
Image Caption Generator Based On Deep Neural Networks

Jianhui Chen
CPSC 503

CS Department

Wenqiang Dong
CPSC 503

CS Department

Minchen Li
CPSC 540

CS Department

Abstract

In this project, we systematically analyze a
deep neural networks based image caption
generation method. With an image as the in-
put, the method can output an English sen-
tence describing the content in the image. We
analyze three components of the method: con-
volutional neural network (CNN), recurrent
neural network (RNN) and sentence genera-
tion. By replacing the CNN part with three
state-of-the-art architectures, we find the VG-
GNet performs best according to the BLEU
score. We also propose a simplified ver-
sion the Gated Recurrent Units (GRU) as a
new recurrent layer, implementing by both
MATLAB and C++ in Caffe. The simplified
GRU achieves comparable result when it is
compared with the long short-term memory
(LSTM) method. But it has few parameters
which saves memory and is faster in train-
ing. Finally, we generate multiple sentences
using Beam Search. The experiments show
that the modified method can generate cap-
tions comparable to the-state-of-the-art meth-
ods with less training memory.

1 Introduction

Automatically describing the content of images us-
ing natural languages is a fundamental and challeng-
ing task. It has great potential impact. For exam-
ple, it could help visually impaired people better un-
derstand the content of images on the web. Also,
it could provide more accurate and compact infor-
mation of images/videos in scenarios such as image
sharing in social network or video surveillance sys-
tems. This project accomplishes this task using deep

Figure 1: Image caption generation pipeline. The framework

consists of a convulitional neural netwok (CNN) followed by a

recurrent neural network (RNN). It generates an English sen-

tence from an input image.

neural networks. By learning knowledge from im-
age and caption pairs, the method can generate im-
age captions that are usually semantically descrip-
tive and grammatically correct.

Human beings usually describe a scene using
natural languages which are concise and compact.
However, machine vision systems describes the
scene by taking an image which is a two dimension
arrays. From this perspective, Vinyal et al. (Vinyals
et al.,) models the image captioning problem as
a language translation problem in their Neural Im-
age Caption (NIC) generator system. The idea is
mapping the image and captions to the same space
and learning a mapping from the image to the sen-
tences. Donahue et al. (Donahue et al.,) proposed
a more general Long-term Recurrent Convolutional
Network (LRCN) method. The LRCN method not
only models the one-to-many (words) image cap-
tioning, but also models many-to-one action genera-
tion and many-to-many video description. They also
provides publicly available implementation based on
Caffe framework (Jia et al., 2014), which further
boosts the research on image captioning. This work
is based on the LRCN method.

Although all the mappings are learned in an end-
to-end framework, we believe the benefits of better
understanding of the system by analyzing different
components separately. Fig. 1 shows the pipeline.
The model has three components. The first compo-
nent is a CNN which is used to understand the con-
tent of the image. Image understanding answers the
typical questions in computer vision such as “What
are the objects?”, “Where are the objects?” and
“How are the objects interactive?”. For example,
the CNN has to recognize the “teddy bear”, “table”
and their relative locations in the image. The sec-
ond component is a RNN which is used to generate
a sentence given the visual feature. For example,
the RNN has to generate a sequence of probabili-
ties of words given two words “teddy bear, table”.
The third component is used to generate a sentence
by exploring the combination of the probabilities.
This component is less studied in the reference paper
(Donahue et al.,).

This project aims at understanding the impact of
different components of the LRCN method (Don-
ahue et al.,).We have following contributions:
• understand the LRCN method at the implemen-

tation level.
• analyze the influence of the CNN component

by replacing three CNN architectures (two
from author’s and one from our implementa-
tion).
• analyze the influence of the RNN component

by replacing two RNN architectures. (one from
author’s and one from our implementation).
• analyze the influence of sentence generation

method by comparing two methods (one from
author’s and one from our implementation).

2 Related work

Automatically describing the content of an image is
a fundamental problem in artificial intelligence that
connects computer vision and natural language pro-
cessing. Earlier methods first generate annotations
(i.e., nouns and adjectives) from images (Sermanet
et al., 2013; Russakovsky et al., 2015), then gen-
erate a sentence from the annotations (Gupta and
Mannem,). Donahue et al. (Donahue et al.,) devel-
oped a recurrent convolutional architecture suitable
for large-scale visual learning, and demonstrated the

value of the models on three different tasks: video
recognition, image description and video descrip-
tion. In these models, long-term dependencies are
incorporated into the network state updates and are
end-to-end trainable. The limitation is the difficulty
of understanding the intermediate result. The LRCN
method is further developed to text generation from
videos (Venugopalan et al.,).

