclidean algorithm

8.1 Greatest common divisors

First up, we make note of some basic properties of the greatest common divisors for Z and F[x].
There’s nothing surpirsing here. Basically, these corollaries say that gcds do what they think they
should, but we’re careful about units (recall definition [7.1.6)).

Corollary 8.1.1. Suppose a,b,c € Z. Then ged(ac,be) = ged(a,b) - |c|.

Proof. ged(ac, be) = ged(alcl, ble|) since x|y if and only if z| £+ y.
Run the Euclidean algorithm to calculate ged(a, b). By multiplying all equations by |c¢| we run
the Euclidean algorithm for ged(alc|, b|c|). Thus, ged(alc|,ble|) = ged(a, b) - |c|. O

Corollary 8.1.2. Suppose F is a field, fi(x), fo(x) € F[z] and that
g(x) = bpa™ + ...+ bix + by € Flz], with by, # 0.

Then

ged(fi(w)g(w), f2(z)g(z)) = ged(f1(x), fa(z)) - gb(:,)

Proof. Running the Euclidean algorithm on fi(z) and f2(x), we obtain ¢-ged(f1(z), fo(x)) for some
non-zero element ¢ € F. By multiplying all equations by g(x) we run the Euclidean algorithm for
fi(x)g(x) and fa(x)g(x). It gives ¢ - ged(fi(x), f2(x)) - g(x). We multiply this by ﬁ to obtain a
monic polynomial. O

8.2 Bezout’s theorem

Bezout’s theorem is the key to solving linear congruences ax = d (mod b).

Theorem 8.2.1 (Bezout). Given a,b,d € 7Z, we can find x,y € Z with ax + by = d if and only if
ged(a, b)|d.

Proof. ged(a,b)|a and ged(a, b)|b and so, if ax + by = d, then ged(a, b)|d.
Conversely, the Euclidean algorithm gives us Z,y € Z so that aZ + by = ged(a, b). If ged(a, b)|d,
there is a ¢ € Z such that ged(a,b) - ¢ = d. Then

a(cZ) + b(cy) = ged(a, b) - c =d,
so we can take x = ¢ and y = cy. O

There’s a polynomial version useful for congruences involving polynomials.

Theorem 8.2.2 (Bezout). Let F be a field. Given fi(x), fo(x), h(z) € F[z], there are gi(x), g2(x)
in Fx] with
S1(@)g1(x) + f2(x)g2(x) = h(x).

if and only if ged(f1(z), fo(z)) divides h(x).
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Proof. Basically it is the same as the previous one but one should be more careful about units.

ged(fi(z), fo(z)) divides both fi(z) and fo(z), and so, if fi(x)g1(x) + fa(z)g2(z) = h(z), then
ged(fi(x), fao(x)) divides h(x).

Conversely, the Euclidean algorithm gives us g1 (), g2(z) € F[z] so that fi(z)g1(x)+ f2(x)ge(x) =
¢+ ged(fi(zx), fo(x)) for some nonzero element ¢ of the field F.

If ged(fi(x), fa(x))|h(x), there is a g(z) € Fx] such that ged(fi(x), f2(z)) - g(z) = h(z). Then

fila) SO gy DR _ 1y (2), 1a@) - o) = hia)

9(@)g2(z) O

[

so we can take g;(x) = %gl(x) and go(x) =
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8.3 Examples

Example 8.3.1. Solve 30z = 24 (mod 42).

This one you could try some values and you would discover 30-12 = 360 = 24 (mod 42). There
are other solutions: since 30 -7 = 210 = 0 (mod 42), z = 12 4 7k is a solution for all k € Z.

How could you have figured this out without trial and error? To solve 30z = 24 (mod 42) we
need to find x,y € Z with 30x 4+ 42y = 24. Bezout’s theorem tells us that we can do this as long
as ged(42,30)|24.

In example we calculated ged(42,30) using the Euclidean algorithm. We discovered

ged(42,30) =6 =303 — 42 - 2,

First, since 6|24, this tells us immediately that we can solve the equation we were given. Secondly,
it tells us that 30 -3 = 6 (mod 42). Multiplying by 4 gives 30 - 12 = 24 (mod 42).
- 42
Flnally, m =T. Thus
42 30

307 =230 - .42 = 0 (mod 42).
gcd(42,30)  ged(42, 30) (mod 42)

It turns out that this —22-— = 7 trick gives the minimal solution to 30z = 0 (mod 42). I don’t

gcd(42,30i
think we’ll need this, but we’ll see something similar in theorem [10.1.11

Example 8.3.2. Solve 30x = 23 (mod 42).
We cannot solve this because 6 does not divide 23.

Example 8.3.3. Solve 35z =1 (mod 221).
We run the Euclidean algorithm to find the ged of 35 and 221.

221=6-35+11

35=3-11+2
11=5-2+4+1
2=2-140

Thus ged(221,35) = 1 and the congruence is solvable. Rearranging the above equations gives

11=221-6-35
2=35-3-11
1=11-5-2

Thus,

1=11-5-2
=11-5-(35—-3-11)=16-11-5-35
=16-(221-6-35) —5-35=16-221 —101-35

and we conclude that 35 - (—101) =1 (mod 221).
We just showed 35 is a unit in Z/221 and found its inverse (c.f. homework 3, question 3)c)).
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9 Units in our favorite rings

9.1 Coprimality
Before stating our main results about units in our favorite rings we need some terminology.
Definition 9.1.1. We say a,b € Z are coprime if ged(a,b) = 1.

Remark 9.1.2. Bezout’s theorem tells us that a,b € Z are coprime if and only if there are x,y € Z
with ax + by = 1.

Definition 9.1.3. Suppose F'is a field. Wesay f(x), g(x) € F|x] are coprime if ged(f(z), g(x)) = 1.

Remark 9.1.4. Bezout’s theorem tells us that fi(x), fo(x) € F[z] are coprime if and only if there
are g1(x), g2(x) € Flz] with fi(2)g1(z) + fa(2)g2(z) = 1.

The following result could probably be credited to Euclid.

Proposition 9.1.5 (Euclids’s lemma). Suppose that either R =7, or R = Fx] for some field F'.
Suppose, in addition, that a,b,c € R, albc, and a and b are coprime. Then ac.

Proof. Since a and b are coprime there are elements x,y € R with ax+by = 1. Then acx + bcy = c.
Since ala and a|bc, we conclude that alc. O

9.2 Modular arithmetic

Suppose we ask the following question: given [z], € Z/n, is there a [y], € Z/n with [z],[y], = 17
By definition of multiplication and what it means to be equal in Z/n, the answer is “yes” precisely
when there are ¢,y € Z with

zy+cn = 1.

Bezout’s theorem says this happens exactly when x and n are coprime.
Theorem 9.2.1. [z}, is a unit in Z/n if and only if x € Z and n are coprime.
Example 9.2.2. The units in Z/221 are

{[z]221 : ged(x,221) = 1} = {[z]221 : 13 and 17 do not divide x}.
Corollary 9.2.3. Ifp € N is a prime, then Z/p is a field.

In fact, Z/p is a field if and only if p € N is a prime (quick exercise).

9.3 Modular arithmetic with polynomials

Similarly, we have the following theorem.

Theorem 9.3.1. Suppose F is a field. Then [f(x)]
and q(x) are coprime.

Using a lemma which we’ll see a little later (lemma [14.1.3]), we also have following corollary.
Here irreducible means “cannot be factored any further” (see definition [14.1.1]).

Corollary 9.3.2. Suppose F is a field and q(x) € F|x] is irreducible. Then Fx]/(q(x)) is a field.
In fact, F[x]/(¢(x)) is a field if and only if ¢(x) € F[z] is irreducible (homework).

q(z) 15 a unit in Flz]/(q(x)) if and only if f(x)
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10 The theorems of Fermat, Euler, and Lagrange
10.1 Exponents of units in Z/n
Definition 10.1.1. If R is a commutative ring, write U(R) for the set of units in R.

Definition 10.1.2 (Euler’s totient function). For n > 2, let ¢(n) be the number of units in Z/n,

ie. p(n) =|U(Z/n)|.

Remark 10.1.3. By theorem ©(n) is equal to the number of integers  with 1 <z < n, that
are coprime to n.

Example 10.1.4. If p is a prime then Z/p is a field so that
U(Z/p) ={[lp,---,[p— 1]p} and @(p) =p — 1.
Example 10.1.5.

U(Z/4) = {£1}, U(Z/6) = {£1}, U(Z/8) = {+£1,£3}, U(Z/9) = {+1,+2, £4},
U(Z/10) = {£1,+3}, U(Z/12) = {1, 45}, U(Z/14) = {£1,£3,+5}
U(Z/15) = {£1, 42, +4, 47}, U(Z/16) = {£1, 43,45, +£7}, U(Z/18) = {+£1,£5, +7},

s0 p(4) =2, p(6) =2, p(8) =4, p(9) =6, p(10) =4, p(12) = 4, p(14) = 6, p(15) = 8, ¢(16) = 8,
and ¢(18) = 6.

