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1 Rings and fields

1.1 The definition

Consider the following list of properties that some collection of numbers might satisfy.

• (A1) a+ (b+ c) = (a+ b) + c for all a, b, c (associativity of addition)

• (A2) a+ b = b+ a for all a, b (commutativity of addition)

• (A3) there is an element 0 with the property that a+ 0 = a = 0 + a for all a

(identity for addition)

• (A4) for each a there is an element (−a) with the property that a+ (−a) = 0 = (−a) + a

(inverses for addition)

• (M1) a(bc) = (ab)c for all a, b, c (associativity of multiplication)

• (M2) ab = ba for all a, b (commutativity of multiplication)

• (M3) there is an element 1 with the property that a · 1 = a = 1 · a for all a

(identity for multiplication)

• (M4) for each a 6= 0 there is an element a−1 with the property that a · a−1 = a−1 · a = 1

(inverses for multiplication)

• (D) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c (distributivity)

Definition 1.1.1. A set R equipped with an addition

+ : R×R −→ R, (a, b) 7−→ a+ b

and multiplication
· : R×R −→ R, (a, b) 7−→ a · b

satisfying (A1)-(A4), (M1), (M3), and (D) is called a ring.
If, in addition, the multiplication satisfies (M2), then R is called a commutative ring.
A commutative ring for which (M4) is also satisfied is called a field.

1.2 Lots of examples

Example 1.2.1. The integers Z are a commutative ring but they are not a field since (M4) fails:
there is not an integer n with the property that

2 · n = n · 2 = 1.

Example 1.2.2. The rationals Q are a field. You have known this for a long time.

m1

n1
+
m2

n2
=
m1n2 +m2n1

n1n2
,

m1

n1
· m2

n2
=
m1m2

n1n2
.
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Example 1.2.3. The real numbers R are a field. You have known this for a long time. The reals
are actually more confusing though. To think coherently about what a real number is you have to
do math 131A.

Example 1.2.4. Fix an n ∈ N. The n× n matrices with real entries Mn(R) form a ring. If n ≥ 2
they are not a commutative ring since(

1 0
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
6=
(

0 0
0 0

)
=

(
0 1
0 0

)(
1 0
0 0

)
.

(M4) also fails since not all matrices have non-zero determinant.

Example 1.2.5. Fix an n ∈ N. More generally we can look at n× n matrices with coefficients in
a commutatative ring R: Mn(R). Is the following matrix invertible in M2(Z)?(

2 0
0 1

)
Example 1.2.6. If V is a vector space over R. Then the set

EndR(V ) = {T : V −→ V : T is linear}

can be made into a ring using pointwise addition and composition:

(S + T )(v) = Sv + Tv, (ST )(v) = S(Tv).

If V is finite dimensional then, by choosing a basis, this is basically the same as MdimV (R). If V is
not finite dimensional it is something you may not have encountered before. Kevin will talk about
this in discussion.

Example 1.2.7. Suppose a, b ∈ R with a < b. The continuous real-valued functions on the open
interval (a, b) form a commutative ring C0(a, b) under pointwise addition and multiplication:

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

Is C0(a, b) a field? (Homework.)

Example 1.2.8. Suppose a, b ∈ R with a < b. The differentiable real-valued functions on the open
interval (a, b) form a commutative ring C1(a, b) under pointwise addition and multiplication. Is
C1(a, b) a field? (Homework.)
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2 The rationals (a discussion from lectures elaborated)

Now just relax. Settle back in your chair. Take a deep breath. Relax your arms. Relax your legs.
Relax your nerves. Relax all over. Look at the center of this disk I am holding in my hand. Do not
look off. Do not say anything. Keep your mind on my words. Think of nothing else. Gaze right at
the center of this disk. Soon your eyes will get heavy, and you wish to close them and go to sleep.
Your eyes are getting heavy, very heavy and tired. You are getting very sleepy. Soon you will be
sound asleep. . . Now focus carefully on what I am about to say.

YOU NO LONGER KNOW WHAT A RATIONAL NUMBER IS.

Awake.
I think we’ve all been really frustrated recently. . . You have a cookie. You and a friend both

want a piece, but there’s just no way for you both to enjoy it: only whole cookies exist. Thankfully,
I just came up with a new number system that is going to change the world and cookie enjoyment
forever! Here goes. . .

Okay. So we’re happy with the integers Z. Wow, though. . . do you remember when only positive
integers N = {1, 2, 3, . . .} existed and keeping track of debt was really arduous? Thank goodness
that’s over. . .

Consider the set
Z× N = {(m,n) : m ∈ Z, n ∈ N}.

I’m going to construct my new numbers by viewing some of these elements as the same.

Definition 2.1. Suppose (m1, n1) and (m2, n2) are in Z× N. We’ll say (m1, n1) and (m2, n2) are
rationally congruent and write

(m1, n1) ≡Q (m2, n2) or [(m1, n1)]Q = [(m2, n2)]Q

if m1n2 = m2n1.

Example 2.2. (1, 2) ≡Q (2, 4) ≡Q (3, 6) ≡Q (4, 8) ≡Q . . . or saying the same thing

[(1, 2)]Q = [(2, 4)]Q = [(3, 6)]Q = [(4, 8)]Q = . . .

This is because 1 · 4 = 2 · 2, 2 · 6 = 3 · 4, 3 · 8 = 4 · 6.

Definition 2.3. My new numbers, which I call the rational numbers are the set

Q = {[(m,n)]Q : (m,n) ∈ Z× N}.

Remark 2.4. Notice that my new numbers contain the integers. If [(m1, 1)]Q = [(m2, 1)]Q. Then
m1 = m1 · 1 = m2 · 1 = m2. So the subset

{[(m, 1)]Q : m ∈ Z} ⊂ Q

is a copy of the integers.

I even know how to add and multply my new numbers.
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Definition 2.5. I add and multiply rationals using the following formulae.

[(m1, n1)]Q + [(m2, n2)]Q = [(m1n2 +m2n1, n1n2)]Q, [(m1, n1)]Q · [(m2, n2)]Q = [(m1m2, n1n2)]Q

Let me convince you that makes sense.

Theorem 2.6. The addition and multiplication just defined make sense.

Proof. What do we need to show? Suppose that

[(m1, n1)]Q = [(m1, n1)]Q, [(m2, n2)]Q = [(m2, n2)]Q. (2.7)

We need to show that

[(m1n2 +m2n1, n1n2)]Q = [(m1n2 +m2n1, n1n2)]Q, [(m1m2, n1n2)]Q = [(m1m2, n1n2)]Q.

What we’re checking is that renaming our rationals does not change the result of adding or multi-
plying them, since our definition depends very explicitly on the name we’re using.

By definition of [−]Q this means we must show

(m1n2 +m2n1) · n1n2 = (m1n2 +m2n1) · n1n2, m1m2n1n2 = m1m2n1n2.

Multiplying the first one out, we see that we want the following.

m1n2n1n2 +m2n1n1n2 = m1n2n1n2 +m2n1n1n2

The right hand side is obtained from the left hand side by shifting the bar from the n1 to the m1

in the first term and shifting the bar from the n2 to the m2 in the second expression. We need
m1n1 = m1n1 and m2n2 = m2n2 and this is exactly what 2.7 says, by definition.

The second equality follows by mulitplying together these last two equations.

I claim that these numbers give what we have been looking for all this time: an example of a
field containing the integers; we can finally divide our cookies!

Theorem 2.8. The rational numbers Q that I’ve just constructed are a field.

Proof. I’ll leave you to check (A1).
(A2)

[(m1, n1)]Q + [(m2, n2)]Q = [(m1n2 +m2n1, n1n2)]Q

= [(m2n1 +m1n2, n2n1)]Q = [(m2, n2)]Q + [(m1, n1)]Q

where the first and last equality follows from the definition of addition and the middle equality
follows from (A2) and (M2) for Z.

(A3) My 0 element is [(0, 1)]Q since

[(m,n)]Q + [(0, 1)]Q = [(m · 1 + 0 · n, n · 1)]Q = [(m,n)]Q

where the first equality follows from the definition of addition and the second from (M3) for Z, the
fact that 0 · n = 0 (your homework shows this follows from axioms), and (A3) for Z.
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(A4) We have −[(m,n)]Q = [(−m,n)]Q since

[(m,n)]Q + [(−m,n)]Q = [(mn+ (−m)n, n2)]Q = [(0, n2)]Q = [(0, 1)]Q

where the first equality follows from definition of addition, the last follows from definition of [−]Q
since 0 · 1 = 0 · n2 and the middle inequality follows from addition laws in Z.

(M1) and (M2) follow quickly from (M1) and (M2) for Z. My 1 element is [(1, 1)]Q, which can
be verified using (M3) for Z. I’ll leave it to you to check (D).

We’re just left with checking (M4). Suppose [(m,n)]Q 6= 0. This means [(m,n)]Q 6= [(0, 1)]Q so
that m · 1 6= 0 · n, i.e. m 6= 0. We claim

[(m,n)]−1Q = [(n · sgn(m), |m|)],

where sgn(m) = m
|m| . This is because

[(m,n)]Q[(n · sgn(m), |m|)]Q = [(mn · sgn(m), n · |m|)]Q = [(1, 1)]Q

where the first equality follows from definition of multiplication and the second follows from the
definition of [−]Q since m · sgn(m) = |m|.

[If we had constructed Q using Z× (Z\{0}) we could have taken [(m,n)]−1 = [(n,m)]Q instead,
which would have been easier, probably better even, but I preferred typing N over Z \ {0}.]

Notation 2.9. Write m
n for [(m,n)]Q so that

Q =

{
m

n
: m ∈ Z, n ∈ N

}
.

We’re now back to where we were before I hypnotized you.

Remark 2.10. What was the point in all of this? In the next section, we’ll check addition on Z/n
is well-defined and it will actually be much easier. If you had have been taught modular arithmetic
when you were younger as opposed to adding and dividing fractions, you would be awesome at it
by now.

When you were younger, you believed some older authority that the addition and multiplication
of fractions makes sense; now you have seen why it works. How could it have failed? Maybe, when
you first learned to add fractions, you tried the “rule”

m1

n1
+
m2

n2
=
m1 +m2

n1 + n2
.

Your teacher will have told you this is wrong, but maybe they didn’t give you a good reason as to
why. Suppose we try to define addition this way. Then

0

1
+

1

1
=

1

2
.

However, 1
1 also has the name 2

2 . Using this name, with the definition we get

0

1
+

2

2
=

2

3
.

Uh oh. . . 1
2 6=

2
3 . This definition of addition leads to nonsense since renaming elements changes the

answer we get.
Thank you to Chris Jeon for inspiring this!
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3 Modular arithmetic

Modular arithmetic is

“usual integer arithmetic” + “ignoring multiples of some integer.”

If it’s 10am and someone asks you what time it will be in 5 hours, you answer, “3pm” because

10 + 5 ≡ 3 (mod 12).

Upon taking the remainder of 15 upon division by 12, you get 3.

Definition 3.1. If a, b ∈ Z and n ∈ N we say that a is congruent to b modulo n and write

a ≡ b (mod n), a ≡ b (n) or [a]n = [b]n

if there is a c ∈ Z such that a = b+ cn.

Definition 3.2. If n ∈ N, we write Z/n for the set of integers modulo n, that is

Z/n = {[x]n : x ∈ Z}.

Example 3.3. What is Z/7? Well,

. . . ≡ −21 ≡ −14 ≡ −7 ≡ 0 ≡ 7 ≡ 14 ≡ 21 ≡ . . . (7)

. . . ≡ −20 ≡ −13 ≡ −6 ≡ 1 ≡ 8 ≡ 15 ≡ 22 ≡ . . . (7)

. . . ≡ −19 ≡ −12 ≡ −5 ≡ 2 ≡ 9 ≡ 16 ≡ 23 ≡ . . . (7)

. . . ≡ −18 ≡ −11 ≡ −4 ≡ 3 ≡ 10 ≡ 17 ≡ 24 ≡ . . . (7)

. . . ≡ −17 ≡ −10 ≡ −3 ≡ 4 ≡ 11 ≡ 18 ≡ 25 ≡ . . . (7)

. . . ≡ −16 ≡ −9 ≡ −2 ≡ 5 ≡ 12 ≡ 19 ≡ 26 ≡ . . . (7)

. . . ≡ −15 ≡ −8 ≡ −1 ≡ 6 ≡ 13 ≡ 20 ≡ 27 ≡ . . . (7)

i.e.

. . . = [−21]7 = [−14]7 = [−7]7 = [0]7 = [7]7 = [14]7 = [21]7 = . . .

. . . = [−20]7 = [−13]7 = [−6]7 = [1]7 = [8]7 = [15]7 = [22]7 = . . .

. . . = [−19]7 = [−12]7 = [−5]7 = [2]7 = [9]7 = [16]7 = [23]7 = . . .

. . . = [−18]7 = [−11]7 = [−4]7 = [3]7 = [10]7 = [17]7 = [24]7 = . . .

. . . = [−17]7 = [−10]7 = [−3]7 = [4]7 = [11]7 = [18]7 = [25]7 = . . .

. . . = [−16]7 = [−9]7 = [−2]7 = [5]7 = [12]7 = [19]7 = [26]7 = . . .

. . . = [−15]7 = [−8]7 = [−1]7 = [6]7 = [13]7 = [20]7 = [27]7 = . . .

so
Z/7 = {[x]7 : x ∈ Z} = {[0]7, [1]7, [2]7, [3]7, [4]7, [5]7, [6]7}.

We have found that we have lots of names for the same element. Actually, this is not new. You
have known for a long time that in Q

1

2
=

2

4
=

3

6
=

4

8
=

5

10
= . . . ,

that is, we have many names for 1
2 .
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We can add and multiply elements modulo n. We just do the normal addition and multiplication
in the integers, add or substract multiples of n if we wish, and then say “modulo n.” For instance,

2 + 3 ≡ 5 (7), 4 + 5 ≡ 2 (7), 2 · 4 ≡ 1 (7), 4 · 5 ≡ −1 (7).

We have to check that this makes sense though.

Theorem 3.4. Addition and multiplication on the integers Z “descends to” a well-defined addition
and multiplication on the integers modulo n, Z/n.

Proof. The phrase “descend to” means we are trying to define an addition by

[x]n + [yn] = [x+ y]n

and a multiplication by
[x]n · [y]n = [xy]n.

We worry that something could go wrong because we have different names for the same thing and
our definition depends on the name used. For instance, [2]7 = [9]7 and [3]7 = [10]7. On the one
hand our definition says

[2]7 · [3]7 = [2 · 3]7 = [6]7.

On the other hand our definition says

[9]7 · [10]7 = [9 · 10]7 = [90]7.

Thankfully [6]7 = [90]7 because 6 = 90 − 12 · 7 (we’re taking c = −12 in the definition) and so all
is right with the world.

Again, one can remark that, back when we were little boys and girls being taught to add and
multiply fractions, we should have checked something similar. Does the formula in Q

m1

n1
+
m2

n2
=
m1n2 +m2n1

n1n2

depend on the way we named our fractions? Thankfully not! This is theorem 2.6.
Okay, we’ve chatted for a long time; better actually prove something. . .
Suppose [x]n = [x′]n and [y]n = [y′]n. This tells us, by definition, that there are c, d ∈ Z such

that
x = x′ + cn, y = y′ + dn.

Thus,
x+ y = (x′ + y′) + (c+ d)n and xy = x′y′ + (x′d+ cy′ + cdn)n.

By definition, this tells us that

[x+ y]n = [x′ + y′]n and [xy]n = [x′y′]n.

So whatever name we pick to do the calculation, we get the same answer.

Theorem 3.5. Z/n is a commutative ring.
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Proof. (A1):

[x]n + ([y]n + [z]n) = [x]n + [y + z]n = [x+ (y + z)]n

= [(x+ y) + z]n = [x+ y]n + [z]n = ([x]n + [y]n) + [z]n,

where the first, second, fourth and fifth equality follow from the definition and the third follows
from (A1) for Z.