Instead of one architecture for three tasks in
LRCN, Vinyals et al. (Vinyals et al.,) proposed a
neural image caption (NIC) model only for the im-
age caption generation. Combining the GoogLeNet
and single layer of LSTM, this model is trained
to maximize the likelihood of the target descrip-
tion sentence given the training images. The per-
formance of the model is evaluated qualitatively and
quantitatively. This method was ranked first in the
MS COCO Captioning Challenge (2015) in which
the result was judged by humans. Comparing LRCN
with NIC, we find three differences that may indi-
cate the performance differences. First, NIC uses
GoogLeNet while LRCN uses VGGNet. Second,
NIC inputs visual feature only into the first unit of
LSTM while LRCN inputs the visual feature into
every LSTM unit. Third, NIC has simpler RNN
architecture (single layer LSTM) than LRCN (two
factored LSTM layers). We verified that the math-
ematical models of LRCN and NIC are exactly the
same for image captioning. The performance dif-
ference lies in the implementation and LRCN has to
trade off between simplicity and generality, as it is
designed for three different tasks.

Instead of end-to-end learning, Fang et al. (Fang
et al.,) presented a visual concepts based method.
First, they used multiple instance learning to train
visual detectors of words that commonly occur in
captions such as nouns, verbs, and adjectives. Then,
they trained a language model with a set of over
400,000 image descriptions to capture the statis-
tics of word usage. Finally, they re-ranked cap-
tion candidates using sentence-level features and a
deep multi-modal similarity model. Their captions
have equal or better quality 34% of the time than
those written by human beings. The limitation of the
method is that it has more human controlled param-
eters which make the system less re-producible. We
believe the web application captionbot (Microsoft,
) is based on this method.

Figure 2: The visual-semantic alignment method can generate

descriptions of image regions. Figure from (Karpathy and Fei-

Fei,).

Karpathy et al. (Karpathy and Fei-Fei,) proposed
a visual-semantic alignment (VSA) method. The
method generates descriptions of different regions
of an image in the form of words or sentences (see
Fig. 2). Technically, the method replaces the CNN
with Region-based convolutional Networks (RCNN)
so that the extracted visual features are aligned to
particular regions of the image. The experiment
shows that the generated descriptions significantly
outperform retrieval baselines on both full images
and on a new dataset of region-level annotations.
This method generates more diverse and accurate
descriptions than the whole image method such as
LRCN and NIC. The limitation is that the method
consists of two separate models. This method is fur-
ther developed to dense captioning (Johnson et al.,
2016) and image based question and answering sys-
tem (Zhu et al., 2016).

3 Description of problem

Task In this project, we want to build a system that
can generate an English sentence that describes ob-
jects, actions or events in an RGB image:

S = f(I) (1)

where I is an RGB image and S is a sentence, f is
the function that we want to learn.

Corpus We use the MS COCO Caption (Chen et
al., 2015) as the corpus. The captions are gath-

ered from human beings using Amazon’s Mechani-
cal Turk (AMT). We manually checked some exam-
ples by side-by-side comparing the image and cor-
responding sentences. We found the captions are
very expressive and diverse. The COCO Caption
is the largest image caption corpus at the time of
writing. There are 413,915 captions for 82,783 im-
ages in training, 202,520 captions for 40,504 images
in validation and 379,249 captions for 40,775 im-
ages in testing. Each image has at least 5 captions.
The captions for training and validation are publicly
available while the captions for testing is reserved by
the authors. In the experiment, we use all the train-
ing data in the training process and 1,000 randomly
selected validation data in the testing process.

4 Method

For image caption generation, LRCN maximizes the
probability of the description giving the image:

θ∗ = argmax
θ

∑
(I,S)

log p(S|I; θ) (2)

where θ are the parameters of the model, I is an im-
age, and S is a sample sentence. Let the length of
the sentence beN , the method applies the chain rule
to model the joint probability over S0, · · · , SN :

log p(S|I) =
N∑
t=0

log p(St|I, S0, · · · , St−1) (3)

where the θ is dropped for convenience, St is the
word at step t.

The model has two parts. The first part is a CNN
which maps the image to a fixed-length visual fea-
ture. The visual feature is embedded to as the input
v to the RNN.

v =Wv(CNN(I)) (4)

where Wv is the visual feature embedding. The vi-
sual feature is fixed for each step of the RNN.

In the RNN, each word is represented a one-hot
vector St of dimension equal to the size of the dic-
tionary. S0 and SN are for special start and stop
words. The word embedding parameter is Ws:

xt =WtSt, t ∈ {0 · · ·N − 1} (5)

In this way, the image and words are mapped to
the same space. After the internal processing of the
RNN, the features v, xt and internal hidden param-
eter ht are decoded into a probability to predict the
word at current time:

pt+1 = LSTM(v, xt, ht), t ∈ {0 · · ·N − 1} (6)

Because a sentence with higher probability does
not necessary mean this sentence is more accu-
rate than other candidate sentences, post-processing
method such as Beam Search is used to generate
more sentences and pick top-K sentences.