Theorem 10.1.6 (Euler’s theorem). Suppose x and n are coprime. Then 2P =1 (n).

Proof. Since x and n are coprime, [z}, is a unit in Z/n (theorem [9.2.1)). This means there is a [y],
with [z],[y], = 1. Let U(Z/n) = {[z], : [z], is @ unit }. The map

UZ/n) — U(Z/n), ur— [x],-u
is a bijection; the inverse is given by “multiplication by [y],.” Thus,

[;pm(n)-[ 11 u}: 1T [[x]p-u}: 1T uzl-[ 11 u]

ueU(Z/n) ueU(Z/n) ueU(Z/n) ueU(Z/n)
Cancelling {HueU(Z /n) u] (multiplying by its multiplicative inverse) gives [x]ﬁ(") =1. O

Corollary 10.1.7 (Fermat’s little theorem). If p is a prime and x € Z is not divisible by p then
2P~L =1 (mod p).

Proof. ¢(p) = p—1, since every number y with 1 <y < p is coprime to p or, alternatively, because
Z/p is a field. O

Definition 10.1.8. Suppose = and n are coprime. The smallest e € {1,...,p(n)} with 2¢ =1 (n)
is called the order of x modulo n. We’'ll write ord, (x) for the order of z modulo n.
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Example 10.1.9. Let’s calculate the order of some elements in Z/31.
We have ords; (1) = 1. Here is the sequence (3" (mod 31))3°

n=1*
3,9, —4, —12, -5, —15, —14, —11, -2, —6, 13, 8, —7, 10,
1, =3, -9, 4, 12, 5, 15, 14, 11, 2, 6, —13, —8, 7, —10, 1.
This shows ords; (3) = 30. We also see that
ords; (9) = ords; (3%) = 15, ords;(—4) = ords; (3%) = 10, ords;(—5) = ords; (3°) = 6,
ordz; (—15) = ordsz; (3%) = 5, ords; (—6) = ords; (3'°) = 3, ords;(—1) = ords; (3'°) = 2.

We can obtain the order of other elements using the theorem following the next.
Notice that all the elements have order dividing 30 = ¢(31). This is not a coincidence.

Theorem 10.1.10. Suppose x and n are coprime and that @ = 1 (n). Then the order of x modulo
n divides d.

Proof. Let e denote the order of # modulo n and suppose % = 1 (n). Since e # 0, we can divide
d=gqge+r
where 0 < r < e (corollary . Then
l=29 =29 = (2% 2" =1-2" = 2" (n).

Since r is smaller than e and " = 1 (n) we must have r = 0, since e is the smallest strictly positive
number with z¢ =1 (n). Thus, e divides d. O

Theorem 10.1.11. Suppose x and n are coprime and that x has order e modulo n. Then the order
of % modulo n is e/ gcd(d, €). (Recall that ged(d, e) denotes the positive ged of d and e.)

Proof. Suppose (z4)* = 1 (n). Then the previous theorem says that e|ds. Thus, —&—|-—3

» ged(d,e) lged(d,e)
Using corollary we have

cd d c =1
& ged(d,e)’ ged(d,e) )

Thus, m]s, by proposition In particular, if s > 0, then s > m. Finally, note that

d e d d
(.’E )gcd(d,e) = (xe)gcd(d,e) = ]ecd(die) = 1 (n)
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10.2 Another proof of Fermat’s little theorem

Let’s give a different proof of Fermat’s little theorem which makes use of the binomial theorem.

Theorem 10.2.1 (Binomial theorem). In Z[x,y] (the polynomial ring over Z in two variables) we

have
(ZE + )n _ . n mi n—u
Yy) = E i Yy

1=0

n) _ n!

where (7}) = Tn—)l"

This result has been stated for polynomials in two variables and this implies the result in any
commutative ring. [In grown up talk, this is because Z[z,y] is the free ring on two variables but
don’t worry about this now.] That is, if R is a commutative ring and z,y € R, then (z + y)" can
be expressed in the same way.

Lemma 10.2.2. Ifp € N is prime and i € {1,2,...,p — 1}, then p divides (f)

Proof. We use the “fundamental theorem of arithmetic” which says that any natural number can
be factored uniquely into primes. We’ll prove this in section

p|p! and so p appears in the prime decomposition of p!. Since (7;) € N we have il(p — i)!|p!. p
does not appear in the prime decomposition of i!(p — i)! since, by definition of factorial, we have
expressed it as a product of numbers less than p. Thus, p still appears in the prime decomposition

of (§) = i!(ﬁii)!' -

Corollary 10.2.3 (Freshman dream). In Z/plx,y| we have (z + y)P = xP + yP.

As for the binomial theorem, we stated this for polynomials in two variables (defined over Z/p).
This is because it implies the result for any ring in which adding an element to itself p times gives
0. [In grown up talk, this is because Z/p[z,y] is the free ring of characteristic p on two variables
but don’t worry about this now.]

Theorem 10.2.4 (Fermat’s little theorem). Suppose x € Z. Then 2P = x (mod p).

Proof. 1t is enough to check the result for x € N, since any = € Z is congruent to some y € N.
The result is true for 0 and 1 so we proceed by induction. Suppose that 2P = x (mod p). Then

(x+1)P =2 +1P =2+ 1 (mod p)

where the first congruence is the freshman dream, and the second is the inductive hypothesis. This
completes the proof. O
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10.3 A tiny bit of group theory
Definition 10.3.1. A group G is a set equipped with a multiplication

x:GxG— G, (g,h) — gxh
satisfying the following three axioms.
e (G1) g1 % (92 * g3) = (g1 * g2) * g3 for all g1, g2, g3 € G (associativity)
e (G2) there is an element e with the property that g xe = g = e* g for all g € G (identity)
e (G3) for each g € G there is an element h € G such that g x h = e = h % g (inverses).
We say a group is abelian is g x h = h x g for all g,h € G.
Example 10.3.2.
1. Let ¥, ={o:{1,...,n} — {1,...,n} : o is a bijection}. Then (3,,0) is a group.

2. Let R(O) = {rotations of a cube}. This is a group because we can do one rotation followed
by another and we still get a rotation. In fact, R([J) is basically the same as ¥4: follow what
happens to the diagonals of the cube under a rotation.

3. Let R(A) = {rotations of a tetrahedron}. In fact, R(A) is the same as something called Ay,
which lives inside ¥4: follow what happens to the vertices of the tetrahedron under a rotation.

More relevant for us is the following example.
Example 10.3.3. 1. Suppose R is a ring. Then (R, +) is an abelian group.

2. Suppose R is a ring. Let U(R) = {u € R : w is a unit in R}. Then (U(R),-) is a group. If R
is a commutative ring then (U(R),-) is an abelian group.

Theorem 10.3.4 (Lagrange). Suppose G is a finite group, that |G| =n and g € G. Then g" = e.

Since ¢(n) = |U(Z/n)| we obtain Euler’s theorem as a corollary.

Corollary 10.3.5 (Euler’s theorem). Suppose [z], € U(Z/n). Then [x]ﬁ(n) =1.
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11 The chinese remainder theorem

11.1 Z/6 2 7/2 x 7/3

Here is the multiplication table for Z/6.

(0] 1 ]2 [3]-2["1
0 JoJfoJoJo[o]oO
1[0 12321
2 (0| 2 | —2]0] 2 =2
3030 3[0] 3
20|22 0|22
10| -1 —=2[3] 21

Let’s relabel the elements.

0+ (0,0), 1+—(1,1), 2+— (0,-1), 3+ (1,0), —2+— (0,1), =1+ (1,-1).

We get

| (0,00 ] (1,1) [(0,-1) ] (1,00 ] (0,1) | (1,-1)
(0,0) | (0,0) | (0,0) (0,0) | (0,0) | (0,0) (0,0)
(1,1) | (0,0) | (1,1) [(0,=1) | (1,0) | (0,1) | (1,-1)
(0,—1) [ (0,0) | (0,=1) | (0,1) | (0,0) [ (0,-1) [ (0,1)
(1,0) | (0,0) | (1,0) (0,0) | (1,0) | (0,0) (1,0)
(0,1) | (0,0) | (0,1) | (0,—1) ] (0,0) | (0,1) | (0,—1)
(1,—1) [ (0,0) | (1,=1) | (0,1) | (1,0) [ (0,-1) | (1,1)

This is the multiplication table for Z/2 x Z/3.
You can check that the same thing happens with the addition tables. Z/6 is basically the same
as Z/2 x 7./3.

11.2 Z/427)2 x T2

The previous example might make you believe that Z/mn = Z/m x Z/n. In general, this is not
true. Take any element of Z/2 x Z/2 and add it to itself; you get zero. That is, for all x € Z/2 X Z/2

rz+x=0.

The element 1 € Z/4, has 1 +1 # 0. So Z/4 is not the same as Z/2 x Z/2.
Let’s do one more example to try and spot a pattern.
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11.3 Z/12 C Z/4 x Z/6

Here is a quarter of the multiplication table for Z/12.