(A2):
[x]n + [y]n = [x+ y]n = [y + x]n = [y]n + [x]n,

where the first and last equality follow from the definition and the middle inequality follows from
(A2) for Z.

(A3): 0 = [0]n since

[xn] + [0]n = [x+ 0]n = [x]n = [0 + x]n = [0]n + [x]n,

where the first and last equality follow from the definition and the middle two follow from (A3) for
Z.

(A4): −[x]n = [−x]n since

[x]n + [−x]n = [x+ (−x)]n = [0]n = [(−x) + x]n = [−x]n + [x]n

where the first and last equality follow from the definition and the middle two follow from (A4) for
Z.

(M1)-(M3) and (D) are left for the homework.

Example 3.6. Z/2 = {[0]2, [1]2}. The addition is described by

[0]2 + [0]2 = [1]2 + [1]2 = [0]2

[0]2 + [1]2 = [1]2 + [0]2 = [1]2

and the multiplication is described by

[0]2[0]2 = [0]2[1]2 = [1]2[0]2 = [0]2, [1]2[1]2 = [1]2.

Since [1]2 is the only non-zero element and [1]2[1]2 = [1]2, Z/2 is a field.
A good way to think of Z/2 is as the set {even, odd}; the addition and multiplication rules are

exactly the rules for adding and multiplying even and odd integers.
Often we write 0 and 1 for [0]2 and [1]2, respectively, to avoid cumbersome notation. After all,

these elements are the 0 and 1 that appear in the axioms for a ring. If we are feeling lazy in other
settings we may miss out the [−]n, too.

Example 3.7. Z/6 = {[0]6, [1]6, [2]6, [3]6, [4]6, [5]6, } and in class I’ll write out the multiplication
table. It is not a field since [2]6 · x is never equal to [1]6.
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4 Polynomials

You have encountered polynomials throughout your math education. Up until now, they probably
will have had real coefficients, or maybe complex coefficients. We can actually allow coefficients in
any commutative ring.

4.1 Polynomial rings

Definition 4.1.1. Let R be a commutative ring. We write R[x] for the set of polynomials

{f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n : n ∈ N ∪ {0}, a0, . . . , an ∈ R}.

Remark 4.1.2. As before we can name things in more than one way by omitting or inserting
expressions like 0xk. For example, in Z[x],

7− x+ 3x2 + 2x5 = 7 + (−1)x+ 3x2 + 0x3 + 0x4 + 2x5 + 0x6 + 0x7.

We can also change the order in which we write monomials so that, in Z[x], 1 + x = x+ 1.
Two polynomials are the same if the coefficients of each of their xk terms are equal.

Definition 4.1.3. If f(x) = a0 + a1x + a2x
2 + . . . + anx

n is a non-zero element of R[x] then the
largest k such that ak 6= 0 is called the degree of f(x). If adeg f(x) = 1, then f(x) is called monic.

Example 4.1.4. Consider the polynomials Z/2[x]. Since Z/2 only has two elements we can write
down all the polynomials of degree less than or equal to 2 quickly.

0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1.

Some good lessons can be learned from this example.

1. When one encounters polynomials in lower division courses they are often real-valued poly-
nomials and we think of them as the same as the real-valued function they define, i.e. we
think of the polynomial x2 − 2x+ 5 ∈ R[x] as the same as the function f : R −→ R, defined
by f(x) = x2 − 2x+ 5.

A polynomial in Z/2[x] does define a function Z/2 −→ Z/2, but different polynomials can
give rise to the same function. For instance, the polynomials x and x2 both give the identity
function Z/2 −→ Z/2. However, they are different polynomials since the coefficients of x and
x2 differ.

2. When one wishes to factor a polynomial in R[x] one looks for roots to the polynomial. The
same trick works here. 1 is a root of x2 + 1 and indeed, because [2]2 = 0, x2 + 1 factors as
(x+ 1)2. This “trick” is corollary 5.3.3. We can try plugging in 0 and 1 to see that x2 +x+ 1
has no roots. Thus, x2 + x+ 1 does not factor.

Example 4.1.5. In Z/2[x] we have

x4 − x = x(x3 − 1) = x(x− 1)(x2 + x+ 1)

and cannot factor any further.
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Example 4.1.6. In Z/2[x] we have

x8 − x = x(x7 − 1) = x(x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

= x(x− 1)(x3 + x+ 1)(x3 + x2 + 1)

and cannot factor any further.

Example 4.1.7. In Z/3[x] we have

x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1)

= x(x− 1)(x+ 1)(x2 + 1)(x4 + 1)

= x(x− 1)(x+ 1)(x2 + 1)(x2 − x− 1)(x2 + x− 1)

and cannot factor any further.

Example 4.1.8. In Z/5[x] we have

x25 − x = x(x24 − 1)

= x(x12 − 1)(x12 + 1)

= x(x6 − 1)(x6 + 1)(x12 + 1)

= x(x3 − 1)(x3 + 1)(x6 + 1)(x12 + 1)

= x(x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1)(x2 + 1)(x4 − x2 + 1)(x4 + 1)(x8 − x4 + 1)

= x(x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1)(x− [2]5)(x+ [2]5)

(x4 − x2 + 1)(x2 − [2]5)(x
2 + [2]5)(x

8 − x4 + 1)

= x(x− 1)(x+ 1)(x− [2]5)(x+ [2]5)(x
2 − x+ 1)(x2 + x+ 1)(x2 − [2]5)(x

2 + [2]5)

(x4 − x2 + 1)(x8 − x4 + 1)

= x(x− 1)(x+ 1)(x− [2]5)(x+ [2]5)(x
2 − x+ 1)(x2 + x+ 1)(x2 − [2]5)(x

2 + [2]5)

(x2 − [2]5x− 1)(x2 + [2]5x− 1)(x4 − [2]5x
2 − 1)(x4 + [2]5x

2 − 1)

You can actually factor into degree 2 polynomials. Good luck factoring the final two quartics!

Example 4.1.9. In Z/4[x], (x+[2]4)
2 = x2 +([2]4 +[2]4)x+[2]4 · [2]4 = x2. Because [2]4[2]4 = 0 we

get some strange looking formulae. The formula says that either we should regard 0 as a repeated
root, or [2]4 as a repeated root, but not 0 and [2]4 as both being roots since x2 6= x(x+ [2]4). Our
usual terminology does not make sense, the reason being that unique factorization does not occur
in Z/4[x].

Theorem 4.1.10. If R is a commutative ring, then so is R[x].

Proof. Suppose f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n and g(x) = b0 + b1x+ b2x
2 + . . .+ bmx

m. By
inserting terms like 0xk we can make sure n = m. Then we define

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + . . .+ (an + bn)xn

and f(x)g(x) = c0 + c1x+ c2x
2 + . . .+ c2nx

2n where ck =
∑

i+j=k aibj ((A1) for R tells us we don’t
need to use brackets when adding, and (A2) says we don’t care about the order so this summation
is well-defined).

One then checks the axioms. I’ll get you to do some of this in the homework.

Definition 4.1.11. If R is a commutative ring, R[x] is called the polynomial ring over R.

12



4.2 Modular arithmetic with polynomials

Modular arithmetic with polynomials is

“usual polynomial arithmetic” + “ignoring multiples of some polynomial.”

Definition 4.2.1. If f(x), g(x), q(x) ∈ R[x] we say that f(x) is congruent to g(x) modulo q(x) and
write

f(x) ≡ g(x) (mod q(x)), or [f(x)]q(x) = [g(x)]q(x)

if there is a h(x) ∈ R[x] such that f(x) = g(x) + h(x)q(x).

Definition 4.2.2. If q(x) ∈ R[x], we write R[x]/(q(x)) for the set of polynomials with coefficients
in R modulo q(x), that is

R[x]/(q(x)) = {[f(x)]q(x) : f(x) ∈ R[x]}.

Theorem 4.2.3. Addition and multiplication on the polynomial ring R[x] “descends to” a well-
defined addition and multiplication on the polynomial ring modulo q(x), R[x]/(q(x)). These opera-
tions make R[x]/(q(x)) into a ring.

Proof. “Descends to” means we define

[f(x)]q(x) + [g(x)]q(x) = [f(x) + g(x)]q(x) and [f(x)]q(x) · [g(x)]q(x) = [f(x)g(x)]q(x).

The rest of the proof is the same as the proof of theorem 3.4 and 3.5. In particular,

0 = [0]q(x) and 1 = [1]q(x),

where the 0 and 1 inside the brackets denote the 0 and 1 of R[x]. We showed in the first homework
that these are the zero polynomial and the constant polynomial with value 1, respectively.

Example 4.2.4. What is R[x]/(x2 + 1)? We start with R, adjoin an element x, and then make
some stuff equal by using the brackets [−]x2+1. Everything is determined by the fact that

[x2 + 1]x2+1 = [0]x2+1 = 0.

This relation holds by the definition of [−]x2+1 and the fact that x2 + 1 = 0 + 1 · (x2 + 1). It forces

[x2]x2+1 = [x2 + 1]x2+1 − [1]x2+1 = 0− 1 = −1,

[x3]x2+1 = [x2]x2+1 · [x]x2+1 = −1 · [x]x2+1 = [−1]x2+1 · [x]x2+1 = [−x]x2+1,

[x4]x2+1 = [x2]2x2+1 = (−1)2 = 1.

In general, we have

[x]4nx2+1 = 1, [x]4n+1
x2+1

= [x]x2+1, [x]4n+2
x2+1

= −1, [x]4n+3
x2+1

= [−x]x2+1.

This means we can always eliminate x2, x3, . . . from inside [−]x2+1 and so

R[x]/(x2 + 1) = {[a+ bx]x2+1 : a, b ∈ R}.

What did we do? We started with R, and adjoined an element i = [x]x2+1 with the property that
i2 = [x]2x2+1 = −1. This is C.

13



Example 4.2.5. Z/2[x]/(x2 + x+ 1). The thing to notice is that

x2 ≡ x+ 1 (mod x2 + x+ 1).

This is because x2 = (x+ 1) + 1 · (x2 + x+ 1) since, in Z/2[x], x+ x = 1 + 1 = 0.
Thus, for any n ∈ N ∪ {0} we have

xn+2 ≡ xn+1 + xn (mod x2 + x+ 1)

and this allows us to write monomials xk with k ≥ 2 in terms of polynomials with lower degree.
Thus,

Z/2[x]/(x2 + x+ 1) = {0, 1, [x], [x+ 1]},

where we have started omitting the subscript on the square brackets due to laziness.
In lecture, I went through the addition and multiplication table for this. I’ll ask you to repeat

this on the homework. The next example is similar, and slightly more involved.

Example 4.2.6. Z/3[x]/(x2 + 1). Using the same argument as in the previous example we have

Z/3[x]/(x2 + 1) = {0, 1,−1, [x], [x+ 1], [x− 1], [−x], [−x+ 1], [−x− 1]}.

Suggestively call this ring F9, since it turns out to be a field with 9 elements and let α = [x]. Then

F9 = {0, 1,−1, α, α+ 1, α− 1,−α,−α+ 1,−α− 1}

and α2 + 1 = [x]2 + [1] = [x2 + 1] = [0] = 0 so that

α2 = −1 and α2 − 1 = 1.

This means that in F9[y]

y9 − y = y(y − 1)(y + 1)(y2 + 1)(y2 − y − 1)(y2 + y − 1)

= y(y − 1)(y + 1)

· (y − α)(y + α)(y − (α− 1))(y + (α+ 1))(y + (α− 1))(y − (α+ 1)).

See example 4.1.7 for the first equality. I have changed the polynomial indeterminant x to y to
avoid confusion with the previous x.

It turns out that constructing the smallest thing containing Z/p where the polynomial yp
n − y

factors into linear factors gives a field with pn elements.
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5 Division

5.1 The definition of “b divides a”

The definition of a commutative ring is based on the properties of Z. In Z we have the notion of
divisibility: 6 is divisible by 2. To say this another way: 2 divides 6. This notion makes sense in
any commutative ring.

Definition 5.1.1. Suppose R is a commutative ring. If a, b ∈ R, we say b divides a and write b|a
if a = bc for some c ∈ R.

Example 5.1.2. In Z, 2|6, (−5)|100, 3|(−30), 5 does not divide 26.

Example 5.1.3. In Z/5, [3]5 divides [2]5 since [2]5 = [3]5 · [4]5. In Z/6, [3]6 does not divide [2]6,
since the only multiplies of [3]6 are [0]6 and [3]6.

Example 5.1.4. In Z/3[x], (x− 1)|(x2 + x+ 1) since x2 + x+ 1 = (x− 1)2.

5.2 Division in Z

In Z things are even better. Even when we cannot divide exactly we have the notion of remainder.

Theorem 5.2.1 (Division theorem). Suppose that a ∈ N∪{0} and b ∈ N. Then there exist unique
q, r ∈ N ∪ {0} with the properties that a = qb+ r and 0 ≤ r < b.

Proof. First things first: the theorem stated in the book is wrong since it says q > 0; we must allow
for q = 0.

How did we do this when we were in primary school? We added b to itself as many times as
possible without it being bigger than a. This gave q and then we let r = a− qb.

Let’s write this carefully in math. Let

S = {x ∈ N ∪ {0} : xb ≤ a}.

Since b ≥ 1, if x > a then xb > a and so x /∈ S. By the contrapositive, if x ∈ S then x ≤ a and so

S ⊆ {0, 1, . . . , a}.

Let q = maxS and r = a− qb. Since q ∈ S we have qb ≤ a and so r ≥ 0. If r ≥ b then a− qb ≥ b
so that (q + 1)b ≤ a, giving q + 1 ∈ S, a contradiction. Thus, 0 ≤ r < b.

For uniqueness, suppose that qb + r = q′b + r′ where q, q′, r, r′ ∈ N ∪ {0} and 0 ≤ r, r′ < b.
Without loss of generality assume that r ≤ r′. Then

0 ≤ r′ − r ≤ r′ < b.

Moreover, (q − q′)b = r′ − r so that 0 ≤ (q − q′)b < b. Dividing by b gives 0 ≤ (q − q′) < 1. Since
q, q′ ∈ N ∪ {0}, this shows q = q′ and so r = r′.
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Corollary 5.2.2. Suppose a, b ∈ Z and that b 6= 0. Then there exist q, r ∈ Z with a = qb + r and
|r| < |b|.

Proof. If we can do the case when b > 0, then we can do the case when b < 0 by changing the sign
of q, so suppose b ∈ N.

Since |a| ∈ N ∪ {0} there exists q, r ∈ N ∪ {0} with the properties that

|a| = qb+ r

and 0 ≤ r < b. If a ≥ 0, we are finished. If a < 0, then we change the sign of q and r.

Perhaps you would prefer the following stronger corollary.

Corollary 5.2.3. Suppose a, b ∈ Z and that b 6= 0. Then there exist unique q, r ∈ Z with a = qb+r
and 0 ≤ r < |b|.

Proof. Homework. It is probably best to prove it directly; I have called it a corollary because the
proof is so similar.

One way in which division in Z helps us is that it allows us to express numbers in different
bases. How does our usual base 10 number system work? To express x in base 10 we find n so that
10n ≤ x < 10n+1; divide by 10n and take the remainder; divide the remainder by 10n−1 and take
the remainder; and so on.

53796 = 5 · 104 + 3796

3796 = 3 · 103 + 796

796 = 7 · 102 + 96

96 = 9 · 101 + 9

6 = 6 · 100 + 0

Similarly, for base 3.

53796 = 2 · 39 + 14430

14430 = 2 · 38 + 1308

1308 = 0 · 37 + 1308

1308 = 1 · 36 + 579

579 = 2 · 35 + 93

93 = 1 · 34 + 12

12 = 0 · 33 + 12

12 = 1 · 32 + 3

3 = 1 · 31 + 0

0 = 0 · 30 + 0

In base 3, 5379610 looks like 22012101103.
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5.3 Division in F [x] when F is a field

In a polynomial ring with coefficients in a field we can also divide with remainder.
Recall the definition of the degree of a polynomial. The following lemma is intuitive.