Jofi[2[3[4]5]6
0]0]/0]0]0]0]0]0
1]0/1] 2 | 3] 4|56
5702 4] 64|20
3/0(3] 6] -3,0]3 6
1704 -4 0| 4 |-4]0
505 2|3 | 4|16
6/0(6] 060 0

Let’s relabel the elements
0+ (0,0), 1—(1,1), 2—(2,2), 3+— (—1,3), 4+— (0,—2), 5+— (1,—1),

6+— (2,0), 7— (—-1,1), 8 —(0,2), 9+— (1,3), 10— (2,-2), 11+ (—1,-1).
We get a sub-table of the multiplication table for Z/4 x Z/6. 7Z/12 is basically the same as

{([ah7 [ble) € Z/4 X Z/6 : 2|(a — b)}

Notice that 12 = gcél('gﬁ) and 2 = ged(4,6). This will make more sense shortly (11.4.3]).

11.4 Congruences
Suppose that we wish to solve the congruences
x = a (mod m)
x =0b (mod n).
If x € Z is a solution then

r=a-+cm
z=b+dn

for some ¢,d € Z. So a+cm = b+dn giving a—b = dn—cm. Bezout tells us that gcd(m,n)|(a—b).
Moreover, if gcd(m,n)|(a — b) such ¢,d € Z exist and we can solve the congruences.
If 2/ € Z is another solution to the congruences, then y = x — 2’ satisfies the congruences

y =0 (mod m)
y =0 (mod n).

This says that m|y and n|y. By writing m, n, and y out in their prime decompositions (see section

, we conclude that o d’g’;yn) |y. If this bothers you, you can read the proof of the following lemma

(shout out, Songlin).
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mn
ged(m,n)

Lemma 11.4.1. Suppose m,n,x € Z, m|z, and n|z. Then |z
Proof. Since m|x we have an a € Z so that © = ma and because n|r = ma this gives

n m

ged(m,n) | ged(m,n) @

Using corollary followed by proposition [9.1.5] we obtain

ged mn , n =1
ged(m,n)’ ged(m,n)

and mm, and so there is a b € Z with a = mb. We conclude that + = ma = % ,
ie M. O
ged(m,n)

We have proved the following theorem.

Theorem 11.4.2 (Chinese remainder theorem (Sun Ze)). Suppose we wish to solve the congruences

x =a (mod m)

x =b (modn).

A solution exists if and only if gecd(m,n)|(a —b) and in this case it can be found using the extended
FEuclidean algorithm.
If x and 2’ are two solutions to the congruences then

c=2 (mod — 2 ).
ged(m, n)

This relates to the previous examples Z/6 = Z/2 x Z/3 and Z/12 C Z/4 x Z/6 in the following
way.

Theorem 11.4.3 (Chinese remainder theorem (alternative statement)). Let m,n € N and

[ mn
~ ged(m,n)’

The function Z]l — Z/m x Z/n, [z]; — ([&]m, [z]n) is well-defined, has range
{(lalm, [bln) : ged(m, n)[(a — b)}
and is one-to-one.

Corollary 11.4.4 (Chinese remainder theorem). Suppose that m and n are coprime then Z/mn =
Z/mXxZ/n. In particular, © = a (mod mn) if and only if x = a (mod m) and x = a (mod n). Also,

p(mn) = p(m)p(n).

Everything just said works for polynomials too. We might need this later.
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Theorem 11.4.5 (Chinese remainder theorem for polynomials). Suppose that we wish to solve the
COngruences

a(x) (mod p(x))
f(z) = b(z) (mod ¢(x)).

A solution exists if and only if ged(p(x), g(x))|(a(z) — b(z)) and in this case it can be found using
the extended Fuclidean algorithm.
If fo(z) and fi(z) are two solutions to the congruences then

. _ pladala)
o) = o) (ot FEHE),

11.5 Examples
I truly messed up the following example in class. I'm sorry about this.
Example 11.5.1. Solve the congruences

x =3 (mod 13)

x =4 (mod 17).

For a solution to exist we need ged(13,17)|(4 — 3). This is fine since 1|1.
In the previous subsection we said that we can use the extended Euclidean algorithm to find a
solution. Let’s see this in action.

17=1-134+4
13=3-4+4+1
4=4-140

demonstrates that ged(13,17) = 1. We also obtain

4=17-13
1=13-3-4

so that 1 =13 —3(17 —13) =4 - 13 — 3 - 17, the Bezout identity.
This is the point in lectures where I spaced out and became confused because a new 3 and 4
have shown up, different to the 3 and 4 in the original congruences we wish to solve. We note that

4-3=1=4-13-3-17
sothat 3+4-13=4+3-17. Let
r=55=3+4-13=4+3-17.

Then 2 = 3 (13) and = = 4 (17). Since % = 221 the solution is unique up to a multiple of

221, i.e. all the solutions are of the form

x = 5b+ 221k for k € Z.
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Example 11.5.2. Solve the congruences

x =3 (mod 13)

x =4 (mod 17).
Normally when you solve simultaneous equations you try substituting one equation into the other.
We can do that here. Solutions to the second equation are of the form 4 4+ 17n. So we can try and

solve
44 17n = 3 (mod 13).

This is equivalent to 4n = —1 (mod 13). We see that n =3 (mod 13) so 17n =17 -3 (mod 13- 17)
and
r=4+17-3 =55 (mod 221).

Let’s do another example.
Example 11.5.3. Solve
x =2 (mod 35)
x = 23 (mod 49).

For a solution to exist we need ged(35,49)[(23 — 2). This is fine since 7|21.
The Euclidean algorithm for ged(35,49) looks as follows.

49=1-35+14

35=2-144+7

14=2-7+0.
Thus,

14 =49 — 35

7T=35—2-14,

which gives 7= 35— 2(49 — 35) = 3 - 35 — 2- 49, the Bezout identity.
This allows us to write
23—2=3-7=9-35—-6-49

so that 2+9-35=234+6-49. Let
r=317=2+9-35=23+6-49.

Then x = 2 (35) and = = 23 (49). Since ﬁgig) = 245 the solution is unique up to a multiple of

245. Making use of the fact that 317 — 245 = 72 we see that all solutions are of the form
72 4 245k for k € Z.
Example 11.5.4. Solve
x =2 (mod 35)
x =23 (mod 49).

We need to solve 23+49n = 2 (mod 35). This is equivalent to 14n = 14 (mod 35). Son =1 (mod 5)
works (notice the 35 changed to a 5, since 14 -5 = 0 (mod 35)). Thus,

x =23+ 49n = 23 + 49 = 72 (mod 245).
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Example 11.5.5. Find all the solutions to the following congruences

x =2 (mod 12)
x =8 (mod 10)
=9 (mod 13).

We ignore the third one for now. We can solve the first two since ged(10,12) = 2, 8 —2 = 6 and
2|6. We run the extended Euclidean algorithm (which is very short in this case) to write

2=12-10.

Thus, 8 —2 =3-12—3-10 giving z = 38 = 2+ 3-12 = 8+ 3- 10 as a solution. Since % =60
we see that all solutions of the first two congruences are given by

x = 38 + 60k for k € Z.
In particular, we can replace the first two congruences by x = 38 (mod 60), so we now have to solve

x = 38 (mod 60)
x =9 (mod 13).

Since ged(60,13) = 1, 38 — 9 = 29 and 1|29, this is possible.

We could run the extended Euclidean algorithm to write 1 = 560 — 23 - 13, giving 38 — 9 =
(29-5)-60 — (29 -23) - 13. We would obtain x = —8662 = 38 — (29-5) - 60 =9 — (29-23) - 13 as
a solution. Since % = 780 and 698 = —8662 + 780 - 12 we see that 698 + 780k for k € Z are
the solutions.

Alternatively, solving these last two congruences is equivalent to finding an n € 7Z such that
38 4 60n =9 (mod 13). This is the same as solving —1 — 5n = —4 (mod 13), which rearranges to
5n = 3 (mod 13). Multiplying by —5 gives n = —2 (mod 13), so that x =38 —60-2 = —82 is a
solution. Since —82 4 780 = 698 this agrees with above.
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12 RSA

RSA is a cryptosystem. Suppose two parties, call them Alice and Bob, wish to send messages back
and forth to each other and want to be be incomprehensible to a third party, say Eve. We may as
well assume our messages consist of numbers.

12.1 The procedure
Bob does the following;:
e He chooses two different large prime numbers p and gq.
e He lets m (the modulus) be the product of the primes pq.
e He chooses a fairly small number e > 0 (the encrypting exponent) which is coprime to ¢(m).
e He finds a number d > 0 (the decrypting exponent) such that ed = 1 (mod ¢(m)).
e He tells Alice m and e but keeps everything else secret.
Alice does the following:

e Alice has a message that consists of a sequence of numerical words. What we mean by this
is that each “word” is a number w € {0,1,...,m — 1}.

e To encrypt the word w she finds a number ¢ € {0,1,...,m — 1} such that

¢ = w°® (mod m).

e She sends Bob the encrypted words.
Bob does the following:

e For each encrypted word ¢ which Bob recieves from Alice he finds a number
w e {0,1,...,m—1}

such that
w' = ¢ (mod m).

e As if by magic, it turns out that w’ = w.

12.2 An example

Let’s do an example with smaller numbers than would be used in reality.

Example 12.2.1. Bob lets p = 7 and ¢ = 11, so that m = 77. We have ¢(77) = 60. He chooses
e =7, and finds d = 43. He tells Alice that m = 77 and e = 7.
Alice wishes to send the one word message w = 2 so she calculates

c=2"=128 =51 (mod 77)
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and sends Bob her encrypted word 51.

Bob wishes to decrypt Alices message and so needs to calculate 513 modulo 77. Bob realizes
that the Chinese remainder theorem and Fermat’s Little Theorem makes his calculation easier. He
finds

518 =213 = (26)7.2=1.2=2 (mod 7)
518 = (—4)® = ((-4)19)* . (=4)3=1-2=2 (mod 11)

and so w’ = 2. This is precisely the message Alice sent him.

12.3 Checking that the RSA decryption works

The proof that RSA works. Let’s carefully examine the procedure. So let p, ¢, m,e,d, w,c,w’ be as
in section 12.11
The first bit of math Bob has to do is to find a number d such that ed =1 (mod ¢(m)). This
is possible since he chooses e to be coprime to (m) and this ensures [e],(,,) is a unit in Z/p(m).
We just need to check that the decryption works out. Since ed = 1 (mod ¢(m)) thereisa k € Z
such that
ed =14+ p(m)k.

Thus,

w' = ¢ = () = w PR (mod m).

Since w,w’ € {0,1,...,m — 1}, we just have to show that w't*(™* = w (mod m).
The Chinese remainder theorem tells us two things:
Log(m) = (p—1)(g—1);
2. it is enough to check w't?(™k = 4 (mod p) and w!T*(™*k =1 (mod g).
The requisite congruences follow from Fermat’s Little Theorem since
w' TPk — 1+ ==k — ) . (P10~ = 4 (mod p);

w' TPk — 1+ ==k — 4 . (3= )Pk = 4 (mod g).

12.4 Why is RSA effective?

It is often the case that Bob will wish to receive messages from different people, and he will actually
give out the numbers m and e to the public. If Alice sends Bob a message and Eve intercepts it,
what does Eve need to do to decrypt the message?

e Eve needs to find the e-th root of ¢. She can do this as long as she can find d, the decrypting
exponent.

e To find d, Eve would need to solve the congruence ed =1 (mod ¢(m)).
e To solve such a congruence Eve would need to know ¢(m).

— If p and ¢ are large, then m is large and finding ¢(m) by counting would take too long.

— If Eve could find p and ¢ she would know ¢(m), but factoring large numbers into primes
is also difficult.
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12.5 Other examples

Example 12.5.1. Bob decides on p = 11, ¢ = 17, so that m = 187. ¢(m) = 1016 = 160, and he
chooses e = 3. Bob calculates d using a short extended Eucidean algorithm.

160 =53-3+1

s0 3+ (—53) =1 (mod 160) and he takes d = 160 — 53 = 107.
Alice wants to send Bob w = 127 so she calculates

c =127 = (—60)® = —216,000 = —216,000 + 1156 - 187 = 172 (mod 187)

and transmits 172 to Bob.
Bob decodes using the Chinese remainder theorem and Fermat’s Little Theorem.

172197 = (—4)" = (—4)(—=4)*(-4)* = —4-5-3 = —5 (mod 11),
172807 =21 =92.92.98=2.4.1 =8 (mod 17),

and 8+ 17n = —5 (mod 11) gives n = 7 (mod 11) so that
172197 = 8 + 17 -7 = 127 (mod 187).

He concludes that Alice’s message is 127.

Example 12.5.2. Bob decides on p = 23, ¢ = 29, so that m = 667. ¢(m) = 2228 = 616, and he
chooses e = 5. Bob calculates d using a short extended Euclidean algorithm.

616 =5-123 + 1.

So 5 (—123) (mod 616) and he takes d = 616 — 123 = 493.
Alice encrypts her word w using e and sends Bob ¢ = 168.
Bob decodes using the Chinese remainder theorem and Fermat’s little theorem.

16818 =79 =7.78=7.12=15 (mod 23),
16819 = (—6)!" = —6-6'= —6 -7 =16 (mod 29);

16 + 29n = 15 (mod 23) gives 6n = —1 (mod 23) and n = —4 (mod 23) so that
1689 = 16 4+ 29 - (—4) = —100 = 567 (mod 667).

He concludes that Alice’s message is 567.
The calculation Alice must have done is

567° = (—100)° = —10, 000, 000,000 = 168 (mod 667).
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12.6 The not-crazy-hard part of Shor’s algorithm for cracking RSA

We have described why RSA is difficult to decrypt: doing so depends on factoring numbers which is

very difficult. However, there is an algorithm due to Peter Shor making use of quantum computers

(they don’t exist yet) that would destroy the safe encryption that RSA attempts to guarantee.
Here’s the important theorem.

Theorem 12.6.1. Suppose that p and q are distinct primes and that m = pq. Suppose, in addition,
that ged(xz,m) = 1, that ordy,(x) = 2k and that ¥ 41 # 0 (mod m). Then either

ged(z® —1,m) = p or ged(z® —1,m) = q.
Proof. Since ord,,(z) = 2k we know that 22* =1 (mod m) and so
2% =1 (mod p)
2% =1 (mod q).

Thus,

and since Z/p and Z/q are fields we obtain

2% = +1 (mod p)
2% = 41 (mod g).

We cannot have

¥ = —1 (mod p)
¥ = —1 (mod ¢)

since, in this case, the Chinese remainder theorem would give ¥ = —1 (mod m), but we supposed
that 2% +1 £ 0 (mod m).

If 2% = 1 (mod p) then we see that p|(2*—1). If z*¥ = 1 (mod ¢) then we see that ¢|(z* —1). Since
p, g|m we conclude that either p| gcd(z*—1,m) or q| ged(z¥—1,m). We cannot have m|ged(zF—1,m)
since this would tell us that m|(z* — 1) and thus z*¥ = 1 (mod m); this would contradict the fact
that ord,,(z) = 2k. O
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Peter Shor’s algorithm for factoring m = pq is approximately as follows.

1. Pick z € {2,3,...,m — 2} at random.
If ged(z,m) = p or g, then you have won. If ged(x, m) = 1, continue to step 2.

2. Calculate ord,,(z) and continue to step 3.
3. If ord,,(x) is odd, go back to step 1. If ord,,(x) = 2k, continue to step 4.

4. If 2¥ +1 =0 (mod m), go back to step 1.
If 2% +1 # 0 (mod m), then ged(z* — 1,m) = p or ¢, and you have won.

Step 1 uses the Euclidean algorithm, step 2 requires a difficult quantum computer algorithm to run
in a reasonable speed, step 3 uses nothing, and step 4 uses the Euclidean algorithm.

Example 12.6.2. Suppose we wish to factor 21 and the random number we pick is 2. Then
1. ged(2,21) = 1.

2. 28 =222 =4 25 =8, 2 = -5 (mod 21), 2° = —10 (mod 21), 26 = 1 (mod 21). So
01‘d21(2) = 6.

3. 0rd21(2) =2-3.
4. 22 4+1=9%#0 (mod 21). We find that
ged(23 —1,21) =7

and factor 21 =3 - 7.

12.7 Pollard’s p — 1 algorithm

Another factoring algorithm that doesn’t require a quantum computer is Pollard’s (p—1) algorithm.
The reason it does not render RSA unsafe is that it is only effective when (p — 1) has small prime
factors.

Pollard’s (p — 1) algorithm makes use of Fermat’s Little Theorem, in particular, the following
corollary to Fermat’s Little Theorem.

Corollary 12.7.1. Suppose p is an odd prime factor of m and (p—1)|B. Then ged(28 —1,m) > 1.

Proof. Since 2 # 0 (mod p) Fermat’s Little Theorem tells us that 2°~! = 1 (mod p) and because
(p — 1)|B, we obtain
28 =1 (mod p).

This says that p|(2” — 1) and so p| gcd(28 — 1, m). O

Definition 12.7.2. Let k£ € N with k > 2. We say that a number m is k-smooth if every prime
divisor of m is less than or equal to k.
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Example 12.7.3.

180 =2%2-32.5
181 = 181
182=2-7-13
183 = 3-61
184 =23.23
185 =5-37
186 =2-3-31
187 =11-17
188 = 22 .47
189 =33.7
190=2-5-19

None are 2-smooth or 3-smooth. 180 is 5-smooth. 180 and 189 are 7-smooth.
180, 182, 187, 189 and 190 are 19-smooth.

Definition 12.7.4. Let e, , € NU {0} be defined by the property that ¢°™¢ < m < ¢®met! and

let
Bur= [[ ¢
q prime, q<k

In words, B, is the product of all prime powers ¢ where ¢ < k and ¢°* < m < gt
Lemma 12.7.5. If p is a prime factor of m and p — 1 is k-smooth, then (p — 1)| By, k.