Proposition 5.3.1. Suppose F is a field and f(x), g(x) ∈ F [x] are non-zero polynomials. Then

deg(f(x)g(x)) = deg f(x) + deg g(x).

Proof. Suppose deg(f(x)) = n and deg(g(x)) = m. Then we have

f(x) = a0 + a1x+ . . .+ anx
n, g(x) = b0 + b1x+ . . .+ bmx

m

where an, bm 6= 0. f(x)g(x) = c0 + c1x+ . . .+ cn+mx
n+m where cn+m = anbm 6= 0. This is because

non-zero elements of a field multiply to be non-zero (homework). Thus, f(x)g(x) 6= 0.

Theorem 5.3.2. (Division theorem for polynomials) Suppose F is a field and that f(x), g(x) ∈ F [x]
with g(x) 6= 0. Then there exist unique q(x), r(x) ∈ F [x] with the properties that f(x) = q(x)g(x) +
r(x), and either r(x) = 0, or r(x) 6= 0 and deg r(x) < deg g(x).

Proof. If f(x) = 0 or f(x) 6= 0 and deg f(x) < deg g(x), then writing f(x) = 0 · g(x) + f(x) shows
we can take q(x) = 0 and r(x) = f(x).

Suppose f(x) 6= 0 and let k = deg f(x)− deg g(x). We have just shown that we are done when
k < 0. We proceed by induction on k. So suppose k ≥ 0. Let m = deg g(x) and write

f(x) = am+kx
m+k + . . .+ a1x+ a0, g(x) = bmx

m + . . .+ b1x+ b0

where am+k, bm 6= 0.
Observe that

am+k

bm
xkg(x) = am+kx

m+k +
am+k

bm
bm−1x

m+k−1 + . . .+
am+k

bm
b1x

k+1 +
am+k

bm
b0x

k.

Thus, f̃(x) = f(x)− am+k

bm
xkg(x) satisfies deg f̃(x) < deg f(x) and thus

deg f̃(x)− deg g(x) < deg f(x)− deg g(x) = k.

By induction we can find q̃(x), r(x) ∈ F [x] with the properties that

f̃(x) = q̃(x)g(x) + r(x)

and either r(x) = 0, or r(x) 6= 0 and deg r(x) < deg g(x). Now

f(x) =
am+k

bm
xkg(x) + f̃(x) =

[
am+k

bm
xk + q̃(x)

]
g(x) + r(x),

so we can take q(x) =
am+k

bm
xk + q̃(x).

For uniqueness, suppose that q0(x)g(x)+r0(x) = q1(x)g(x)+r1(x) where q0(x), q1(x), r0(x), r1(x)
∈ F [x] and r0(x), r1(x) have the relevant properties. We have

(q0(x)− q1(x))g(x) = r1(x)− r0(x).

If q0(x)− q1(x) 6= 0 then r1(x)− r0(x) 6= 0 giving

deg g(x) ≤ deg((q0(x)− q1(x))g(x)) = deg(r1(x)− r0(x)) < deg g(x),

a contradiction. Thus, q0(x) = q1(x) and so r0(x) = r1(x).
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A picture to accompany the proof of theorem 5.3.2.

am+k

bm
xk q̃(x)

bmx
m + bm−1x

m−1 + . . .+ b0 am+kx
m+k + am+k−1x

m+k−1 + . . . + akx
k + ak−1x

k−1 + . . . + a0

am+k

bm
bmx

m+k +
am+k

bm
bm−1x

m+k−1 + . . . +
am+k

bm
b0x

k + 0xk−1 + . . . + 0

0 f̃(x)
...

r(x)

18



Corollary 5.3.3. Suppose F is a field, that f(x) = a0 + a1x+ . . .+ anx
n ∈ F [x], and that b ∈ F .

Then
f(b) = a0 + a1b+ . . .+ anb

n ∈ F ⊂ F [x]

is the remainder when dividing f(x) by (x− b). Thus (x− b)|f(x) precisely when f(b) = 0 ∈ F .

Proof. Since deg(x− b) = 1, the division theorem gives us q(x) ∈ F [x] and r ∈ F such that

f(x) = q(x)(x− b) + r.

Setting x = b gives f(b) = r.

Example 5.3.4. Let f(x) = x4 − 10x2 + 10x− 1 and g(x) = x2 + 3x− 2 in Q[x].

x2 − 3x + 1

x2 + 3x− 2 x4 + 0x3 − 10x2 + 10x

��

− 1

��

x4 + 3x3 − 2x2

− 3x3 − 8x2 + 10x

− 3x3 − 9x2 + 6x

+ x2 + 4x − 1

+ x2 + 3x − 2

+ x + 1

So f(x) = q(x)g(x) + r(x) where q(x) = x2 − 3x+ 1 and r(x) = x+ 1.

Example 5.3.5. Let f(x) = x4 − 1 and g(x) = x2 − [2]5x− [2]5 in Z/5[x].

x2 + 2x + 1

x2 − 2x− 2 x4 + 0x3 − 0x2 + 0x

��

− 1

��

x4 − 2x3 − 2x2

+ 2x3 + 2x2 + 0x

+ 2x3 + x2 + x

+ x2 − x − 1

+ x2 − 2x − 2

+ x + 1

So f(x) = q(x)g(x) + r(x) where q(x) = x2 + 2x+ 1 and r(x) = x+ 1.

If you look at these two examples carefully you’ll notice the second is just the first taken modulo
5.
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6 Zero divisors, units

In Z we are used to the notion of cancellation: if ab = ac, and a 6= 0, we can cancel to get b = c.
The argument for this is really as follows. Suppose ab = ac. Then a(b − c) = ab − ac = 0. Since
a 6= 0, then b − c = 0 and thus b = c. What we need is the fact that “ab = 0 implies either a = 0
or b = 0.” This is not true in other commutative rings.

Example 6.1. In Z/6 we have [2]6[3]6 = [6]6 = [0]6. Two non-zero numbers multiply to give 0.

We say [2]6 and [3]6 are zero divisors, since they divide 0 (and they’re non-zero).

Definition 6.2. Suppose R is a commutative ring and that a ∈ R. We say that a is a zero divisor
if a 6= 0 and there is a b ∈ R with b 6= 0 such that ab = 0.

Rings where we are allowed to cancel are called integral domains.

Definition 6.3. A commutative ring R is said to be an integral domain if there are no zero divisors,
i.e. if a, b ∈ R and a, b 6= 0, then ab 6= 0; alternatively, if a, b ∈ R and ab = 0, then either a = 0 or
b = 0.

Proposition 6.4. Fields are integral domains.

Proof. Homework.

Proposition 6.5. If R is an integral domain then so is R[x].

Proof. Homework.

Just as numbers which divide 0 have a special name, so do numbers which divide 1.

Definition 6.6. Suppose R is a commutative ring. We say u ∈ R is a unit if there exists a v ∈ R
such that uv = 1.

Example 6.7. In Z the only units are 1 and −1.

Example 6.8. In Z/5, [1]5, [2]5, [3]5, [4]5, are units since

[1]5[1]5 = [2]5[3]5 = [4]5[4]5 = 1.

Example 6.9. In a field every non-zero element is a unit.

Example 6.10. If F is a field, the units of F [x] are the non-zero degree zero polynomials: indeed,
non-zero elements of F ⊂ F [x] are units; because deg(f(x)g(x)) = deg f(x)+deg g(x) and deg 1 = 0,
units better have degree zero. Similarly, the units of Z[x] are 1 and −1.

It is familiar that we can factor any natural number into primes uniquely (up to reordering).
When we extend this result to the integers, it basically says the same thing, except we are allowed
to multiply our primes by −1 so that

10 = 2 · 5 = (−2) · (−5), −35 = (−5) · 7 = 5 · (−7).

2 and −2, 5 and −5, 7 and −7 are called associates. In a commutative ring we make the following
definition.

Definition 6.11. Suppose R is a commutative ring and a, b ∈ R. We say that a is an associate of
b if there is a unit u ∈ R with a = bu.

Remark 6.12. If R is a commutative ring, a, b ∈ R, and a is an associate of b, then b is an associate
of a, and so we can say a, b are associates. [If uv = 1, then a = bu if and only if av = b.]
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7 Greatest common divisors

7.1 The definition

For the natural numbers prime decompositions help us to find the greatest common divisor of a
collection of numbers: we just read off common prime factors and multiply them. In fact, we should
prove such a prime decomposition exists and we will do this eventually.

We can define the concept of a gcd in a commutative ring.

Definition 7.1.1. Let R be a commutative ring and let a1, . . . , an ∈ R. Then we say an element
d ∈ R is a greatest common divisor or gcd of a1, . . . , an if

1. d|a1, . . ., d|an (it is a common divisor of a1, . . . , an).

2. If c ∈ R satisfies c|a1, . . . , c|an, then c|d (it is a greatest common divisor).

To get the definition straight here are two examples, assuming we know prime decompositions
exist and are unique.

Example 7.1.2. In Z, 6 and −6 are greatest common divisors for 30 and 42. Let’s check 6.

1. 6|30, 6|42.

2. If c|30, c can only have prime factors 2, 3, and 5, and they can occur at most once. If c|42, c
can only have prime factors 2, 3, and 7, and they can occur at most once. Thus, if c|30 and
c|42, c can only have prime factors 2 and 3, and they can occur at most once. Thus c divides
6.

Example 7.1.3. In Q[x], x(x− 1) is a gcd for (x+ 1)x(x− 1) and x(x− 1)(x− 2).

Remark 7.1.4. Let R be a commutative ring and suppose d is a gcd of a1, . . . , an ∈ R. Then so
is any associate of d (homework).

In the case of the integers this says that if d is a greatest common divisor of a1, . . . , an, then so
is −d, which is hopefully clear. In the case of polynomials over a field this says, that if g(x) is a
greatest common divisor of f1(x), . . . , fn(x), then so is cg(x) for any nonzero element c of the field.

Remark 7.1.5. Let R be an integral domain and suppose d and d′ are both gcds of a1, . . . , an ∈ R.
Then d and d′ are associates (homework).

So for integers greatest common divisors can only differ by a sign, and for polynomials defined
over a field greatest common divisors can only differ by a nonzero element of the field.

As the remarks which follow will show, the existence of gcd’s is not entirely obvious. It turns out
that for Z and polynomials over a field, they do exist, and we we can make the following definition.

Definition 7.1.6. In Z, we will write gcd(a1, . . . , an) for the positive gcd of a1, . . . , an ∈ Z.
If F is a field, we will write gcd(f1(x), . . . , fn(x)) for the monic gcd of f1(x), . . . , fn(x) ∈ F [x],

(when it is non-zero).

Remark 7.1.7. There are commutative rings where greatest common divisors do not always exist.
Let R = Z/4[x] and let

f(x) = x2 = (x+ [2]4)
2, g(x) = x(x+ [2]4).

One can check that the gcd of f(x) and g(x) does not exist.
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Remark 7.1.8. There are even integral domains in which greatest common divisors do not always
exist. Here is an example. Let R = Z[

√
−3] = {x+ y

√
−3 : x, y ∈ Z} and let

a = 4 = 2 · 2 = (1 +
√
−3)(1−

√
−3), b = 2 · (1 +

√
−3).

One can check that the gcd of a and b does not exist.

In light of the previous remarks, how will we calculate greatest common divisors or even know
they exist? One way is to use prime decompositions, but in order to prove such things exist in the
cases we care about we need to do quite a bit of work. The most elementary things we can say are
the content of the next two lemmas.

The second lemma suggests that to show greatest common divisors exist for Z and polynomials
defined over a field, we might need to make use of the division algorithms we proved.

Lemma 7.1.9. Suppose R is a commutative ring and that a ∈ R. Then a is a gcd of a and 0.

Proof. a is a common divisor of a and 0, since a|a and a|0; it is a greatest common divisor for if
c|a and c|0, then c|a.

Lemma 7.1.10. Suppose R is a commutative ring and that a, b, q, r ∈ R satisfy a = qb+ r. Then
d is gcd of a and b if and only if d is a gcd of b and r.

Proof. This is because the equation a = qb+ r shows an element c ∈ R divides a and b if and only
it divides b and r.

To expand, suppose d is a gcd for a and b. Then, in particular, d|a and d|b, which means d|b
and d|r, so that d is a common divisor of b and r. If c|b and c|r, then c|a and c|b. Since d is a gcd
for a and b, this tells us that c|d. Thus, d is a gcd for b and r. The other implication is proved in
an identical manner.

7.2 Calculating gcds: the Euclidean algorithm

Definition 7.2.1. A Euclidean domain is an integral domain R endowed with a map

d : R \ {0} −→ N ∪ {0}

such that for all a, b ∈ R with b 6= 0 there exist q, r ∈ R with a = qb+ r and either r = 0, or r 6= 0
and d(r) < d(b).

Theorem 7.2.2.

1. The integers Z are a Euclidean domain when we define

d : Z \ {0} −→ N ∪ {0}

by d(n) = |n|.

2. Polynomials with field coefficients F [x] are a Euclidean domain when we define

d : F [x] \ {0} −→ N ∪ {0}

by d(f(x)) = deg f(x).
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Proof. This follows from corollary 5.2.2 and theorem 5.3.2.

Theorem 7.2.3. Suppose R is a Euclidean domain and that a, b ∈ R. There are elements c, x, y ∈
R such that

1. c is a gcd for a and b;

2. ax+ by = c (Bezout’s identity).

Proof. The proof is called the Euclidean algorithm.
Suppose that R is a Euclidean domain with Euclidean function

d : R \ {0} −→ N ∪ {0}

and let a, b ∈ R.
If b = 0, then a is a gcd for a and b (lemma 7.1.9) and a · 1 + b · 0 = a, so we can take c = a,

x = 1, y = 0.
If b 6= 0, let r0 = a and r1 = b and perform division as many times as possible until the remainder

is 0: the d-value of the remainder strictly decreases each time we perform division with a non-zero
remainder; since d takes values in N ∪ {0}, eventually the remainder must be zero. Supposing we
have to perform n divisions, we have

r0 = q1r1 + r2

r1 = q2r2 + r3

r2 = q3r3 + r4
...

rn−1 = qnrn + rn+1

and rn+1 = 0.
Because rn+1 = 0, rn is a gcd for rn and rn+1 (lemma 7.1.9). The last equation, together with

lemma 7.1.10, tells us that rn is a gcd for rn−1 and rn. Applying lemma 7.1.10 n − 1 more times
we see that rn is a gcd for r0 and r1, i.e. a gcd for a and b. We take c = rn.

Let x0 = 1 and y0 = 0 so that we have ax0 + by0 = r0. Let x1 = 0 and y1 = 1 so that we have
ax1 + by1 = r1.

If n = 1, the proof is finished. Otherwise, let 1 ≤ k < n and suppose inductively that for each
j ∈ {0, 1, . . . , k} we have xj , yj ∈ R, such that axj + byj = rj . Then

rk+1 = rk−1 − qkrk = (axk−1 + byk−1)− qk(axk + byk) = a(xk−1 − qkxk) + b(yk−1 − qkyk).

Thus letting xk+1 = xk−1 − qkxk and yk+1 = yk−1 − qkyk we complete the inductive step. Taking
x = xn and y = yn completes the proof.

Remark 7.2.4. The Euclidean algorithm gives a particular gcd for a and b; there are other gcds
which are associates of this particular gcd (remark 7.1.4).

The Euclidean algorithm for the integers is unique if we insist on using the stronger corollary
5.2.3 instead of corollary 5.2.2. Using this corollary ensures all remainders are taken to be positive
and so we obtain our favorite gcd, that is, the positive gcd. For this reason, we will insist on using
the stronger corollary and this is what we’ll mean by the Euclidean algorithm for Z.
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The Euclidean algorithm for polynomials defined over a field is unique since each division is so.
However, it is unlikely that the algorithm will return our favorite gcd; to obtain the monic one, we
will have to multiply by a nonzero element of the field.

Example 7.2.5. Let’s calculate a gcd for 42 and 30.

42 = 1 · 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6 + 0

The last non-zero remainder was 6, so 6 is a gcd for 42 and 30.
Moreover, rewriting the first two equations we get the following.