Proof. We have to make use of the fundamental theorem of arithmetic which is proved in section
Let ¢ be a prime with ¢|(p — 1). Since p — 1 is k-smooth we have g < k. Moreover,

p—1<m< gématt
so that if ¢°[(p — 1), we have e < e,  and so ¢°| B, - O
Theorem 12.7.6. If p is an odd prime factor of m and p — 1 is k-smooth. Then

ged(2Bmk —1,m) > 1.

Proof. The previous lemma says that (p — 1)|B,,  and so the first lemma of the subsection says
that ged(28m+ —1,m) > 1. O

Pollard’s (p — 1) algorithm for finding a factor of m is as follows.
1. Pick some smoothness bound k.
2. Find z € {0,1,...,m — 1} with # = 287k (mod m).
3. Calculate ged(z — 1, m).

Step 2 is a quick calculation on a computer by writing the exponent in base 2. Step 3 is a quick
calculation on a computer when one uses the Fuclidean algorithm. Take a look at pages 215 and
216 of the textbook for examples.
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13 Diffie-Hellman and El Gamal

If you like the previous cryptography material then you should look up the Diffie-Hellman and El
Gamal schemes. They make use of the fact that calculating the discrete logarithm

log, : U(Z/p) — Z/(p — 1)

is difficult. Here b must be an element with ord,(b) = p — 1 (the existence of such an element is

part of the primitive element theorem) and I have mentioned this to some of you in office hours.
These are interesting topics, but I have decided that, since we spent a while experimenting with

finite fields at the beginning of the class, it might be fun to see some applications of them instead.
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14 Unique factorization

14.1 Irreducibles and primes

In order to talk about factoring natural numbers into primes we first have to define primes. In a
commutative ring there are at least two sensible definitions one can make. The term irreducible is
motivated by the fact that a natural number prime can not be factored any further except in the
trivial way by using 1. The second is motivated by a property that natural number primes p have:
if plab then either p|a or p|b (Euclid’s lemma).

Definition 14.1.1. Suppose R is a commutative ring and that a € R is non-zero and non-unital.
1. a is said to be irreducible if whenever a = bc either b or ¢ is a unit.
2. a is said to be prime if whenever a|bc then either a|b or ac.
As long as we can cancel, primes are irreducible.

Proposition 14.1.2. In an integral domain primes are irreducible.

Proof. Let R be an integral domain, and suppose a € R is prime. We wish to show a is irreducible,
so suppose that a = bc. We wish to show that either b or ¢ is a unit.

Since a = be, we trivially have a|be and so, because a is prime, either a|b or a|c. Suppose without
loss of generality that a|b. This means that there is a d € R with b = ad. Then a = bc = (ad)c =
a(dc) so that a(1 —dc) = 0. Since a is prime, a # 0. Since R is an integral domain, we deduce that
1—dc=0,1ie. dc=1, and so c is a unit. ]

Lemma 14.1.3. Suppose R is a commutative ring, that a,b € R, that a is irreducible, and that a
does not divide b. Then a and b are coprime.

Proof. We have to show that 1 is a ged of a, b.
1. That 1|a and 1|b is clear;

2. Suppose cla and c|b. The first division says that a = cd for some d € R. Since a is irreducible
we deduce that either ¢ is a unit or that d is a unit. If ¢ is a unit we get ¢|1, what we want.
If d is a unit, ¢ is an associate of a, and, because c|b, this gives a|b, a contradiction.

O]

Theorem 14.1.4. Suppose that either R = Z, or R = F[z] for some field F, and that a € R is
wrreducible. Then a is prime.

Proof. Suppose that albc and that a does not divide b; we wish to show that alc. By proposition
it is enough to show that a and b are coprime. The previous lemma finishes the proof. O

In all of the following examples primes and irreducibles coincide by the previous theorem.
Example 14.1.5. In Z the primes are +2,+3,+5,£7, £11,£13, +17, ...
Example 14.1.6. In Q[z], z — 1, 22 — 2, 22 + 1, 2 + x + 1 are some irreducibles.

Example 14.1.7. In Z/2[z] the irreducibles of degree less than or equal to 2 are 2, v +1, 22+ +1.
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It was necessary to prove the previous two theorems carefully as the following remark shows.

Remark 14.1.8. There are strange integral domains where irreducibles are not necessarily primes.
Here is an example. Let R = Z[v/—3] = {x + yv/—3 : z,y € Z} and let

a=2,b=14++v-3, ¢c=1—-+v-3.

We have 2|4 = be, and yet 2 does not divide b or ¢. Thus 2 is not prime. However, 2 is irreducible
(exercise).

Remark 14.1.9. There are commutative rings where primes are not necessarily irreducible. Z/6 is
an example. 2 is prime. This because the multiples of 2 are {—2,0,2} and the only way to express
these as products is as follows.

—2=1.(-2)=(-1)-2=2-2
0-0=0-(+1)=0-(+2)=0-3=(£2) -3
=1-2=(-1)-(-2)=2-(-2)

This also shows 2 is not irreducible, since 2 = 2 - (—2). (Shout out, Sitara.)

14.2 Euclidean domains are unique factorization domains

We finally come to factorizing elements into their prime decomposition.

Definition 14.2.1. Let R be an integral domain. We say that R is a unique factorization domain
if the following two conditions hold.

1. Whenever a € R is non-zero and non-unital there exist irreducible elements b{,...,b, € R
such that
a="by-by.

2. If by,...b,,c1,...cm € R are irreducible with
bi- by, =c1 - Cn

then n = m and there exists a permutation o : {1,...,n} — {1,...,n} such that by and c,)
are associates for each k € {1,...,n}.

Theorem 14.2.2. Z is a unique factorization domain.

Proof. First, we verify existence of factorizations: let n € Z be non-zero and non-unital; we must
show that n can be written as a finite product of irreducibles. We induct on |n|. The cases |n| =0
and |n| = 1 are not relevant since we took n to be non-zero and non-unital. The base case is when
|n| = 2, which follows since £2 are irreducible, so suppose |n| > 2. If n is irreducible we are done.
If n is not irreducible, then we can write n = Im where neither [ or m is a unit; this means that
[, |m| > 1, and so |l|, |m| < |n|, and the result follows by induction.

We now turn to showing the uniqueness of such a factorization. Let b1,...bn,c1,...cn € Z be
irreducibles with

by by =cL - Cm.
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Since by is irreducible, it is prime (theorem (14.1.4]). Because by|by - - b, = c1 - - - ¢y, We see that by|c;
for some j € {1,...,m}. By reordering we can assume bi|c;. So ¢; = byu for some u € Z, which
must necessarily be a unit as c; is irreducible and b, is not a unit. We can now cancel b; to obtain

O S
and continuing in this way gives the result. O
Theorem 14.2.3. Let F be a field. Then F[z] is a unique factorization domain.

Proof. First, we verify the existence of factorizations: let f(x) € F[x] be non-zero and non-unital;
we must show that f(z) can be written as a finite product of irreducibles. We induct on deg f(x).
The case deg f(z) = 0 is not relevant since we took f(z) to be non-zero and non-unital. The base
case is when deg f(x) = 1, in which case f(z) is irreducible, so suppose deg f(z) > 1. If f(z) is
irreducible we are done. If f(z) is not irreducible, then we can write f(z) = g(x)h(x) where neither
g(x) or h(x) is a unit; this means that deg g(x),deg h(x) > 0, and so deg g(x),deg h(z) < deg f(x),
and the result follows by induction.

The proof of uniqueness is the same as for Z. The main point is that it also uses theorem [14.1.4
to say irreducibles are prime. O

Example 14.2.4. If one examines the previous proofs, one sees we used the Euclidean functions for
Z and F'[z] to justify the existence of a factorization. The uniqueness used the fact that irreducibles
are prime, which depended on the existence of gcds and Bezout’s identity. One can imagine a place
where Bezout’s identity works so that factorizations are unique if they exist, but where it is possible
that factorizations do not exist. Consider

{ flx) = Z anz™ : f(x) has infinite radius of convergence}.
n=0

This is such a ring. Since exp(z) can be factored more and more

exp(z) — exp <2> exp (2) ~ exp (2> exp <4> exp (4) .

factorizations do not necessarily exist. However, (I have not checked this) it is a Bezout domain.
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14.3 The Gaussian integers Z][i|
Consider the following subset of the complex numbers
Zii) ={z+yi:z,y € Z}.

The addition and multiplication of complex numbers make Z[i] into a commutative ring. Moreover,
Z[i] is an integral domain.

Definition 14.3.1. Elements of the commutative ring Z[i| are called Gaussian integers. We define
d: 7Z[i] — NuU{0}

by d(a) = aa = |a|?.

Lemma 14.3.2. For a,b € Z[i], d(ab)=d(a)d(b).

Proof. This follows from the facts that C is a commutative ring and that ab = @b. 0

Lemma 14.3.3. The units in Z[i] are 1,—1,4, —i.