12 = 42− 1 · 30

6 = 30− 2 · 12

Substituting the first into the second gives Bezout’s identity

6 = 30− 2 · (42− 1 · 30) = 42 · (−2) + 30 · 3.

Example 7.2.6. Let’s calculate a gcd for x3 − x and x3 − 3x2 + 2x (elements of Q[x]).

x3 − x = 1 · (x3 − 3x2 + 2x) + (3x2 − 3x)

x3 − 3x2 + 2x =
1

3
(x− 2) · (3x2 − 3x) + 0.

The last non-zero remainder was 3x2 − 3x so 3x2 − 3x is a gcd for the two polynomials. Rescaling
by 3, we have gcd(x3 − x, x3 − 3x2 + 2x) = x2 − x.

Doing the algorithm the other way (swapping the polynomials) gives −3x2 + 3x as a gcd.

x3 − 3x2 + 2x = 1 · (x3 − x) + (−3x2 + 3x)

x3 − x = −1

3
(x+ 1) · (−3x2 + 3x) + 0.

Bezout’s identity is obtained by rearranging the first equation we wrote down.

3x2 − 3x = (x3 − x)− (x3 − 3x2 + 2x).
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8 Consequences of the Euclidean algorithm

8.1 Greatest common divisors

First up, we make note of some basic properties of the greatest common divisors for Z and F [x].
There’s nothing surpirsing here. Basically, these corollaries say that gcds do what they think they
should, but we’re careful about units (recall definition 7.1.6).

Corollary 8.1.1. Suppose a, b, c ∈ Z. Then gcd(ac, bc) = gcd(a, b) · |c|.

Proof. gcd(ac, bc) = gcd(a|c|, b|c|) since x|y if and only if x| ± y.
Run the Euclidean algorithm to calculate gcd(a, b). By multiplying all equations by |c| we run

the Euclidean algorithm for gcd(a|c|, b|c|). Thus, gcd(a|c|, b|c|) = gcd(a, b) · |c|.

Corollary 8.1.2. Suppose F is a field, f1(x), f2(x) ∈ F [x] and that

g(x) = bmx
m + . . .+ b1x+ b0 ∈ F [x], with bm 6= 0.

Then

gcd(f1(x)g(x), f2(x)g(x)) = gcd(f1(x), f2(x)) · g(x)

bm
.

Proof. Running the Euclidean algorithm on f1(x) and f2(x), we obtain c ·gcd(f1(x), f2(x)) for some
non-zero element c ∈ F . By multiplying all equations by g(x) we run the Euclidean algorithm for
f1(x)g(x) and f2(x)g(x). It gives c · gcd(f1(x), f2(x)) · g(x). We multiply this by 1

c·bm to obtain a
monic polynomial.

8.2 Bezout’s theorem

Bezout’s theorem is the key to solving linear congruences ax ≡ d (mod b).

Theorem 8.2.1 (Bezout). Given a, b, d ∈ Z, we can find x, y ∈ Z with ax+ by = d if and only if
gcd(a, b)|d.

Proof. gcd(a, b)|a and gcd(a, b)|b and so, if ax+ by = d, then gcd(a, b)|d.
Conversely, the Euclidean algorithm gives us x̃, ỹ ∈ Z so that ax̃+ bỹ = gcd(a, b). If gcd(a, b)|d,

there is a c ∈ Z such that gcd(a, b) · c = d. Then

a(cx̃) + b(cỹ) = gcd(a, b) · c = d,

so we can take x = cx̃ and y = cỹ.

There’s a polynomial version useful for congruences involving polynomials.

Theorem 8.2.2 (Bezout). Let F be a field. Given f1(x), f2(x), h(x) ∈ F [x], there are g1(x), g2(x)
in F [x] with

f1(x)g1(x) + f2(x)g2(x) = h(x).

if and only if gcd(f1(x), f2(x)) divides h(x).
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Proof. Basically it is the same as the previous one but one should be more careful about units.
gcd(f1(x), f2(x)) divides both f1(x) and f2(x), and so, if f1(x)g1(x) + f2(x)g2(x) = h(x), then

gcd(f1(x), f2(x)) divides h(x).
Conversely, the Euclidean algorithm gives us g̃1(x), g̃2(x) ∈ F [x] so that f1(x)g̃1(x)+f2(x)g̃2(x) =

c · gcd(f1(x), f2(x)) for some nonzero element c of the field F .
If gcd(f1(x), f2(x))|h(x), there is a g(x) ∈ F [x] such that gcd(f1(x), f2(x)) · g(x) = h(x). Then

f1(x) · g(x)g̃1(x)

c
+ f2(x) · g(x)g̃2(x)

c
= gcd(f1(x), f2(x)) · g(x) = h(x)

so we can take g1(x) = g(x)g̃1(x)
c and g2(x) = g(x)g̃2(x)

c .
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8.3 Examples

Example 8.3.1. Solve 30x ≡ 24 (mod 42).
This one you could try some values and you would discover 30 · 12 = 360 ≡ 24 (mod 42). There

are other solutions: since 30 · 7 = 210 ≡ 0 (mod 42), x = 12 + 7k is a solution for all k ∈ Z.
How could you have figured this out without trial and error? To solve 30x ≡ 24 (mod 42) we

need to find x, y ∈ Z with 30x + 42y = 24. Bezout’s theorem tells us that we can do this as long
as gcd(42, 30)|24.

In example 7.2.5, we calculated gcd(42, 30) using the Euclidean algorithm. We discovered

gcd(42, 30) = 6 = 30 · 3− 42 · 2.

First, since 6|24, this tells us immediately that we can solve the equation we were given. Secondly,
it tells us that 30 · 3 ≡ 6 (mod 42). Multiplying by 4 gives 30 · 12 ≡ 24 (mod 42).

Finally, 42
gcd(42,30) = 7. Thus

30 · 7 = 30 · 42

gcd(42, 30)
=

30

gcd(42, 30)
· 42 ≡ 0 (mod 42).

It turns out that this 42
gcd(42,30) = 7 trick gives the minimal solution to 30x ≡ 0 (mod 42). I don’t

think we’ll need this, but we’ll see something similar in theorem 10.1.11.

Example 8.3.2. Solve 30x ≡ 23 (mod 42).
We cannot solve this because 6 does not divide 23.

Example 8.3.3. Solve 35x ≡ 1 (mod 221).
We run the Euclidean algorithm to find the gcd of 35 and 221.

221 = 6 · 35 + 11

35 = 3 · 11 + 2

11 = 5 · 2 + 1

2 = 2 · 1 + 0

Thus gcd(221, 35) = 1 and the congruence is solvable. Rearranging the above equations gives

11 = 221− 6 · 35

2 = 35− 3 · 11

1 = 11− 5 · 2

Thus,

1 = 11− 5 · 2
= 11− 5 · (35− 3 · 11) = 16 · 11− 5 · 35

= 16 · (221− 6 · 35)− 5 · 35 = 16 · 221− 101 · 35

and we conclude that 35 · (−101) ≡ 1 (mod 221).
We just showed 35 is a unit in Z/221 and found its inverse (c.f. homework 3, question 3)c)).
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9 Units in our favorite rings

9.1 Coprimality

Before stating our main results about units in our favorite rings we need some terminology.

Definition 9.1.1. We say a, b ∈ Z are coprime if gcd(a, b) = 1.

Remark 9.1.2. Bezout’s theorem tells us that a, b ∈ Z are coprime if and only if there are x, y ∈ Z
with ax+ by = 1.

Definition 9.1.3. Suppose F is a field. We say f(x), g(x) ∈ F [x] are coprime if gcd(f(x), g(x)) = 1.

Remark 9.1.4. Bezout’s theorem tells us that f1(x), f2(x) ∈ F [x] are coprime if and only if there
are g1(x), g2(x) ∈ F [x] with f1(x)g1(x) + f2(x)g2(x) = 1.

The following result could probably be credited to Euclid.

Proposition 9.1.5 (Euclids’s lemma). Suppose that either R = Z, or R = F [x] for some field F .
Suppose, in addition, that a, b, c ∈ R, a|bc, and a and b are coprime. Then a|c.

Proof. Since a and b are coprime there are elements x, y ∈ R with ax+by = 1. Then acx+bcy = c.
Since a|a and a|bc, we conclude that a|c.

9.2 Modular arithmetic

Suppose we ask the following question: given [x]n ∈ Z/n, is there a [y]n ∈ Z/n with [x]n[y]n = 1?
By definition of multiplication and what it means to be equal in Z/n, the answer is “yes” precisely
when there are c, y ∈ Z with

xy + cn = 1.

Bezout’s theorem says this happens exactly when x and n are coprime.

Theorem 9.2.1. [x]n is a unit in Z/n if and only if x ∈ Z and n are coprime.

Example 9.2.2. The units in Z/221 are

{[x]221 : gcd(x, 221) = 1} = {[x]221 : 13 and 17 do not divide x}.

Corollary 9.2.3. If p ∈ N is a prime, then Z/p is a field.

In fact, Z/p is a field if and only if p ∈ N is a prime (quick exercise).

9.3 Modular arithmetic with polynomials

Similarly, we have the following theorem.

Theorem 9.3.1. Suppose F is a field. Then [f(x)]q(x) is a unit in F [x]/(q(x)) if and only if f(x)
and q(x) are coprime.

Using a lemma which we’ll see a little later (lemma 14.1.3), we also have following corollary.
Here irreducible means “cannot be factored any further” (see definition 14.1.1).

Corollary 9.3.2. Suppose F is a field and q(x) ∈ F [x] is irreducible. Then F [x]/(q(x)) is a field.

In fact, F [x]/(q(x)) is a field if and only if q(x) ∈ F [x] is irreducible (homework).
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10 The theorems of Fermat, Euler, and Lagrange

10.1 Exponents of units in Z/n

Definition 10.1.1. If R is a commutative ring, write U(R) for the set of units in R.

Definition 10.1.2 (Euler’s totient function). For n ≥ 2, let ϕ(n) be the number of units in Z/n,

i.e. ϕ(n) = |U(Z/n)|.

Remark 10.1.3. By theorem 9.2.1 ϕ(n) is equal to the number of integers x with 1 ≤ x < n, that
are coprime to n.

Example 10.1.4. If p is a prime then Z/p is a field so that

U(Z/p) = {[1]p, . . . , [p− 1]p} and ϕ(p) = p− 1.

Example 10.1.5.

U(Z/4) = {±1}, U(Z/6) = {±1}, U(Z/8) = {±1,±3}, U(Z/9) = {±1,±2,±4},
U(Z/10) = {±1,±3}, U(Z/12) = {±1,±5}, U(Z/14) = {±1,±3,±5}

U(Z/15) = {±1,±2,±4,±7}, U(Z/16) = {±1,±3,±5,±7}, U(Z/18) = {±1,±5,±7},

so ϕ(4) = 2, ϕ(6) = 2, ϕ(8) = 4, ϕ(9) = 6, ϕ(10) = 4, ϕ(12) = 4, ϕ(14) = 6, ϕ(15) = 8, ϕ(16) = 8,
and ϕ(18) = 6.

Theorem 10.1.6 (Euler’s theorem). Suppose x and n are coprime. Then xϕ(n) ≡ 1 (n).

Proof. Since x and n are coprime, [x]n is a unit in Z/n (theorem 9.2.1). This means there is a [y]n
with [x]n[y]n = 1. Let U(Z/n) = {[x]n : [x]n is a unit }. The map

U(Z/n) −→ U(Z/n), u 7−→ [x]n · u

is a bijection; the inverse is given by “multiplication by [y]n.” Thus,

[x]ϕ(n)n ·
[ ∏
u∈U(Z/n)

u

]
=

∏
u∈U(Z/n)

[
[x]p · u

]
=

∏
u∈U(Z/n)

u = 1 ·
[ ∏
u∈U(Z/n)

u

]
.

Cancelling

[∏
u∈U(Z/n) u

]
(multiplying by its multiplicative inverse) gives [x]

ϕ(n)
n = 1.

Corollary 10.1.7 (Fermat’s little theorem). If p is a prime and x ∈ Z is not divisible by p then
xp−1 ≡ 1 (mod p).

Proof. ϕ(p) = p− 1, since every number y with 1 ≤ y < p is coprime to p or, alternatively, because
Z/p is a field.

Definition 10.1.8. Suppose x and n are coprime. The smallest e ∈ {1, . . . , ϕ(n)} with xe ≡ 1 (n)
is called the order of x modulo n. We’ll write ordn(x) for the order of x modulo n.
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Example 10.1.9. Let’s calculate the order of some elements in Z/31.
We have ord31(1) = 1. Here is the sequence (3n (mod 31))30n=1:

3, 9, −4, −12, −5, −15, −14, −11, −2, −6, 13, 8, −7, 10,

−1, −3, −9, 4, 12, 5, 15, 14, 11, 2, 6, −13, −8, 7, −10, 1.

This shows ord31(3) = 30. We also see that

ord31(9) = ord31(3
2) = 15, ord31(−4) = ord31(3

3) = 10, ord31(−5) = ord31(3
5) = 6,

ord31(−15) = ord31(3
6) = 5, ord31(−6) = ord31(3

10) = 3, ord31(−1) = ord31(3
15) = 2.

We can obtain the order of other elements using the theorem following the next.
Notice that all the elements have order dividing 30 = ϕ(31). This is not a coincidence.

Theorem 10.1.10. Suppose x and n are coprime and that xd ≡ 1 (n). Then the order of x modulo
n divides d.

Proof. Let e denote the order of x modulo n and suppose xd ≡ 1 (n). Since e 6= 0, we can divide

d = qe+ r

where 0 ≤ r < e (corollary 5.2.3). Then

1 ≡ xd ≡ xqe+r ≡ (xe)q · xr ≡ 1 · xr ≡ xr (n).

Since r is smaller than e and xr ≡ 1 (n) we must have r = 0, since e is the smallest strictly positive
number with xe ≡ 1 (n). Thus, e divides d.

Theorem 10.1.11. Suppose x and n are coprime and that x has order e modulo n. Then the order
of xd modulo n is e/ gcd(d, e). (Recall that gcd(d, e) denotes the positive gcd of d and e.)

Proof. Suppose (xd)s ≡ 1 (n). Then the previous theorem says that e|ds. Thus, e
gcd(d,e) |

ds
gcd(d,e) .

Using corollary 8.1.1 we have

gcd

(
d

gcd(d, e)
,

e

gcd(d, e)

)
= 1.

Thus, e
gcd(d,e) |s, by proposition 9.1.5. In particular, if s > 0, then s ≥ e

gcd(d,e) . Finally, note that

(xd)
e

gcd(d,e) ≡ (xe)
d

gcd(d,e) ≡ 1
d

gcd(d,e) ≡ 1 (n).
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10.2 Another proof of Fermat’s little theorem

Let’s give a different proof of Fermat’s little theorem which makes use of the binomial theorem.

Theorem 10.2.1 (Binomial theorem). In Z[x, y] (the polynomial ring over Z in two variables) we
have

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−i

where
(
n
i

)
= n!

i!(n−i)! .

This result has been stated for polynomials in two variables and this implies the result in any
commutative ring. [In grown up talk, this is because Z[x, y] is the free ring on two variables but
don’t worry about this now.] That is, if R is a commutative ring and x, y ∈ R, then (x + y)n can
be expressed in the same way.

Lemma 10.2.2. If p ∈ N is prime and i ∈ {1, 2, . . . , p− 1}, then p divides
(
p
i

)
.

Proof. We use the “fundamental theorem of arithmetic” which says that any natural number can
be factored uniquely into primes. We’ll prove this in section 14.

p|p! and so p appears in the prime decomposition of p!. Since
(
p
i

)
∈ N we have i!(p − i)!|p!. p

does not appear in the prime decomposition of i!(p − i)! since, by definition of factorial, we have
expressed it as a product of numbers less than p. Thus, p still appears in the prime decomposition
of
(
p
i

)
= p!

i!(p−i)! .