Proof. Suppose that ab = 1. Then d(a)d(b) = d(ab) = d(1) = 1. Thus d(a) = 1 and

a=1,—-1,7, or —1.

Theorem 14.3.4. The Gaussian integers form a Fuclidean domain.

Proof. We just have to show that if a, b € Z[i] with b # 0, then there exist ¢, r € Z[i] with a = gb+r
and d(r) < d(b).
Let a,b € Z[i] with b # 0. Since a,b € C we can consider § € C. Choose ¢ € Z[i] with

and let » = a — ¢b. Then it is automatic that a = ¢b + r. Moreover,

ﬁ_qQ 2-d(b)<d(2b><d(b).

'b— -b f—
4 b

—4q

2
a
) = If? =~ gbf? = R

S e

O

Because Z[i] is a Euclidean domain, there is a Euclidean algorithm, gcd’s make sense, Bezout’s
theorem holds, and proposition (Euclid’s lemma) is true. Moreover, theorem |14.1.4] holds for
Z[i] too: that is, irreducibles are primes.

Definition 14.3.5. If an element a € Z[i] is prime (equivalently irreducible) then we say that a is
a Gaussian prime.

Example 14.3.6. 2 is prime when considered as an element of Z. We say it is a rational prime.
It is not a Gaussian prime, because it is not irreducible:

2=(1-9)1+1i)=—i(1+14)? =i(1—1i)>
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Example 14.3.7. It turns out that the rational primes 3, 7, 11, 19, 23, 31, are all Gaussian primes.
What is so special about them? You’ll see on the homework.

Example 14.3.8. The rational primes 5, 13, 17, 29, 37, 41 are not Gaussian primes since

5=1%42%= (1 - 2i)(1 + 2i)
13 =22 +3% = (2 — 3i)(2 + 34)
17 =124+ 4% = (1 — 4i)(1 + 4)
29 = 22 + 52 = (2 — 5i)(2 + 5i)
37 =12 +6% = (1 — 6i)(1 + 61)
41 = 4% + 5% = (4 — 5i)(4 + 51)

Theorem 14.3.9. Suppose a € Z[i] and that d(a) is a prime in Z. Then a is a Gaussian prime.

Proof. Suppose that a = be so d(a) = d(bc) = d(b)d(c). Because d(a) is a prime in Z, it is non-zero
and non-unital and either d(b) = 1 or d(c) = 1. This means that a is non-zero and non-unital and
either b is a unit or ¢ is a unit. Thus, a is irreducible. ]

Example 14.3.10. The factors appearing above are Gaussian primes. That is,
142, 243i, 1440, 2+ 5i, 146i, 4=+ 5i
are Gaussian primes.
Theorem 14.3.11. Z[i] is a unique factorization domain.
Proof. The same as for Z inducting on |z|? instead of |z| (which is not always an integer). O

Example 14.3.12. Suppose we wish to factor a = 3 4 214. Here’s a trick for hunting down the
prime factors. Notice that

a@ = 3% +212 =450 = 2-3% . 5% = (1 —4)*- 3% (1 — 20)2(1 + 2i)%
This tells us that the possible prime factors of a are (1 — 1), 3, (1 — 2¢) and 1 + 2i. We see that
a=3(1+T7i).
Then we spot (by thinking about arguments, maybe) that 1+ 7i = (1 —4)(1 + 24)? so that

a=3(1—14)(1+2)>
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15 BCH codes

Suppose we are trying to transmit messages consisting of zeros and ones, but, due to noise, it is
likely that there will be errors in our transmission. However, suppose we know that with very high
probability there will be at most ¢ errors in our transmitted message. Can we think of a way to
send enough data that our original message can be recovered, regardless of whether there are 0, 1,
..., t—1, or t errors? BCH codes answer this question with a big fat “yes.” Moreover, the “big
fat yes” does something more efficient than writing out our message (2t + 1) times.

15.1 Sending four bits and accounting for up to one error

Suppose we are trying to transmit messages consisting of four bits (four numbers which are either
zero or one), but, due to noise, it is likely that there will be errors in our transmission. However,
suppose we know that there will be at most one error in our transmitted message. Using seven bits,
we can guarantee that our original message can be recovered, irrespective of whether there are no
errors or there is one error. There are simple ways to do this, but here is one which will generalize.

= 1 1 = oY
ol = « a = ot
a? = o a+l = o
o = a+1 a? = o
ot = a?+4a a?+1 = aof
® = a24+a+1 al+a = o
o = a?2+1 24+a+l = o

Recall that m(z) = 23 + x 4+ 1 € Fa[z] is irreducible, so that
Fs = Fola]/ (¢ + 2z + 1)
is a field. Label [z],3,,,1 by . Then (homework)
Fs = {0,1,, 0%, 0?, o, a®, ab}.

We can go between this description of elements and the usual description using the exp and log-table
displayed above.

THE PROCEDURE
1. Suppose we have a word of length 4, w = (wg, w5, wg, w3). Form the polynomial
W(x) = wex® + wsx® + waxt + wyx® € Fy [x].
2. Using the division algorithm we can write
W(z) = u(z)m(x) + V(x)

for some polynomials u(z), V(z) where deg V(z) < 3. Let C(z) = W(z) + V (z).
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3. Writing C'(z) = c62® + c52® + ... + c12 + ¢o the code for our word is the length 7 vector
c = (cg,C5,...,C1,0C0).
Notice that since deg V' (z) < 3, we have

W = (w67w57w47w3) = (06765)64763)- (1511)
4. We send c¢ and the vector which is received is

r = (TG,T5, e ,7”1,7‘0).

We have to describe how to reconstruct w from r. In light of (|15.1.1)) it is enough to recon-
struct ¢ from r. Here’s what we do. Let R(x) = rex® + r52° + ... +rix + 1o € Fg|a].

(a) If R(ar) = 0, then there are no errors, we have ¢ = r and w = (r¢,75,74,73).
(b) If R(«) # 0, then there is one error. Finding e € {0,1,2,3,4,5,6} such that R(a) = a*

tells us the error was at r,.

Remark 15.1.2. Why does this work? Well, the first thing to notice is that when we view m(x)
as an element of Fg[z] we have m(«) = 0. In step 2, above, we wrote

W(z) = u(z)m(x) + V(x)
and then set C(x) = W(x) + V(x). So C(z) = u(z)m(x) and since « is a root of m(z), it is also a
root of C(x).
The error between the recieved vector and the coded word is stored by the polynomial

E(z) = C(x) + R(x).

Either there are no errors and E(z) = 0, or there is one error at position e and E(x) = z°. In the
first case, R(a) = E(a) = 0. In the second case, R(«) = E(«a) = af.

Example 15.1.3. Suppose we wish to encode w = (1,0, 1,0). We form the polynomial
W(z) = 2% 4 2.
We write W (x) = u(x)m(z) + V(x) where u(z) = 23 + 1 and V(x) = x + 1. We let
Cx)=W(x)+V(z)=a®+2 +2+1.

The code for our word w is ¢ = (1,0,1,0,0,1,1). Suppose that we send ¢ and the vector which is
received is r = (1,1,1,0,0,1,1). Then R(x) = 2% +2° + 2* + 2 + 1 and

Rla)=a’+a’+at+a+1=(2+1)+ (P +a+1)+(@®+a)+a+l=a’+a+1=0dd.

The receiver would conclude that there was one error occuring in the fifth position: this is correct!
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a® =1 1 = o
al = «a a = o
a2 = o a+1l = ot
ad = ad a2 = a?
at = a+1 a?+1 = of
a® = a?+a a24+a = a
ab = ad+a? +a+1 = alf
" = oP+a+1 ad = ol
a® = a?+1 ad+1 = ol
o = ad+a ad+a = o
al? = a?+a+1 aBB+a+l = af
al = aP+a’+a ad+a? = aof
a? = ad+af+a+1 ad+a24+1 = ol
a® = ad+a?2+1 aBd+al+a = ol
ot = P41 aBt+al+a+l = ol?

15.2 Sending seven bits and accounting for up to two errors

Suppose we are trying to transmit messages consisting of seven bits accounting for up to two errors
in our transmitted message.
Recall that o + 2 + 1 € Fa[x] is irreducible, so that

F16 = Fg[m]/($4 +x+ 1)
is a field. Label [z],4,,,1 by a. Then
F16 == {O, 1, «, a2, ce ,a14}.

We can go between this description of elements and the usual description using the exp and log-table
displayed above. Let
m(z) = a8 + o7 + 28 + 2 4 1.

THE PROCEDURE

1. Suppose we have a word of length 7, w = (w14, w13, w12, w11, W10, W9, ws). Form the polyno-
mial
W(z) = wigzt + wize' 4 wer® + wea® € Fy [x].

2. Using the division algorithm we can write
W(z) = u(z)m(z) + V(x)
for some polynomials u(z), V(z) where deg V(z) < 8. Let C(z) = W (z) + V (z).
3. Writing C(z) = ciaz™® + c132'2 + ... 4+ c12 + ¢o the code for our word is the length 15 vector
c = (c14,¢13,...,C1,00).
Notice that since deg V' (z) < 8, we have

W = (w14, w13, W12, W11, W10, Wy, W) = (c14, €13, €12, C11, €10, €9, €8). (15.2.1)
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4. We send c and the vector which is received is
r = (714,713, -,71,70)-
We have to describe how to reconstruct w from r. In light of (|15.2.1]) it is enough to recon-
struct ¢ from r. Here’s what we do.
Let R(z) = ryax'* + ri32'3 + ...+ 712 + 1o € Fig[7] and consider the matrix

o (k) 1)

(a) If S =0, then there are no errors, we have ¢ = r and w = (r14, 713,712, 711, 710, 79, '3 )

(b) If S # 0, but det(S) = 0, then there is one error. It will turn out that R(«) # 0 and
finding e € {0,1,2,3,4,5,6} such that R(a) = o€ tells us the error was at 7.

(c) If det(S) # 0, then let
()= () Re) (R

Find the roots of X(x) = 22 + 012 + 09 € Fig[z]. They will be of the form a® and a*?
where ej,e9 € {0,1,...,13,14}. e; and eg are where the errors occur.

Remark 15.2.2. Why does this work? Well, the first thing to notice is that when we view m(x)
as an element of Fig[z] we have m(a) = m(a?) = m(a3) = m(a*) = 0. In step 2, above, we wrote

W(z) = u(z)m(z) + V(x)

and then set C(z) = W(z) + V(z). So C(z) = u(xz)m(x) and since o, a?, o>, and o* are roots of
m(z), they are also roots of C(x).
The error between the received vector and the coded word is stored by the polynomial

E(z) =C(z) + R(z).

Either there are no errors and E(x) = 0, or there is one error at position e and E(z) = x¢, or there
are two errors at positions e; and ey and E(x) = x4 z°2.
In the first case, we have for i = 1,2, 3, R(a’) = E(a') = 0, so that S = 0.

In the second case, we have
2e

o «
S = (QQe a36> # 0.
The second row is « times the first row, so det(S) = 0, and R(«) = .
In the third case, one can check that

g_ (1 1Y(o 0Y)(1 o
T \a® a® 0 a2 1 o)’

the product of three invertible matrices. Thus det(S) # 0. We will check that X (o) = X(a®?) =0
in more generality a little later.
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Example 15.2.3. Suppose we wish to encode w = (1,1,1,0,1,0,1). We form the polynomial
W(z) = 2% 4 213 4 212 1 210 4 48,
We write W (x) = u(x)m(z) + V(x) where u(z) = 2% + 1 and V(x) = 27 + 2% + 1. We let
Cl)=W(@)+ V() =a + 28 + 22+ 20+ 28+ 2" + 2t + 1.

The code for our word wis ¢ = (1,1,1,0,1,0,1,1,0,0,1,0,0,0, 1). Suppose that we send ¢ and the
vector which is received is r = (1,0,1,0,1,0,1,1,0,0,1,1,0,0,1). Then

Rx)=a"+ 22 + 29 428 + 2" + 2 + 23+ 1.
We calculate

Rla)=a%+a?+a® + a8 +a’+at+a®+1
=@+ + @+l +atr)+@@+ra+ D)+ @ +D)+ (@ +a+)+(a+1)+ad+1

=a’4+1=0a°
Thus, using the mod 2 Freshman dream we have
R(a?) = R(a)? = ! = a, and R(a*) = R(a?)? = o?.
Finally,

R(a*)=a+a® +a” +a® +a? +a? +a” +1
=a?+af+1+a%+aS+a? +a’ +1=0,

and so

S # 0 and det(S) = a? # 0. We have

o0\ _ [a® « 70 _,2(0 «@ 0y (0 a) /[0 [«
o1) \a 0 a?) a od)\a?2)  \a &) \1) a8
so that X(z) = 22 + o®z + a. We find that

Yo =ab +afP ta=a+ ol +a=(2+a)+ (P +aP+a)+a=0
Ya¥)=a?+ata? ra=at+a’+a=(@*+a*+a)+ (P +aP) +a=0

and so the receiver would conclude that there were two errors occuring in the third and thirteenth
position: this is correct!
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15.3 General BCH codes

Let ¢ = 2", let F = F, be the field with ¢ elements, and let o be a primitive (see section element
in F*, so that
F={0,1,0,02,...,097%}.

Let m(z) be the polynomial of smallest degree in Fy[z] with

as roots. Let d = degm(z). We hope that d < ¢ — 1. Suppose it is and let | =¢g—1—d > 0. We
will be able to transmit words of length [. Here’s how. ..

THE PROCEDURE

1. Suppose we have a word of length [, w = (wq—2, wg—3, ..., Wa+1,wq). Form the polynomial
W(x) = wq_gxq_2 + wq_gqu_?’ + ...+ wd+1azd+1 + wyz®.
2. Using the division algorithm we can write
W(z) = u(z)m(x) + V(x)
for some polynomials u(z), V(z) where deg V' (z) < d. Let C(z) = W(z) + V(z).
3. Writing C(z) = c4—22972 + c4—32973 + ... + c12 + ¢ the code for our word is the vector
c = (cqg—2,Cq-3,...,C1,C0)-
Notice that since deg V' (z) < d, we have
W = (Wg—2, Wg—3, - - -, W41, Wq) = (Cq—2,Cq—3 - - -, Cdt1,Cd)- (15.3.1)
4. We send c and the vector which is received is
r=(rq—2,7g—3,..-,71,70)-

We have to describe how to reconstruct w from r. In light of (|15.3.1]) it is enough to recon-

struct ¢ from r.
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THINGS WE KNOW

1. In step 2, above, we wrote W (z) = u(x)m(z) + V(z) and then set C(z) = W(z) + V(z). So

2t

Since o, a?, ..., a?" are roots of m(x), they are also roots of C(x).

2. If we let R(z) = r4—227 2 + rg_32973 4+ ... + r1x + 70, then the error between the received
vector and the coded word is stored by the polynomial

E(z) =C(z) + R(z).

We can write
E(x)=az% + 2%+ ... 4z

where e, ..., e, are distinct numbers less than ¢ — 1; they are the locations of the errors. We
(with high probability) assumed that there were going to be at most ¢ errors. So r < ¢.

WHAT WE HAVE TO FIGURE OUT
1. The number of errors r.

2. The locations of the errors eq,...,e,.

15.4 Determining r, the number of errors

Theorem 15.4.1. Let
S; = R(a), Sy = R(a?), ..., Sy_1 = R(®™Y), Sy = R(a®).

Then the number of errors r is given by the rank of the following matriz.

S S ... S
g 5?2 Ss ... St‘+1
st Sit1 ... 521;71
Moreover, in this case
St S ... S
U — ;SjQ Ss ... Sr'+1
S."r Sry1 ... 527;—1

1s tnvertible.
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Proof. First we note that, since C(a) = C(a?) = ... = C(a?) =0, we have, for j = 1,...,2t,
Sj = R(a?) = E(o) = Y o/,
k=1

Define vectors x1,...,x, € F! by
e 2e e te
X, = (@, o, . ok,
Then, for j =1,...,t, we have

a(j—l)eka - (aje’“7 a(j+1)ek’a(j+2)ek )

AR

a(.j‘i‘t_l)ek)’

and thus,
-
Za(jfl)ekxk = (S5, 55+1, Sj+2, - - s Sjpe—1))-
k=1
This says that x1,...,X, span the row space of S and so the rank of S is less than or equal to r.

To deduce the rank is equal to r it is enough to show U, is invertible so we turn to this.
Define vectors yy,...,y, € F" by

y;= (a(jfl)q’ ali=Dez o (i=Des ’ a(jfl)er)_

PR

Then

T T
y; diag(a®, a®,a®, ..., a) y]T = E ali=Dek gk qi—Der — E aliti—Der — Sitj—1-
k=1 k=1

Thus, if A is the r X r matrix whose j-th row is y;, then

A diag(a®,a®?,a%,...,a) AT =U,.

This gives
I8 T
det(U,) = det(A)?- H ot =+ H (a® —a%) - H at £ 0
k=1 i3, k=1
1<4,j<r
where we have made use of a formula for the determinant of a Vandermonde matrix. O
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15.5 Determining the error locations

Theorem 15.5.1. Suppose there are r errors. As in the previous theorem let
Sl = R(Oé), SQ = R(Ozg), ey Sgr_l = R(Oz2r_1), SQT = R(Ctzr).

Define 0g,01,...,00_1 € F by

-1

ol S So . Sy Sr41
oo | |52 Sz ... S Sryo
Or—1 Sr ST—I—I v SQT—I SQT

Then the polynomial
Z(.%') =z + Ur—ll’r_l + UT_QZL'T_Q +...+01°x+ 00 € ]F[.%’]

factors as
(z+a)(z+a?)--- (x4 a).

Proof. Let
()= (z+a)(z+a?) - (z+a”)=2" + 2"+ 102" .+ Tz + T

Plugging in a® gives
0=0a"% +7,_1a" V% £ 410 + 7.