Corollary 10.2.3 (Freshman dream). In Z/p[x, y] we have (x+ y)p = xp + yp.

As for the binomial theorem, we stated this for polynomials in two variables (defined over Z/p).
This is because it implies the result for any ring in which adding an element to itself p times gives
0. [In grown up talk, this is because Z/p[x, y] is the free ring of characteristic p on two variables
but don’t worry about this now.]

Theorem 10.2.4 (Fermat’s little theorem). Suppose x ∈ Z. Then xp ≡ x (mod p).

Proof. It is enough to check the result for x ∈ N, since any x ∈ Z is congruent to some y ∈ N.
The result is true for 0 and 1 so we proceed by induction. Suppose that xp ≡ x (mod p). Then

(x+ 1)p ≡ xp + 1p ≡ x+ 1 (mod p)

where the first congruence is the freshman dream, and the second is the inductive hypothesis. This
completes the proof.
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10.3 A tiny bit of group theory

Definition 10.3.1. A group G is a set equipped with a multiplication

∗ : G×G −→ G, (g, h) 7−→ g ∗ h

satisfying the following three axioms.

• (G1) g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3 ∈ G (associativity)

• (G2) there is an element e with the property that g ∗ e = g = e ∗ g for all g ∈ G (identity)

• (G3) for each g ∈ G there is an element h ∈ G such that g ∗ h = e = h ∗ g (inverses).

We say a group is abelian is g ∗ h = h ∗ g for all g, h ∈ G.

Example 10.3.2.

1. Let Σn = {σ : {1, . . . , n} −→ {1, . . . , n} : σ is a bijection}. Then (Σn, ◦) is a group.

2. Let R(�) = {rotations of a cube}. This is a group because we can do one rotation followed
by another and we still get a rotation. In fact, R(�) is basically the same as Σ4: follow what
happens to the diagonals of the cube under a rotation.

3. Let R(∆) = {rotations of a tetrahedron}. In fact, R(∆) is the same as something called A4,
which lives inside Σ4: follow what happens to the vertices of the tetrahedron under a rotation.

More relevant for us is the following example.

Example 10.3.3. 1. Suppose R is a ring. Then (R,+) is an abelian group.

2. Suppose R is a ring. Let U(R) = {u ∈ R : u is a unit in R}. Then (U(R), ·) is a group. If R
is a commutative ring then (U(R), ·) is an abelian group.

Theorem 10.3.4 (Lagrange). Suppose G is a finite group, that |G| = n and g ∈ G. Then gn = e.

Since ϕ(n) = |U(Z/n)| we obtain Euler’s theorem as a corollary.

Corollary 10.3.5 (Euler’s theorem). Suppose [x]n ∈ U(Z/n). Then [x]
ϕ(n)
n = 1.
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11 The chinese remainder theorem

11.1 Z/6 ∼= Z/2× Z/3

Here is the multiplication table for Z/6.

· 0 1 2 3 −2 −1

0 0 0 0 0 0 0

1 0 1 2 3 −2 −1

2 0 2 −2 0 2 −2

3 0 3 0 3 0 3

−2 0 −2 2 0 −2 2

−1 0 −1 −2 3 2 1

Let’s relabel the elements.

0 7−→ (0, 0), 1 7−→ (1, 1), 2 7−→ (0,−1), 3 7−→ (1, 0), −2 7−→ (0, 1), −1 7−→ (1,−1).

We get

· (0, 0) (1, 1) (0,−1) (1, 0) (0, 1) (1,−1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(1, 1) (0, 0) (1, 1) (0,−1) (1, 0) (0, 1) (1,−1)

(0,−1) (0, 0) (0,−1) (0, 1) (0, 0) (0,−1) (0, 1)

(1, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)

(0, 1) (0, 0) (0, 1) (0,−1) (0, 0) (0, 1) (0,−1)

(1,−1) (0, 0) (1,−1) (0, 1) (1, 0) (0,−1) (1, 1)

This is the multiplication table for Z/2× Z/3.
You can check that the same thing happens with the addition tables. Z/6 is basically the same

as Z/2× Z/3.

11.2 Z/4 6∼= Z/2× Z/2

The previous example might make you believe that Z/mn ∼= Z/m × Z/n. In general, this is not
true. Take any element of Z/2×Z/2 and add it to itself; you get zero. That is, for all x ∈ Z/2×Z/2

x+ x = 0.

The element 1 ∈ Z/4, has 1 + 1 6= 0. So Z/4 is not the same as Z/2× Z/2.
Let’s do one more example to try and spot a pattern.
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11.3 Z/12 ⊂ Z/4× Z/6

Here is a quarter of the multiplication table for Z/12.

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 −4 −2 0

3 0 3 6 −3 0 3 6

4 0 4 −4 0 4 −4 0

5 0 5 −2 3 −4 1 6

6 0 6 0 6 0 6 0

Let’s relabel the elements

0 7−→ (0, 0), 1 7−→ (1, 1), 2 7−→ (2, 2), 3 7−→ (−1, 3), 4 7−→ (0,−2), 5 7−→ (1,−1),

6 7−→ (2, 0), 7 7−→ (−1, 1), 8 7−→ (0, 2), 9 7−→ (1, 3), 10 7−→ (2,−2), 11 7−→ (−1,−1).

We get a sub-table of the multiplication table for Z/4× Z/6. Z/12 is basically the same as{
([a]4, [b]6) ∈ Z/4× Z/6 : 2|(a− b)

}
.

Notice that 12 = 4·6
gcd(4,6) and 2 = gcd(4, 6). This will make more sense shortly (11.4.3).

11.4 Congruences

Suppose that we wish to solve the congruences

x ≡ a (mod m)

x ≡ b (mod n).

If x ∈ Z is a solution then

x = a+ cm

x = b+ dn

for some c, d ∈ Z. So a+cm = b+dn giving a−b = dn−cm. Bezout tells us that gcd(m,n)|(a−b).
Moreover, if gcd(m,n)|(a− b) such c, d ∈ Z exist and we can solve the congruences.

If x′ ∈ Z is another solution to the congruences, then y = x− x′ satisfies the congruences

y ≡ 0 (mod m)

y ≡ 0 (mod n).

This says that m|y and n|y. By writing m, n, and y out in their prime decompositions (see section
14), we conclude that mn

gcd(m,n) |y. If this bothers you, you can read the proof of the following lemma

(shout out, Songlin).

34



Lemma 11.4.1. Suppose m,n, x ∈ Z, m|x, and n|x. Then mn
gcd(m,n) |x.

Proof. Since m|x we have an a ∈ Z so that x = ma and because n|x = ma this gives

n

gcd(m,n)

∣∣∣∣ m

gcd(m,n)
a.

Using corollary 8.1.1 followed by proposition 9.1.5 we obtain

gcd

(
m

gcd(m,n)
,

n

gcd(m,n)

)
= 1

and n
gcd(m,n) |a, and so there is a b ∈ Z with a = n

gcd(m,n)b. We conclude that x = ma = mn
gcd(m,n)b,

i.e mn
gcd(m,n) |x.

We have proved the following theorem.

Theorem 11.4.2 (Chinese remainder theorem (Sun Ze)). Suppose we wish to solve the congruences

x ≡ a (mod m)

x ≡ b (mod n).

A solution exists if and only if gcd(m,n)|(a− b) and in this case it can be found using the extended
Euclidean algorithm.

If x and x′ are two solutions to the congruences then

x ≡ x′
(

mod
mn

gcd(m,n)

)
.

This relates to the previous examples Z/6 ∼= Z/2×Z/3 and Z/12 ⊂ Z/4×Z/6 in the following
way.

Theorem 11.4.3 (Chinese remainder theorem (alternative statement)). Let m,n ∈ N and

l =
mn

gcd(m,n)
.

The function Z/l −→ Z/m× Z/n, [x]l 7−→ ([x]m, [x]n) is well-defined, has range

{([a]m, [b]n) : gcd(m,n)|(a− b)}

and is one-to-one.

Corollary 11.4.4 (Chinese remainder theorem). Suppose that m and n are coprime then Z/mn ∼=
Z/m×Z/n. In particular, x ≡ a (mod mn) if and only if x ≡ a (mod m) and x ≡ a (mod n). Also,

ϕ(mn) = ϕ(m)ϕ(n).

Everything just said works for polynomials too. We might need this later.
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Theorem 11.4.5 (Chinese remainder theorem for polynomials). Suppose that we wish to solve the
congruences

f(x) ≡ a(x) (mod p(x))

f(x) ≡ b(x) (mod q(x)).

A solution exists if and only if gcd(p(x), q(x))|(a(x)− b(x)) and in this case it can be found using
the extended Euclidean algorithm.

If f0(x) and f1(x) are two solutions to the congruences then

f0(x) ≡ f1(x)

(
mod

p(x)q(x)

gcd(p(x), q(x))

)
.

11.5 Examples

I truly messed up the following example in class. I’m sorry about this.

Example 11.5.1. Solve the congruences

x ≡ 3 (mod 13)

x ≡ 4 (mod 17).

For a solution to exist we need gcd(13, 17)|(4− 3). This is fine since 1|1.
In the previous subsection we said that we can use the extended Euclidean algorithm to find a

solution. Let’s see this in action.

17 = 1 · 13 + 4

13 = 3 · 4 + 1

4 = 4 · 1 + 0

demonstrates that gcd(13, 17) = 1. We also obtain

4 = 17− 13

1 = 13− 3 · 4

so that 1 = 13− 3(17− 13) = 4 · 13− 3 · 17, the Bezout identity.
This is the point in lectures where I spaced out and became confused because a new 3 and 4

have shown up, different to the 3 and 4 in the original congruences we wish to solve. We note that

4− 3 = 1 = 4 · 13− 3 · 17

so that 3 + 4 · 13 = 4 + 3 · 17. Let

x = 55 = 3 + 4 · 13 = 4 + 3 · 17.

Then x ≡ 3 (13) and x ≡ 4 (17). Since 13·17
gcd(13,17) = 221 the solution is unique up to a multiple of

221, i.e. all the solutions are of the form

x = 55 + 221k for k ∈ Z.

36



Example 11.5.2. Solve the congruences

x ≡ 3 (mod 13)

x ≡ 4 (mod 17).

Normally when you solve simultaneous equations you try substituting one equation into the other.
We can do that here. Solutions to the second equation are of the form 4 + 17n. So we can try and
solve

4 + 17n ≡ 3 (mod 13).

This is equivalent to 4n ≡ −1 (mod 13). We see that n ≡ 3 (mod 13) so 17n ≡ 17 · 3 (mod 13 · 17)
and

x ≡ 4 + 17 · 3 ≡ 55 (mod 221).

Let’s do another example.

Example 11.5.3. Solve

x ≡ 2 (mod 35)

x ≡ 23 (mod 49).

For a solution to exist we need gcd(35, 49)|(23− 2). This is fine since 7|21.
The Euclidean algorithm for gcd(35, 49) looks as follows.

49 = 1 · 35 + 14

35 = 2 · 14 + 7

14 = 2 · 7 + 0.

Thus,

14 = 49− 35

7 = 35− 2 · 14,

which gives 7 = 35− 2(49− 35) = 3 · 35− 2 · 49, the Bezout identity.
This allows us to write

23− 2 = 3 · 7 = 9 · 35− 6 · 49

so that 2 + 9 · 35 = 23 + 6 · 49. Let

x = 317 = 2 + 9 · 35 = 23 + 6 · 49.

Then x ≡ 2 (35) and x ≡ 23 (49). Since 35·49
gcd(35,49) = 245 the solution is unique up to a multiple of

245. Making use of the fact that 317− 245 = 72 we see that all solutions are of the form

72 + 245k for k ∈ Z.

Example 11.5.4. Solve

x ≡ 2 (mod 35)

x ≡ 23 (mod 49).

We need to solve 23+49n ≡ 2 (mod 35). This is equivalent to 14n ≡ 14 (mod 35). So n ≡ 1 (mod 5)
works (notice the 35 changed to a 5, since 14 · 5 ≡ 0 (mod 35)). Thus,

x ≡ 23 + 49n ≡ 23 + 49 ≡ 72 (mod 245).
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Example 11.5.5. Find all the solutions to the following congruences

x ≡ 2 (mod 12)

x ≡ 8 (mod 10)

x ≡ 9 (mod 13).

We ignore the third one for now. We can solve the first two since gcd(10, 12) = 2, 8 − 2 = 6 and
2|6. We run the extended Euclidean algorithm (which is very short in this case) to write

2 = 12− 10.

Thus, 8− 2 = 3 · 12− 3 · 10 giving x = 38 = 2 + 3 · 12 = 8 + 3 · 10 as a solution. Since 10·12
gcd(10,12) = 60

we see that all solutions of the first two congruences are given by

x = 38 + 60k for k ∈ Z.

In particular, we can replace the first two congruences by x ≡ 38 (mod 60), so we now have to solve

x ≡ 38 (mod 60)

x ≡ 9 (mod 13).

Since gcd(60, 13) = 1, 38− 9 = 29 and 1|29, this is possible.
We could run the extended Euclidean algorithm to write 1 = 5 · 60 − 23 · 13, giving 38 − 9 =

(29 · 5) · 60 − (29 · 23) · 13. We would obtain x = −8662 = 38 − (29 · 5) · 60 = 9 − (29 · 23) · 13 as
a solution. Since 13·60

gcd(13,60) = 780 and 698 = −8662 + 780 · 12 we see that 698 + 780k for k ∈ Z are
the solutions.

Alternatively, solving these last two congruences is equivalent to finding an n ∈ Z such that
38 + 60n ≡ 9 (mod 13). This is the same as solving −1− 5n ≡ −4 (mod 13), which rearranges to
5n ≡ 3 (mod 13). Multiplying by −5 gives n ≡ −2 (mod 13), so that x = 38 − 60 · 2 = −82 is a
solution. Since −82 + 780 = 698 this agrees with above.
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12 RSA

RSA is a cryptosystem. Suppose two parties, call them Alice and Bob, wish to send messages back
and forth to each other and want to be be incomprehensible to a third party, say Eve. We may as
well assume our messages consist of numbers.

12.1 The procedure

Bob does the following:

• He chooses two different large prime numbers p and q.

• He lets m (the modulus) be the product of the primes pq.

• He chooses a fairly small number e > 0 (the encrypting exponent) which is coprime to ϕ(m).

• He finds a number d > 0 (the decrypting exponent) such that ed ≡ 1 (mod ϕ(m)).

• He tells Alice m and e but keeps everything else secret.

Alice does the following:

• Alice has a message that consists of a sequence of numerical words. What we mean by this
is that each “word” is a number w ∈ {0, 1, . . . ,m− 1}.

• To encrypt the word w she finds a number c ∈ {0, 1, . . . ,m− 1} such that

c ≡ we (mod m).

• She sends Bob the encrypted words.

Bob does the following:

• For each encrypted word c which Bob recieves from Alice he finds a number

w′ ∈ {0, 1, . . . ,m− 1}

such that
w′ ≡ cd (mod m).

• As if by magic, it turns out that w′ = w.

12.2 An example

Let’s do an example with smaller numbers than would be used in reality.

Example 12.2.1. Bob lets p = 7 and q = 11, so that m = 77. We have ϕ(77) = 60. He chooses
e = 7, and finds d = 43. He tells Alice that m = 77 and e = 7.

Alice wishes to send the one word message w = 2 so she calculates

c = 27 = 128 ≡ 51 (mod 77)
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and sends Bob her encrypted word 51.
Bob wishes to decrypt Alices message and so needs to calculate 5143 modulo 77. Bob realizes

that the Chinese remainder theorem and Fermat’s Little Theorem makes his calculation easier. He
finds

5143 ≡ 243 ≡ (26)7 · 2 ≡ 1 · 2 ≡ 2 (mod 7)

5143 ≡ (−4)43 = ((−4)10)4 · (−4)3 ≡ 1 · 2 ≡ 2 (mod 11)

and so w′ = 2. This is precisely the message Alice sent him.

12.3 Checking that the RSA decryption works

The proof that RSA works. Let’s carefully examine the procedure. So let p, q,m, e, d, w, c, w′ be as
in section 12.1.

The first bit of math Bob has to do is to find a number d such that ed ≡ 1 (mod ϕ(m)). This
is possible since he chooses e to be coprime to ϕ(m) and this ensures [e]ϕ(m) is a unit in Z/ϕ(m).

We just need to check that the decryption works out. Since ed ≡ 1 (mod ϕ(m)) there is a k ∈ Z
such that

ed = 1 + ϕ(m)k.

Thus,
w′ ≡ cd ≡ (we)d ≡ w1+ϕ(m)k (mod m).

Since w,w′ ∈ {0, 1, . . . ,m− 1}, we just have to show that w1+ϕ(m)k ≡ w (mod m).
The Chinese remainder theorem tells us two things:

1. ϕ(m) = (p− 1)(q − 1);

2. it is enough to check w1+ϕ(m)k ≡ w (mod p) and w1+ϕ(m)k ≡ w (mod q).

The requisite congruences follow from Fermat’s Little Theorem since

w1+ϕ(m)k = w1+(p−1)(q−1)k = w · (wp−1)(q−1)k ≡ w (mod p);

w1+ϕ(m)k = w1+(p−1)(q−1)k = w · (wq−1)(p−1)k ≡ w (mod q).

12.4 Why is RSA effective?

It is often the case that Bob will wish to receive messages from different people, and he will actually
give out the numbers m and e to the public. If Alice sends Bob a message and Eve intercepts it,
what does Eve need to do to decrypt the message?

• Eve needs to find the e-th root of c. She can do this as long as she can find d, the decrypting
exponent.

• To find d, Eve would need to solve the congruence ed ≡ 1 (mod ϕ(m)).

• To solve such a congruence Eve would need to know ϕ(m).

– If p and q are large, then m is large and finding ϕ(m) by counting would take too long.

– If Eve could find p and q she would know ϕ(m), but factoring large numbers into primes
is also difficult.
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12.5 Other examples

Example 12.5.1. Bob decides on p = 11, q = 17, so that m = 187. ϕ(m) = 10 · 16 = 160, and he
chooses e = 3. Bob calculates d using a short extended Eucidean algorithm.

160 = 53 · 3 + 1

so 3 · (−53) ≡ 1 (mod 160) and he takes d = 160− 53 = 107.
Alice wants to send Bob w = 127 so she calculates

c ≡ 1273 ≡ (−60)3 ≡ −216, 000 ≡ −216, 000 + 1156 · 187 ≡ 172 (mod 187)

and transmits 172 to Bob.
Bob decodes using the Chinese remainder theorem and Fermat’s Little Theorem.

172107 ≡ (−4)7 ≡ (−4)(−4)2(−4)4 ≡ −4 · 5 · 3 ≡ −5 (mod 11),

172107 ≡ 211 ≡ 2 · 22 · 28 ≡ 2 · 4 · 1 ≡ 8 (mod 17),

and 8 + 17n ≡ −5 (mod 11) gives n ≡ 7 (mod 11) so that

172107 ≡ 8 + 17 · 7 ≡ 127 (mod 187).

He concludes that Alice’s message is 127.

Example 12.5.2. Bob decides on p = 23, q = 29, so that m = 667. ϕ(m) = 22 · 28 = 616, and he
chooses e = 5. Bob calculates d using a short extended Euclidean algorithm.

616 = 5 · 123 + 1.

So 5 · (−123) (mod 616) and he takes d = 616− 123 = 493.
Alice encrypts her word w using e and sends Bob c = 168.
Bob decodes using the Chinese remainder theorem and Fermat’s little theorem.

168493 ≡ 79 ≡ 7 · 78 ≡ 7 · 12 ≡ 15 (mod 23),

168493 ≡ (−6)17 ≡ −6 · 616 ≡ −6 · 7 ≡ 16 (mod 29);

16 + 29n ≡ 15 (mod 23) gives 6n ≡ −1 (mod 23) and n ≡ −4 (mod 23) so that

168493 ≡ 16 + 29 · (−4) ≡ −100 ≡ 567 (mod 667).

He concludes that Alice’s message is 567.
The calculation Alice must have done is

5675 ≡ (−100)5 ≡ −10, 000, 000, 000 ≡ 168 (mod 667).
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12.6 The not-crazy-hard part of Shor’s algorithm for cracking RSA

We have described why RSA is difficult to decrypt: doing so depends on factoring numbers which is
very difficult. However, there is an algorithm due to Peter Shor making use of quantum computers
(they don’t exist yet) that would destroy the safe encryption that RSA attempts to guarantee.

Here’s the important theorem.

Theorem 12.6.1. Suppose that p and q are distinct primes and that m = pq. Suppose, in addition,
that gcd(x,m) = 1, that ordm(x) = 2k and that xk + 1 6≡ 0 (mod m). Then either

gcd(xk − 1,m) = p or gcd(xk − 1,m) = q.

Proof. Since ordm(x) = 2k we know that x2k ≡ 1 (mod m) and so

x2k ≡ 1 (mod p)

x2k ≡ 1 (mod q).

Thus,

(xk − 1)(xk + 1) ≡ 0 (mod p)

(xk − 1)(xk + 1) ≡ 0 (mod q),

and since Z/p and Z/q are fields we obtain

xk ≡ ±1 (mod p)

xk ≡ ±1 (mod q).

We cannot have

xk ≡ −1 (mod p)

xk ≡ −1 (mod q)

since, in this case, the Chinese remainder theorem would give xk ≡ −1 (mod m), but we supposed
that xk + 1 6≡ 0 (mod m).

If xk ≡ 1 (mod p) then we see that p|(xk−1). If xk ≡ 1 (mod q) then we see that q|(xk−1). Since
p, q|m we conclude that either p| gcd(xk−1,m) or q| gcd(xk−1,m). We cannot havem| gcd(xk−1,m)
since this would tell us that m|(xk − 1) and thus xk ≡ 1 (mod m); this would contradict the fact
that ordm(x) = 2k.
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Peter Shor’s algorithm for factoring m = pq is approximately as follows.

1. Pick x ∈ {2, 3, . . . ,m− 2} at random.

If gcd(x,m) = p or q, then you have won. If gcd(x,m) = 1, continue to step 2.

2. Calculate ordm(x) and continue to step 3.

3. If ordm(x) is odd, go back to step 1. If ordm(x) = 2k, continue to step 4.

4. If xk + 1 ≡ 0 (mod m), go back to step 1.

If xk + 1 6≡ 0 (mod m), then gcd(xk − 1,m) = p or q, and you have won.

Step 1 uses the Euclidean algorithm, step 2 requires a difficult quantum computer algorithm to run
in a reasonable speed, step 3 uses nothing, and step 4 uses the Euclidean algorithm.

Example 12.6.2. Suppose we wish to factor 21 and the random number we pick is 2. Then

1. gcd(2, 21) = 1.

2. 21 = 2, 22 = 4, 23 = 8, 24 ≡ −5 (mod 21), 25 ≡ −10 (mod 21), 26 ≡ 1 (mod 21). So
ord21(2) = 6.

3. ord21(2) = 2 · 3.

4. 23 + 1 = 9 6≡ 0 (mod 21). We find that

gcd(23 − 1, 21) = 7

and factor 21 = 3 · 7.

12.7 Pollard’s p− 1 algorithm

Another factoring algorithm that doesn’t require a quantum computer is Pollard’s (p−1) algorithm.
The reason it does not render RSA unsafe is that it is only effective when (p− 1) has small prime
factors.

Pollard’s (p − 1) algorithm makes use of Fermat’s Little Theorem, in particular, the following
corollary to Fermat’s Little Theorem.

Corollary 12.7.1. Suppose p is an odd prime factor of m and (p−1)|B. Then gcd(2B−1,m) > 1.

Proof. Since 2 6≡ 0 (mod p) Fermat’s Little Theorem tells us that 2p−1 ≡ 1 (mod p) and because
(p− 1)|B, we obtain

2B ≡ 1 (mod p).

This says that p|(2B − 1) and so p| gcd(2B − 1,m).

Definition 12.7.2. Let k ∈ N with k ≥ 2. We say that a number m is k-smooth if every prime
divisor of m is less than or equal to k.
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Example 12.7.3.

180 = 22 · 32 · 5
181 = 181

182 = 2 · 7 · 13

183 = 3 · 61

184 = 23 · 23

185 = 5 · 37

186 = 2 · 3 · 31

187 = 11 · 17

188 = 22 · 47

189 = 33 · 7
190 = 2 · 5 · 19

None are 2-smooth or 3-smooth. 180 is 5-smooth. 180 and 189 are 7-smooth.
180, 182, 187, 189 and 190 are 19-smooth.

Definition 12.7.4. Let em,q ∈ N ∪ {0} be defined by the property that qem,q ≤ m < qem,q+1 and
let

Bm,k =
∏

q prime, q≤k
qem,q .

In words, Bm,k is the product of all prime powers qe where q ≤ k and qe ≤ m < qe+1.

Lemma 12.7.5. If p is a prime factor of m and p− 1 is k-smooth, then (p− 1)|Bm,k.

Proof. We have to make use of the fundamental theorem of arithmetic which is proved in section
14. Let q be a prime with q|(p− 1). Since p− 1 is k-smooth we have q ≤ k. Moreover,

p− 1 < m < qem,q+1

so that if qe|(p− 1), we have e ≤ em,q and so qe|Bm,k.

Theorem 12.7.6. If p is an odd prime factor of m and p− 1 is k-smooth. Then

gcd(2Bm,k − 1,m) > 1.

Proof. The previous lemma says that (p − 1)|Bm,k and so the first lemma of the subsection says
that gcd(2Bm,k − 1,m) > 1.

Pollard’s (p− 1) algorithm for finding a factor of m is as follows.

1. Pick some smoothness bound k.

2. Find x ∈ {0, 1, . . . ,m− 1} with x ≡ 2Bm,k (mod m).

3. Calculate gcd(x− 1,m).

Step 2 is a quick calculation on a computer by writing the exponent in base 2. Step 3 is a quick
calculation on a computer when one uses the Euclidean algorithm. Take a look at pages 215 and
216 of the textbook for examples.
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13 Diffie-Hellman and El Gamal

If you like the previous cryptography material then you should look up the Diffie-Hellman and El
Gamal schemes. They make use of the fact that calculating the discrete logarithm

logb : U(Z/p) −→ Z/(p− 1)

is difficult. Here b must be an element with ordp(b) = p − 1 (the existence of such an element is
part of the primitive element theorem) and I have mentioned this to some of you in office hours.

These are interesting topics, but I have decided that, since we spent a while experimenting with
finite fields at the beginning of the class, it might be fun to see some applications of them instead.
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14 Unique factorization

14.1 Irreducibles and primes

In order to talk about factoring natural numbers into primes we first have to define primes. In a
commutative ring there are at least two sensible definitions one can make. The term irreducible is
motivated by the fact that a natural number prime can not be factored any further except in the
trivial way by using 1. The second is motivated by a property that natural number primes p have:
if p|ab then either p|a or p|b (Euclid’s lemma).

Definition 14.1.1. Suppose R is a commutative ring and that a ∈ R is non-zero and non-unital.

1. a is said to be irreducible if whenever a = bc either b or c is a unit.

2. a is said to be prime if whenever a|bc then either a|b or a|c.

As long as we can cancel, primes are irreducible.

Proposition 14.1.2. In an integral domain primes are irreducible.

Proof. Let R be an integral domain, and suppose a ∈ R is prime. We wish to show a is irreducible,
so suppose that a = bc. We wish to show that either b or c is a unit.

Since a = bc, we trivially have a|bc and so, because a is prime, either a|b or a|c. Suppose without
loss of generality that a|b. This means that there is a d ∈ R with b = ad. Then a = bc = (ad)c =
a(dc) so that a(1− dc) = 0. Since a is prime, a 6= 0. Since R is an integral domain, we deduce that
1− dc = 0, i.e. dc = 1, and so c is a unit.

Lemma 14.1.3. Suppose R is a commutative ring, that a, b ∈ R, that a is irreducible, and that a
does not divide b. Then a and b are coprime.

Proof. We have to show that 1 is a gcd of a, b.

1. That 1|a and 1|b is clear;

2. Suppose c|a and c|b. The first division says that a = cd for some d ∈ R. Since a is irreducible
we deduce that either c is a unit or that d is a unit. If c is a unit we get c|1, what we want.
If d is a unit, c is an associate of a, and, because c|b, this gives a|b, a contradiction.

Theorem 14.1.4. Suppose that either R = Z, or R = F [x] for some field F , and that a ∈ R is
irreducible. Then a is prime.

Proof. Suppose that a|bc and that a does not divide b; we wish to show that a|c. By proposition
9.1.5, it is enough to show that a and b are coprime. The previous lemma finishes the proof.

In all of the following examples primes and irreducibles coincide by the previous theorem.

Example 14.1.5. In Z the primes are ±2,±3,±5,±7,±11,±13,±17, . . .

Example 14.1.6. In Q[x], x− 1, x2 − 2, x2 + 1, x2 + x+ 1 are some irreducibles.

Example 14.1.7. In Z/2[x] the irreducibles of degree less than or equal to 2 are x, x+1, x2+x+1.
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It was necessary to prove the previous two theorems carefully as the following remark shows.

Remark 14.1.8. There are strange integral domains where irreducibles are not necessarily primes.
Here is an example. Let R = Z[

√
−3] = {x+ y

√
−3 : x, y ∈ Z} and let

a = 2, b = 1 +
√
−3, c = 1−

√
−3.

We have 2|4 = bc, and yet 2 does not divide b or c. Thus 2 is not prime. However, 2 is irreducible
(exercise).

Remark 14.1.9. There are commutative rings where primes are not necessarily irreducible. Z/6 is
an example. 2 is prime. This because the multiples of 2 are {−2, 0, 2} and the only way to express
these as products is as follows.

−2 = 1 · (−2) = (−1) · 2 = 2 · 2
0 = 0 · 0 = 0 · (±1) = 0 · (±2) = 0 · 3 = (±2) · 3
2 = 1 · 2 = (−1) · (−2) = 2 · (−2)

This also shows 2 is not irreducible, since 2 = 2 · (−2). (Shout out, Sitara.)

14.2 Euclidean domains are unique factorization domains

We finally come to factorizing elements into their prime decomposition.

Definition 14.2.1. Let R be an integral domain. We say that R is a unique factorization domain
if the following two conditions hold.

1. Whenever a ∈ R is non-zero and non-unital there exist irreducible elements b1, . . . , bn ∈ R
such that

a = b1 · · · bn.

2. If b1, . . . bn, c1, . . . cm ∈ R are irreducible with

b1 · · · bn = c1 · · · cm

then n = m and there exists a permutation σ : {1, . . . , n} → {1, . . . , n} such that bk and cσ(k)
are associates for each k ∈ {1, . . . , n}.

Theorem 14.2.2. Z is a unique factorization domain.

Proof. First, we verify existence of factorizations: let n ∈ Z be non-zero and non-unital; we must
show that n can be written as a finite product of irreducibles. We induct on |n|. The cases |n| = 0
and |n| = 1 are not relevant since we took n to be non-zero and non-unital. The base case is when
|n| = 2, which follows since ±2 are irreducible, so suppose |n| > 2. If n is irreducible we are done.
If n is not irreducible, then we can write n = lm where neither l or m is a unit; this means that
|l|, |m| > 1, and so |l|, |m| < |n|, and the result follows by induction.

We now turn to showing the uniqueness of such a factorization. Let b1, . . . bn, c1, . . . cm ∈ Z be
irreducibles with

b1 · · · bn = c1 · · · cm.
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Since b1 is irreducible, it is prime (theorem 14.1.4). Because b1|b1 · · · bn = c1 · · · cm we see that b1|cj
for some j ∈ {1, . . . ,m}. By reordering we can assume b1|c1. So c1 = b1u for some u ∈ Z, which
must necessarily be a unit as c1 is irreducible and b1 is not a unit. We can now cancel b1 to obtain

b2 · · · bn = ±c2 · · · cm

and continuing in this way gives the result.