Multiplying by o/¢ gives
0=al ek p o jarHi—bee 4 4 mlitDes 4 qpaden,
Summing from k£ =1 to r gives
0=3S5r4+; +7-1Sr+j—1+ ... + 71541 + 705,
so that, for j=1,...,r,
Sryj = Tr—1Sr+j—1 + ...+ 11541 + 105;.

Writing these equations in matrix form gives

Sl 52 e S/r T0 Sr+1
Sy S3 ... S || S
Sy Spy1 .. Sora Tr—1 Sar

Thus, 7 =0 for j =0,1,...,7 — 1, and
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15.6 Other applications

We can send eleven bits accounting for up to four errors, using the field
F3o = Folz]/(2° + 2% + 1),
a = [x];54 .21, and the polynomial
mo(z) = (2° + 22+ 1)(@° + 2 + 2 + 2> + D@ + 2 + 2 + 2+ V) (@° +2° + 2% + 2+ 1).
We can send six bits accounting for up to seven errors, using « € F3o and the polynomial
my(z) = mo(z)(2® + 2zt + 22 + . + 1).

A table showing the capabilities of Fg4 follows.

information bits | errors allowed
30 6
24 7
18 10
16 11
10 13
7 15
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16 Finite fields

Throughout this final section F will always be a finite field.

16.1 The size of finite fields

Definition 16.1.1. If n € Z, then we can use n to denote an element of F. If n > 0, then it stands
for 1+ 1+ ...+ 1 where there are |n| ones. If n < 0 then it stands for (—=1) + (=1) + ...+ (=1)
where there are |n| minus ones.

Lemma 16.1.2. IfF is a finite field then there exists an n € N such that n =0 in F.
Proof. The set {n € F: n € N} CF is finite, so for some n,m € N with n > m we have n = m in
F. Thus,n —m =01in F. O
Definition 16.1.3. If F is a finite field the characteristic of F is given by

char F = min{n € N: n =0 in F}.
Proposition 16.1.4. IfF is a finite field then the characteristic of F is prime.

Proof. Let n = char F and suppose for contradiction that n = ab where a,b € N and a,b > 1. By
definition of characteristic, we have n = 0 in [F. Using the distributivity of addition, one can check
that n = ab in F. Since F is a field, either a = 0 or b = 0 in F. Since a,b < n, this contradicts the
definition of the characteristic as the minimum n with n =0 in F. O]

Theorem 16.1.5. If F is a finite field then |F | = p™ for some prime p and some n € N.

Proof. Let p = char F. Then Z/p C F is a subfield of F. In fact, F is a vector space over Z/p. Let
n = dimg, F. Counting gives |F | = p". O

16.2 The order of elements in F*

Notation 16.2.1. If F is a field we write F* for the group of units U(F) = F \ {0}.
The following theorem, definition, and the propositions follow exactly those of section [10.1}
Theorem 16.2.2. Suppose that F is a field of size q. For each a € F*, we have a4~ = 1.

Definition 16.2.3. Suppose a € F*. The smallest e € {1,...,|F| — 1} with a® = 1 is called the
order of a. We write ordp(a) for the order of a.

Proposition 16.2.4. Suppose that a € F* and a® = 1. Then the order of a divides d.
Proposition 16.2.5. Suppose that a € F* and that a has order e. The order of a® is e/ ged(d, ).
Corollary 16.2.6. IfF is a field of size q. Then x1 — x € F[z| factors as

H (x —a)

aclF
and elements of F* have order dividing q — 1.

Proof. The previous theorem tells us that for each a € FX, we have a9~! = 1. Multiplying by a
gives a? = a, and this is true for a = 0, too. Thus, each a € F is a root of 29 — x, so that for each
a € F, z —a divides 27 — z. Since F[z] is a unique factorization domain, this gives the factorization
stated. The final statement follows from the theorem and the first proposition. ]
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16.3 Two big theorems: existence of finite fields and primitive elements

The following proposition is fairly mind-blowing. It is easy enough to prove if you know finite fields
already. With the proof of it I have in mind, using it for the theorem which follows would be cyclic.
But we note it because it is useful for small p", and just generally kind of awesome.

Proposition 16.3.1. Suppose n € N and write n = pi* -+ pl'v, where 2 < p; < ... < p, are primes

and ny,...,n, > 1 (the p; and n; are unique by the fundamental theorem of arithmetic).
Let p € N be prime, ¢ = p", and qj = pYPi. Let fo(z) = 2% —x € Z/plx], for 1 < j <7 let
fi-1(z)
fi(x) = ’

- ged(fjo1(x),2% — )’

and let f(x) = fr(z).
Then deg f(x) > n and f(x) is a product of all the monic irreducibles in Z/p|x] of degree n.
Thus, to test irreducibility of a degree n polynomial g(x) € Z/p[x], you can calculate ged(f(z), g(z)).

Example 16.3.2. Notice that 64 = 26 = 223 22 =4 and 23 = 8. In Fy[z] we have

(254 + 2)(2% + )

($4+x)(x8+x) :(x42+x21+1)(x12+x11+x9+x8+x6+x4+x3+x+1).

This polynomial is the product of the nine monic irreducibles in Fy[z] of degree six.
The following theorem gives the existence and uniqueness of finite fields of all possible sizes.

Theorem 16.3.3. If p € N is a prime and n € N, then there exists a finite field F of size p™.
Moreover, any two such fields are isomorphic.

Proof idea. We do not have the necessary technology available to us to prove this yet. However,
some useful things can be said in the direction of a proof.

Let ¢ = p™. The corollary of the last section inspires the proof. If such a field F existed, then
the corollary would tell us that the elements of F are precisely the roots of z? — .

1. We know that z2 + 1 € R[z] does not factor but, by letting C = R[z]/(2? + 1) and setting
i = [x],241, we can factor it as (z — i) (x + 7).

2. We have seen that 22 + x + 1 € Fa[z] does not factor but, by letting Fy = Fo[z]/(2? + z + 1)
and setting a = [z],24,,1, We can factor it as (z + )(z + o?).

3. We have seen that 2% +x + 1 € Fa[x] does not factor but, by letting Fig = Fa[z]/(2* + 2 +1)
and setting a = [z],44,41, We can factor it as (v + a)(z + a2)(z + o*)(z + ob).

4. We know that 22 — 2 € Q[z] does not factor but, by considering Q[z]/(z? — 2) and setting
V2 = [z],2_9, we can factor it as (z — v/2)(z + V/2).

This suggests setting F, = F[z]/(2? — x) but this doesn’t work.

1. i € C is also a root of * — 1 but we don’t let C = R[xz]/(2* — 1); this would not even be a
field since 2% — 1 is not irreducible.
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2. /2 € Q[v2] is also a root of z* — 4 but we don’t bother with Q[z]/(z* — 4); again this is not
even a field.

What we want is the smallest field containing Z/p where 2?7 — x does factor. Such a thing is
called the splitting field of 7 — x over Z/p and there is a general procedure for constructing it. We
cannot go into this now but the above examples suggest the strategy.

Take an irreducible factor f(z) of 27— x with degree bigger than 1, and construct Z/p[z]/(f(z)).
Then see what the status of x? — x is. If it factors completely we are done; otherwise keep going
like this until it does factor. Eventually you’ll get a field which you can show has ¢ elements.

In fact, if one uses the lemma above, one can find an irreducible f(z) € Z/p[z] of degree n and
the process above will be one step long.

Splitting fields are unique up to isomorphism, and this allows one to prove that any two finite
fields of the same size are isomorphic. O

The following theorem can be expressed by saying that the multiplicative group of a finite field
is cyclic.

Theorem 16.3.4. If F is a finite field of size q, then there exists an o € F* with order q — 1.

Definition 16.3.5. If ¥ is a finite field of size ¢, an element o € F* with order ¢ — 1 is said to be
primitive. The theorem just stated is called the primitive element theorem.

Proof of primitive element theorem. Finally, we wish we had defined the lowest common multiple.
Suppose that we did; you can figure out the definition. Define

e := lem{ordg(a) : a € F*}.

For each a € F* we have a® = 1, so that each element of F* is a root of ¢ — 1. This means that
e > (g —1) and so it is enough to show that an element a € F* has order e.

Write e = pi* ---pl'", where 2 < p; < ... < p, are primes and ni,...,n, > 1 (the p; and n;
are unique by the fundamental theorem of arithmetic). By definition of e, we have an element
b; € F* with p?j|ordlp(bj); a suitable power a; € F* of b; has ordr(a;) = p?j. We will show that
a = ajas - - a, has order e.

Suppose that m € N and ¢™ = 1. For 1 < j < r we have

—m

m_ _m... _m _m...
a;' = a; a;lqa; - ay

J

So, if ¢; = p}* p?”__llp?_ﬁl - pl'r, then a;an = 1. Since ordp(a;) = p;-lj, this gives p;-lj |(mg;), and

since p; and g; are coprime, p;-lj |m. This holds for all j, so that e|m. In particular, m > e so that
ordp(a) = e, as required. O
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