Theorem 14.2.3. Let F be a field. Then F [x] is a unique factorization domain.

Proof. First, we verify the existence of factorizations: let f(x) ∈ F [x] be non-zero and non-unital;
we must show that f(x) can be written as a finite product of irreducibles. We induct on deg f(x).
The case deg f(x) = 0 is not relevant since we took f(x) to be non-zero and non-unital. The base
case is when deg f(x) = 1, in which case f(x) is irreducible, so suppose deg f(x) > 1. If f(x) is
irreducible we are done. If f(x) is not irreducible, then we can write f(x) = g(x)h(x) where neither
g(x) or h(x) is a unit; this means that deg g(x), deg h(x) > 0, and so deg g(x), deg h(x) < deg f(x),
and the result follows by induction.

The proof of uniqueness is the same as for Z. The main point is that it also uses theorem 14.1.4
to say irreducibles are prime.

Example 14.2.4. If one examines the previous proofs, one sees we used the Euclidean functions for
Z and F [x] to justify the existence of a factorization. The uniqueness used the fact that irreducibles
are prime, which depended on the existence of gcds and Bezout’s identity. One can imagine a place
where Bezout’s identity works so that factorizations are unique if they exist, but where it is possible
that factorizations do not exist. Consider{

f(x) =

∞∑
n=0

anx
n : f(x) has infinite radius of convergence

}
.

This is such a ring. Since exp(x) can be factored more and more

exp(x) = exp

(
x

2

)
· exp

(
x

2

)
= exp

(
x

2

)
· exp

(
x

4

)
· exp

(
x

4

)
= · · ·

factorizations do not necessarily exist. However, (I have not checked this) it is a Bezout domain.
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14.3 The Gaussian integers Z[i]

Consider the following subset of the complex numbers

Z[i] = {x+ yi : x, y ∈ Z}.

The addition and multiplication of complex numbers make Z[i] into a commutative ring. Moreover,
Z[i] is an integral domain.

Definition 14.3.1. Elements of the commutative ring Z[i] are called Gaussian integers. We define

d : Z[i] −→ N ∪ {0}

by d(a) = aa = |a|2.

Lemma 14.3.2. For a, b ∈ Z[i], d(ab)=d(a)d(b).

Proof. This follows from the facts that C is a commutative ring and that ab = ab.

Lemma 14.3.3. The units in Z[i] are 1,−1, i,−i.

Proof. Suppose that ab = 1. Then d(a)d(b) = d(ab) = d(1) = 1. Thus d(a) = 1 and

a = 1,−1, i, or − i.

Theorem 14.3.4. The Gaussian integers form a Euclidean domain.

Proof. We just have to show that if a, b ∈ Z[i] with b 6= 0, then there exist q, r ∈ Z[i] with a = qb+r
and d(r) < d(b).

Let a, b ∈ Z[i] with b 6= 0. Since a, b ∈ C we can consider a
b ∈ C. Choose q ∈ Z[i] with∣∣∣∣ab − q

∣∣∣∣2 ≤ 1

2

and let r = a− qb. Then it is automatic that a = qb+ r. Moreover,

d(r) = |r|2 = |a− qb|2 =

∣∣∣∣ab · b− q · b
∣∣∣∣2 =

∣∣∣∣ab − q
∣∣∣∣2 · |b|2 =

∣∣∣∣ab − q
∣∣∣∣2 · d(b) ≤ d(b)

2
< d(b).

Because Z[i] is a Euclidean domain, there is a Euclidean algorithm, gcd’s make sense, Bezout’s
theorem holds, and proposition 9.1.5 (Euclid’s lemma) is true. Moreover, theorem 14.1.4 holds for
Z[i] too: that is, irreducibles are primes.

Definition 14.3.5. If an element a ∈ Z[i] is prime (equivalently irreducible) then we say that a is
a Gaussian prime.

Example 14.3.6. 2 is prime when considered as an element of Z. We say it is a rational prime.
It is not a Gaussian prime, because it is not irreducible:

2 = (1− i)(1 + i) = −i(1 + i)2 = i(1− i)2.

49



Example 14.3.7. It turns out that the rational primes 3, 7, 11, 19, 23, 31, are all Gaussian primes.
What is so special about them? You’ll see on the homework.

Example 14.3.8. The rational primes 5, 13, 17, 29, 37, 41 are not Gaussian primes since

5 = 12 + 22 = (1− 2i)(1 + 2i)

13 = 22 + 32 = (2− 3i)(2 + 3i)

17 = 12 + 42 = (1− 4i)(1 + 4i)

29 = 22 + 52 = (2− 5i)(2 + 5i)

37 = 12 + 62 = (1− 6i)(1 + 6i)

41 = 42 + 52 = (4− 5i)(4 + 5i)

Theorem 14.3.9. Suppose a ∈ Z[i] and that d(a) is a prime in Z. Then a is a Gaussian prime.

Proof. Suppose that a = bc so d(a) = d(bc) = d(b)d(c). Because d(a) is a prime in Z, it is non-zero
and non-unital and either d(b) = 1 or d(c) = 1. This means that a is non-zero and non-unital and
either b is a unit or c is a unit. Thus, a is irreducible.

Example 14.3.10. The factors appearing above are Gaussian primes. That is,

1± 2i, 2± 3i, 1± 4i, 2± 5i, 1± 6i, 4± 5i

are Gaussian primes.

Theorem 14.3.11. Z[i] is a unique factorization domain.

Proof. The same as for Z inducting on |x|2 instead of |x| (which is not always an integer).

Example 14.3.12. Suppose we wish to factor a = 3 + 21i. Here’s a trick for hunting down the
prime factors. Notice that

aa = 32 + 212 = 450 = 2 · 32 · 52 = i(1− i)2 · 32 · (1− 2i)2(1 + 2i)2.

This tells us that the possible prime factors of a are (1− i), 3, (1− 2i) and 1 + 2i. We see that

a = 3(1 + 7i).

Then we spot (by thinking about arguments, maybe) that 1 + 7i = (1− i)(1 + 2i)2 so that

a = 3(1− i)(1 + 2i)2.
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15 BCH codes

Suppose we are trying to transmit messages consisting of zeros and ones, but, due to noise, it is
likely that there will be errors in our transmission. However, suppose we know that with very high
probability there will be at most t errors in our transmitted message. Can we think of a way to
send enough data that our original message can be recovered, regardless of whether there are 0, 1,
. . . , t − 1, or t errors? BCH codes answer this question with a big fat “yes.” Moreover, the “big
fat yes” does something more efficient than writing out our message (2t+ 1) times.

15.1 Sending four bits and accounting for up to one error

Suppose we are trying to transmit messages consisting of four bits (four numbers which are either
zero or one), but, due to noise, it is likely that there will be errors in our transmission. However,
suppose we know that there will be at most one error in our transmitted message. Using seven bits,
we can guarantee that our original message can be recovered, irrespective of whether there are no
errors or there is one error. There are simple ways to do this, but here is one which will generalize.

α0 = 1 1 = α0

α1 = α α = α1

α2 = α2 α+ 1 = α3

α3 = α+ 1 α2 = α2

α4 = α2 + α α2 + 1 = α6

α5 = α2 + α+ 1 α2 + α = α4

α6 = α2 + 1 α2 + α+ 1 = α5

Recall that m(x) = x3 + x+ 1 ∈ F2[x] is irreducible, so that

F8 = F2[x]/(x3 + x+ 1)

is a field. Label [x]x3+x+1 by α. Then (homework)

F8 = {0, 1, α, α2, α3, α4, α5, α6}.

We can go between this description of elements and the usual description using the exp and log-table
displayed above.

THE PROCEDURE

1. Suppose we have a word of length 4, w = (w6, w5, w4, w3). Form the polynomial

W (x) = w6x
6 + w5x

5 + w4x
4 + w3x

3 ∈ F2[x].

2. Using the division algorithm we can write

W (x) = u(x)m(x) + V (x)

for some polynomials u(x), V (x) where deg V (x) < 3. Let C(x) = W (x) + V (x).

51



3. Writing C(x) = c6x
6 + c5x

5 + . . .+ c1x+ c0 the code for our word is the length 7 vector

c = (c6, c5, . . . , c1, c0).

Notice that since deg V (x) < 3, we have

w = (w6, w5, w4, w3) = (c6, c5, c4, c3). (15.1.1)

4. We send c and the vector which is received is

r = (r6, r5, . . . , r1, r0).

We have to describe how to reconstruct w from r. In light of (15.1.1) it is enough to recon-
struct c from r. Here’s what we do. Let R(x) = r6x

6 + r5x
5 + . . .+ r1x+ r0 ∈ F8[x].

(a) If R(α) = 0, then there are no errors, we have c = r and w = (r6, r5, r4, r3).

(b) If R(α) 6= 0, then there is one error. Finding e ∈ {0, 1, 2, 3, 4, 5, 6} such that R(α) = αe

tells us the error was at re.

Remark 15.1.2. Why does this work? Well, the first thing to notice is that when we view m(x)
as an element of F8[x] we have m(α) = 0. In step 2, above, we wrote

W (x) = u(x)m(x) + V (x)

and then set C(x) = W (x) + V (x). So C(x) = u(x)m(x) and since α is a root of m(x), it is also a
root of C(x).

The error between the recieved vector and the coded word is stored by the polynomial

E(x) = C(x) +R(x).

Either there are no errors and E(x) = 0, or there is one error at position e and E(x) = xe. In the
first case, R(α) = E(α) = 0. In the second case, R(α) = E(α) = αe.

Example 15.1.3. Suppose we wish to encode w = (1, 0, 1, 0). We form the polynomial

W (x) = x6 + x4.

We write W (x) = u(x)m(x) + V (x) where u(x) = x3 + 1 and V (x) = x+ 1. We let

C(x) = W (x) + V (x) = x6 + x4 + x+ 1.

The code for our word w is c = (1, 0, 1, 0, 0, 1, 1). Suppose that we send c and the vector which is
received is r = (1, 1, 1, 0, 0, 1, 1). Then R(x) = x6 + x5 + x4 + x+ 1 and

R(α) = α6 + α5 + α4 + α+ 1 = (α2 + 1) + (α2 + α+ 1) + (α2 + α) + α+ 1 = α2 + α+ 1 = α5.

The receiver would conclude that there was one error occuring in the fifth position: this is correct!
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α0 = 1 1 = α0

α1 = α α = α1

α2 = α2 α+ 1 = α4

α3 = α3 α2 = α2

α4 = α+ 1 α2 + 1 = α8

α5 = α2 + α α2 + α = α5

α6 = α3 + α2 α2 + α+ 1 = α10

α7 = α3 + α+ 1 α3 = α3

α8 = α2 + 1 α3 + 1 = α14

α9 = α3 + α α3 + α = α9

α10 = α2 + α+ 1 α3 + α+ 1 = α7

α11 = α3 + α2 + α α3 + α2 = α6

α12 = α3 + α2 + α+ 1 α3 + α2 + 1 = α13

α13 = α3 + α2 + 1 α3 + α2 + α = α11

α14 = α3 + 1 α3 + α2 + α+ 1 = α12

15.2 Sending seven bits and accounting for up to two errors

Suppose we are trying to transmit messages consisting of seven bits accounting for up to two errors
in our transmitted message.

Recall that x4 + x+ 1 ∈ F2[x] is irreducible, so that

F16 = F2[x]/(x4 + x+ 1)

is a field. Label [x]x4+x+1 by α. Then

F16 = {0, 1, α, α2, . . . , α14}.

We can go between this description of elements and the usual description using the exp and log-table
displayed above. Let

m(x) = x8 + x7 + x6 + x4 + 1.

THE PROCEDURE

1. Suppose we have a word of length 7, w = (w14, w13, w12, w11, w10, w9, w8). Form the polyno-
mial

W (x) = w14x
14 + w13x

13 + . . .+ w9x
9 + w8x

8 ∈ F2[x].

2. Using the division algorithm we can write

W (x) = u(x)m(x) + V (x)

for some polynomials u(x), V (x) where deg V (x) < 8. Let C(x) = W (x) + V (x).

3. Writing C(x) = c14x
14 + c13x

13 + . . .+ c1x+ c0 the code for our word is the length 15 vector

c = (c14, c13, . . . , c1, c0).

Notice that since deg V (x) < 8, we have

w = (w14, w13, w12, w11, w10, w9, w8) = (c14, c13, c12, c11, c10, c9, c8). (15.2.1)
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4. We send c and the vector which is received is

r = (r14, r13, . . . , r1, r0).

We have to describe how to reconstruct w from r. In light of (15.2.1) it is enough to recon-
struct c from r. Here’s what we do.

Let R(x) = r14x
14 + r13x

13 + . . .+ r1x+ r0 ∈ F16[x] and consider the matrix

S =

(
R(α) R(α2)
R(α2) R(α3)

)
.

(a) If S = 0, then there are no errors, we have c = r and w = (r14, r13, r12, r11, r10, r9, r8).

(b) If S 6= 0, but det(S) = 0, then there is one error. It will turn out that R(α) 6= 0 and
finding e ∈ {0, 1, 2, 3, 4, 5, 6} such that R(α) = αe tells us the error was at re.

(c) If det(S) 6= 0, then let (
σ0
σ1

)
=

(
R(α) R(α2)
R(α2) R(α3)

)−1(
R(α3)
R(α4)

)
.

Find the roots of Σ(x) = x2 + σ1x+ σ0 ∈ F16[x]. They will be of the form αe1 and αe2

where e1, e2 ∈ {0, 1, . . . , 13, 14}. e1 and e2 are where the errors occur.

Remark 15.2.2. Why does this work? Well, the first thing to notice is that when we view m(x)
as an element of F16[x] we have m(α) = m(α2) = m(α3) = m(α4) = 0. In step 2, above, we wrote

W (x) = u(x)m(x) + V (x)

and then set C(x) = W (x) + V (x). So C(x) = u(x)m(x) and since α, α2, α3, and α4 are roots of
m(x), they are also roots of C(x).

The error between the received vector and the coded word is stored by the polynomial

E(x) = C(x) +R(x).

Either there are no errors and E(x) = 0, or there is one error at position e and E(x) = xe, or there
are two errors at positions e1 and e2 and E(x) = xe1 + xe2 .

In the first case, we have for i = 1, 2, 3, R(αi) = E(αi) = 0, so that S = 0.
In the second case, we have

S =

(
αe α2e

α2e α3e

)
6= 0.

The second row is α times the first row, so det(S) = 0, and R(α) = αe.
In the third case, one can check that

S =

(
1 1
αe1 αe2

)(
αe1 0
0 αe2

)(
1 αe1

1 αe2

)
,

the product of three invertible matrices. Thus det(S) 6= 0. We will check that Σ(αe1) = Σ(αe2) = 0
in more generality a little later.
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Example 15.2.3. Suppose we wish to encode w = (1, 1, 1, 0, 1, 0, 1). We form the polynomial

W (x) = x14 + x13 + x12 + x10 + x8.

We write W (x) = u(x)m(x) + V (x) where u(x) = x6 + 1 and V (x) = x7 + x4 + 1. We let

C(x) = W (x) + V (x) = x14 + x13 + x12 + x10 + x8 + x7 + x4 + 1.

The code for our word w is c = (1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1). Suppose that we send c and the
vector which is received is r = (1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1). Then

R(x) = x14 + x12 + x10 + x8 + x7 + x4 + x3 + 1.

We calculate

R(α) = α14 + α12 + α10 + α8 + α7 + α4 + α3 + 1

= (α3 + 1) + (α3 + α2 + α+ 1) + (α2 + α+ 1) + (α2 + 1) + (α3 + α+ 1) + (α+ 1) + α3 + 1

= α2 + 1 = α8

Thus, using the mod 2 Freshman dream we have

R(α2) = R(α)2 = α16 = α, and R(α4) = R(α2)2 = α2.

Finally,

R(α3) = α42 + α36 + α30 + α24 + α21 + α12 + α9 + 1

= α12 + α6 + 1 + α9 + α6 + α12 + α9 + 1 = 0,

and so

S =

(
α8 α
α 0

)
.

S 6= 0 and det(S) = α2 6= 0. We have(
σ0
σ1

)
=

(
α8 α
α 0

)−1(
0
α2

)
= α−2

(
0 α
α α8

)(
0
α2

)
=

(
0 α
α α8

)(
0
1

)
=

(
α
α8

)
so that Σ(x) = x2 + α8x+ α. We find that

Σ(α3) = α6 + α8α3 + α = α6 + α11 + α = (α3 + α2) + (α3 + α2 + α) + α = 0

Σ(α13) = α26 + α11α13 + α = α11 + α9 + α = (α3 + α2 + α) + (α3 + α2) + α = 0

and so the receiver would conclude that there were two errors occuring in the third and thirteenth
position: this is correct!
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15.3 General BCH codes

Let q = 2r, let F = Fq be the field with q elements, and let α be a primitive (see section 16) element
in F×, so that

F = {0, 1, α, α2, . . . , αq−2}.

Let m(x) be the polynomial of smallest degree in F2[x] with

α, α2, . . . , α2t

as roots. Let d = degm(x). We hope that d < q − 1. Suppose it is and let l = q − 1− d > 0. We
will be able to transmit words of length l. Here’s how. . .

THE PROCEDURE

1. Suppose we have a word of length l, w = (wq−2, wq−3, . . . , wd+1, wd). Form the polynomial

W (x) = wq−2x
q−2 + wq−3x

q−3 + . . .+ wd+1x
d+1 + wdx

d.

2. Using the division algorithm we can write

W (x) = u(x)m(x) + V (x)

for some polynomials u(x), V (x) where deg V (x) < d. Let C(x) = W (x) + V (x).

3. Writing C(x) = cq−2x
q−2 + cq−3x

q−3 + . . .+ c1x+ c0 the code for our word is the vector

c = (cq−2, cq−3, . . . , c1, c0).

Notice that since deg V (x) < d, we have

w = (wq−2, wq−3, . . . , wd+1, wd) = (cq−2, cq−3, . . . , cd+1, cd). (15.3.1)

4. We send c and the vector which is received is

r = (rq−2, rq−3, . . . , r1, r0).

We have to describe how to reconstruct w from r. In light of (15.3.1) it is enough to recon-
struct c from r.
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THINGS WE KNOW

1. In step 2, above, we wrote W (x) = u(x)m(x) + V (x) and then set C(x) = W (x) + V (x). So

C(x) = u(x)m(x).

Since α, α2, . . . , α2t are roots of m(x), they are also roots of C(x).

2. If we let R(x) = rq−2x
q−2 + rq−3x

q−3 + . . . + r1x + r0, then the error between the received
vector and the coded word is stored by the polynomial

E(x) = C(x) +R(x).

We can write
E(x) = xe1 + xe2 + . . .+ xer

where e1, . . . , er are distinct numbers less than q− 1; they are the locations of the errors. We
(with high probability) assumed that there were going to be at most t errors. So r ≤ t.

WHAT WE HAVE TO FIGURE OUT

1. The number of errors r.

2. The locations of the errors e1, . . . , er.

15.4 Determining r, the number of errors

Theorem 15.4.1. Let

S1 = R(α), S2 = R(α2), . . . , S2t−1 = R(α2t−1), S2t = R(α2t).

Then the number of errors r is given by the rank of the following matrix.

S =


S1 S2 . . . St
S2 S3 . . . St+1
...

...
St St+1 . . . S2t−1


Moreover, in this case

Ur =


S1 S2 . . . Sr
S2 S3 . . . Sr+1
...

...
Sr Sr+1 . . . S2r−1


is invertible.
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Proof. First we note that, since C(α) = C(α2) = . . . = C(α2t) = 0, we have, for j = 1, . . . , 2t,

Sj = R(αj) = E(αj) =
r∑

k=1

αjek .

Define vectors x1, . . . ,xr ∈ Ft by

xk = (αek , α2ek , α3ek , . . . , αtek).

Then, for j = 1, . . . , t, we have

α(j−1)ekxk = (αjek , α(j+1)ek , α(j+2)ek , . . . , α(j+t−1)ek),

and thus,
r∑

k=1

α(j−1)ekxk = (Sj , Sj+1, Sj+2, . . . , Sj+(t−1)).

This says that x1, . . . ,xr span the row space of S and so the rank of S is less than or equal to r.
To deduce the rank is equal to r it is enough to show Ur is invertible so we turn to this.

Define vectors y1, . . . ,yr ∈ Fr by

yj = (α(j−1)e1 , α(j−1)e2 , α(j−1)e3 , . . . , α(j−1)er).

Then

yi diag(αe1 , αe2 , αe3 , . . . , αer) yTj =
r∑

k=1

α(i−1)ekαekα(j−1)ek =
r∑

k=1

α(i+j−1)ek = Si+j−1.

Thus, if A is the r × r matrix whose j-th row is yj , then

A diag(αe1 , αe2 , αe3 , . . . , αer) AT = Ur.

This gives

det(Ur) = det(A)2 ·
r∏

k=1

αek = ±
∏
i 6=j,

1≤i,j≤r

(αei − αej ) ·
r∏

k=1

αek 6= 0

where we have made use of a formula for the determinant of a Vandermonde matrix.
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15.5 Determining the error locations

Theorem 15.5.1. Suppose there are r errors. As in the previous theorem let

S1 = R(α), S2 = R(α2), . . . , S2r−1 = R(α2r−1), S2r = R(α2r).

Define σ0, σ1, . . . , σr−1 ∈ F by
σ0
σ1
...

σr−1

 =


S1 S2 . . . Sr
S2 S3 . . . Sr+1
...

...
Sr Sr+1 . . . S2r−1


−1

Sr+1

Sr+2
...
S2r

 .

Then the polynomial

Σ(x) = xr + σr−1x
r−1 + σr−2x

r−2 + . . .+ σ1x+ σ0 ∈ F[x]

factors as
(x+ αe1)(x+ αe2) · · · (x+ αer).

Proof. Let

τ(x) = (x+ αe1)(x+ αe2) · · · (x+ αer) = xr + τr−1x
r−1 + τr−2x

r−2 + . . .+ τ1x+ τ0.

Plugging in αek gives
0 = αrek + τr−1α

(r−1)ek + . . .+ τ1α
ek + τ0.

Multiplying by αjek gives

0 = α(r+j)ek + τr−1α
(r+j−1)ek + . . .+ τ1α

(j+1)ek + τ0α
jek .

Summing from k = 1 to r gives

0 = Sr+j + τr−1Sr+j−1 + . . .+ τ1Sj+1 + τ0Sj

so that, for j = 1, . . . , r,

Sr+j = τr−1Sr+j−1 + . . .+ τ1Sj+1 + τ0Sj .

Writing these equations in matrix form gives
S1 S2 . . . Sr
S2 S3 . . . Sr+1
...

...
Sr Sr+1 . . . S2r−1




τ0
τ1
...

τr−1

 =


Sr+1

Sr+2
...
S2r

 .

Thus, τj = σj for j = 0, 1, . . . , r − 1, and

Σ(x) = τ(x) = (x+ αe1)(x+ αe2) · · · (x+ αer).
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15.6 Other applications

We can send eleven bits accounting for up to four errors, using the field

F32 = F2[x]/(x5 + x2 + 1),

α = [x]x5+x2+1, and the polynomial

m0(x) = (x5 + x2 + 1)(x5 + x4 + x3 + x2 + 1)(x5 + x4 + x2 + x+ 1)(x5 + x3 + x2 + x+ 1).

We can send six bits accounting for up to seven errors, using α ∈ F32 and the polynomial

m1(x) = m0(x)(x5 + x4 + x3 + x+ 1).

A table showing the capabilities of F64 follows.

information bits errors allowed

30 6
24 7
18 10
16 11
10 13
7 15
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16 Finite fields

Throughout this final section F will always be a finite field.

16.1 The size of finite fields

Definition 16.1.1. If n ∈ Z, then we can use n to denote an element of F. If n ≥ 0, then it stands
for 1 + 1 + . . . + 1 where there are |n| ones. If n < 0 then it stands for (−1) + (−1) + . . . + (−1)
where there are |n| minus ones.

Lemma 16.1.2. If F is a finite field then there exists an n ∈ N such that n = 0 in F.

Proof. The set {n ∈ F : n ∈ N} ⊆ F is finite, so for some n,m ∈ N with n > m we have n = m in
F. Thus, n−m = 0 in F.

Definition 16.1.3. If F is a finite field the characteristic of F is given by

char F = min{n ∈ N : n = 0 in F}.

Proposition 16.1.4. If F is a finite field then the characteristic of F is prime.

Proof. Let n = char F and suppose for contradiction that n = ab where a, b ∈ N and a, b > 1. By
definition of characteristic, we have n = 0 in F. Using the distributivity of addition, one can check
that n = ab in F. Since F is a field, either a = 0 or b = 0 in F. Since a, b < n, this contradicts the
definition of the characteristic as the minimum n with n = 0 in F.

Theorem 16.1.5. If F is a finite field then | F | = pn for some prime p and some n ∈ N.

Proof. Let p = char F. Then Z/p ⊆ F is a subfield of F. In fact, F is a vector space over Z/p. Let
n = dimZ/p F. Counting gives | F | = pn.

16.2 The order of elements in F×

Notation 16.2.1. If F is a field we write F× for the group of units U(F) = F \ {0}.
The following theorem, definition, and the propositions follow exactly those of section 10.1.

Theorem 16.2.2. Suppose that F is a field of size q. For each a ∈ F×, we have aq−1 = 1.

Definition 16.2.3. Suppose a ∈ F×. The smallest e ∈ {1, . . . , | F | − 1} with ae = 1 is called the
order of a. We write ordF(a) for the order of a.

Proposition 16.2.4. Suppose that a ∈ F× and ad = 1. Then the order of a divides d.

Proposition 16.2.5. Suppose that a ∈ F× and that a has order e. The order of ad is e/ gcd(d, e).

Corollary 16.2.6. If F is a field of size q. Then xq − x ∈ F[x] factors as∏
a∈F

(x− a)

and elements of F× have order dividing q − 1.

Proof. The previous theorem tells us that for each a ∈ F×, we have aq−1 = 1. Multiplying by a
gives aq = a, and this is true for a = 0, too. Thus, each a ∈ F is a root of xq − x, so that for each
a ∈ F, x− a divides xq −x. Since F[x] is a unique factorization domain, this gives the factorization
stated. The final statement follows from the theorem and the first proposition.
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16.3 Two big theorems: existence of finite fields and primitive elements

The following proposition is fairly mind-blowing. It is easy enough to prove if you know finite fields
already. With the proof of it I have in mind, using it for the theorem which follows would be cyclic.
But we note it because it is useful for small pn, and just generally kind of awesome.

Proposition 16.3.1. Suppose n ∈ N and write n = pn1
1 · · · pnr

r , where 2 ≤ p1 < . . . < pr are primes
and n1, . . . , nr ≥ 1 (the pj and nj are unique by the fundamental theorem of arithmetic).

Let p ∈ N be prime, q = pn, and qj = pn/pj . Let f0(x) = xq − x ∈ Z/p[x], for 1 ≤ j ≤ r let

fj(x) =
fj−1(x)

gcd(fj−1(x), xqj − x)
,

and let f(x) = fr(x).
Then deg f(x) ≥ n and f(x) is a product of all the monic irreducibles in Z/p[x] of degree n.

Thus, to test irreducibility of a degree n polynomial g(x) ∈ Z/p[x], you can calculate gcd(f(x), g(x)).

Example 16.3.2. Notice that 64 = 26 = 22·3, 22 = 4, and 23 = 8. In F2[x] we have

(x64 + x)(x2 + x)

(x4 + x)(x8 + x)
= (x42 + x21 + 1)(x12 + x11 + x9 + x8 + x6 + x4 + x3 + x+ 1).

This polynomial is the product of the nine monic irreducibles in F2[x] of degree six.

The following theorem gives the existence and uniqueness of finite fields of all possible sizes.

Theorem 16.3.3. If p ∈ N is a prime and n ∈ N, then there exists a finite field F of size pn.
Moreover, any two such fields are isomorphic.

Proof idea. We do not have the necessary technology available to us to prove this yet. However,
some useful things can be said in the direction of a proof.

Let q = pn. The corollary of the last section inspires the proof. If such a field F existed, then
the corollary would tell us that the elements of F are precisely the roots of xq − x.

1. We know that x2 + 1 ∈ R[x] does not factor but, by letting C = R[x]/(x2 + 1) and setting
i = [x]x2+1, we can factor it as (x− i)(x+ i).

2. We have seen that x2 + x+ 1 ∈ F2[x] does not factor but, by letting F4 = F2[x]/(x2 + x+ 1)
and setting α = [x]x2+x+1, we can factor it as (x+ α)(x+ α2).

3. We have seen that x4 + x+ 1 ∈ F2[x] does not factor but, by letting F16 = F2[x]/(x4 + x+ 1)
and setting α = [x]x4+x+1, we can factor it as (x+ α)(x+ α2)(x+ α4)(x+ α8).

4. We know that x2 − 2 ∈ Q[x] does not factor but, by considering Q[x]/(x2 − 2) and setting√
2 = [x]x2−2, we can factor it as (x−

√
2)(x+

√
2).

This suggests setting Fq = F[x]/(xq − x) but this doesn’t work.

1. i ∈ C is also a root of x4 − 1 but we don’t let C = R[x]/(x4 − 1); this would not even be a
field since x4 − 1 is not irreducible.

62



2.
√

2 ∈ Q[
√

2] is also a root of x4 − 4 but we don’t bother with Q[x]/(x4 − 4); again this is not
even a field.

What we want is the smallest field containing Z/p where xq − x does factor. Such a thing is
called the splitting field of xq −x over Z/p and there is a general procedure for constructing it. We
cannot go into this now but the above examples suggest the strategy.

Take an irreducible factor f(x) of xq−x with degree bigger than 1, and construct Z/p[x]/(f(x)).
Then see what the status of xq − x is. If it factors completely we are done; otherwise keep going
like this until it does factor. Eventually you’ll get a field which you can show has q elements.

In fact, if one uses the lemma above, one can find an irreducible f(x) ∈ Z/p[x] of degree n and
the process above will be one step long.

Splitting fields are unique up to isomorphism, and this allows one to prove that any two finite
fields of the same size are isomorphic.

The following theorem can be expressed by saying that the multiplicative group of a finite field
is cyclic.

Theorem 16.3.4. If F is a finite field of size q, then there exists an α ∈ F× with order q − 1.

Definition 16.3.5. If F is a finite field of size q, an element α ∈ F× with order q − 1 is said to be
primitive. The theorem just stated is called the primitive element theorem.

Proof of primitive element theorem. Finally, we wish we had defined the lowest common multiple.
Suppose that we did; you can figure out the definition. Define

e := lcm{ordF(a) : a ∈ F×}.

For each a ∈ F× we have ae = 1, so that each element of F× is a root of xe − 1. This means that
e ≥ (q − 1) and so it is enough to show that an element a ∈ F× has order e.

Write e = pn1
1 · · · pnr

r , where 2 ≤ p1 < . . . < pr are primes and n1, . . . , nr ≥ 1 (the pj and nj
are unique by the fundamental theorem of arithmetic). By definition of e, we have an element
bj ∈ F× with p

nj

j |ordF(bj); a suitable power aj ∈ F× of bj has ordF(aj) = p
nj

j . We will show that
a = a1a2 · · · ar has order e.

Suppose that m ∈ N and am = 1. For 1 ≤ j ≤ r we have

amj = a−m1 · · · a−mj−1a
−m
j+1 · · · a

−m
r .

So, if qj = pn1
1 · · · p

nj−1

j−1 p
nj+1

j+1 · · · pnr
r , then a

mqj
j = 1. Since ordF(aj) = p

nj

j , this gives p
nj

j |(mqj), and

since pj and qj are coprime, p
nj

j |m. This holds for all j, so that e|m. In particular, m ≥ e so that
ordF(a) = e, as required.
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