4.1 Convolutional neural network
In this project, a convolutional neural network
(CNN) maps an RGB image to a visual feature vec-
tor. The CNN has three most-used layers: convolu-
tion, pooling and fully-connected layers. Also, Rec-
tified Linear Units (ReLU) f(x) = max(0, x) is
used as the non-linear active function. The ReLU
is faster than the traditional f(x) = tanh(x) or
f(x) = (1 + e−x)−1. Dropout layer is used to
prevent overfitting. The dropout sets the output of
each hidden neuron to zero with a probability (i.e.,
0.5). The “dropped out” neurons do not contribute
to the forward pass and do not participate in back-
propagation.

The AlexNet (Krizhevsky et al., 2012), VGGNet
(Simonyan and Zisserman, 2014) and GoogLeNet
(Szegedy et al., 2015) are three widely used
deep convolutional neural network architecture.
They share the convolution → pooling → fully-
connection → loss function pipeline but with dif-
ferent shapes and connections of layers, especially
the convolution layer. AlexNet is the first deep con-
volutional neural network used in large scale image
classification. VGGNet and GoogLeNet achieves
the-start-of-the-art performance in ImageNet recog-
nition challenge 2014 and 2015.

When the CNN combines the RNN, there are spe-
cific considerations of convergence since both of
them has millions parameters. For example, Vinyals
et al. (Vinyals et al.,) found that it is better to fix the
parameters of the convolutional layer as the parame-
ters trained from the ImageNet. As a result, only the
non-convolution layer parameters in CNN and the
RNN parameters are actually learned from caption
examples.

Figure 3: Three variations of the LRCN image captioning ar-

chitecture. The most right two-layers factored LSTM is used in

the method. Figure from (Donahue et al.,).

4.2 Recurrent neural network
To prevent the gradients vanishing problem, the long
short-term memory (LSTM) method is used as the
RNN component. A simplified LSTM updates for
time step t given inputs xt, ht−1, and ct1 are:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

ot = σ(Wxoxt +Whoht−1 + bo)

gt = φ(Wxcxt +Whcht−1 + bc)

ct = ft � ct−1 + it � gt
ht = ot � φ(ct)

(7)

where σ(x) = (1+e−x)−1 and φ(x) = 2σ(2x)−1.
In addition to a hidden unit ht ∈ RN , the LSTM
includes an input gate it ∈ RN , forget gate ft ∈
RN , output gate ot ∈ RN , input modulation gate
gt ∈ RN , and memory cell ct ∈ RN . These ad-
ditional cells enable the LSTM to learn extremely
complex and long-term temporal dynamics. Addi-
tional depth can be added to LSTMs by stacking
them on top of each other. Fig. 3 shows three version
of LSTMs. The two-layers factored LSTM achieves
the best performance and is used in the method.

In this project, we proposed a simplified version
of GRU in section 5.1 which also avoids the vanish-
ing gradient problem and can be easily implemented
in Caffe based on the current Caffe LSTM frame-
work. We also provide the MATLAB program in
the Appendices verifying our derivation of BPTT on
the original GRU model.

4.3 Sentence generation
The output of LSTM is the probability of each word
in the vocabulary. Beam search is used to generate
sentences. Beam search is a heuristic search algo-
rithm that explores a graph by expanding the most
promising node in a limited set. In addition to beam

search, we also use k-best search to generate sen-
tences. It is very similar to the time synchronous
Viterbi search. The method iteratively selects the k
best sentences from all the candidate sentences up to
time t, and keeps only the resulting best k of them.

5 Implementation

Preprocessing Because we want to keep the archi-
tecture of the CNN, the input image are randomly
cropped to the size of 224 × 224. As a result, only
part of the images are used in training at particular
iteration. Because one image will be cropped mul-
tiple times in the training, the CNN can probably
see the whole image in the training (once for part of
the image). However, the method only sees part of
the image in the testing except the dense cropping is
also used (our project does not use dense crop). For
the sentences, the method first creates a vocabulary
only from the training captions and removes lower
frequency words (less than 5). Then, words are rep-
resented by one-hot vectors.

5.1 Caffe architecture

Caffe (Jia et al., 2014) provides a modifiable frame-
work for the state-of-the-art deep learning algo-
rithms. It is implemented using C++ and also pro-
vides Python and MATLAB interfaces. Caffe model
(network) definitions are written as configuration
files using the Protocol Buffer Language1 so that
the net representation and implementation are sep-
arated. The separation abstracts from memory un-
derlying location in CPU or GPU so that switching
between a CPU and GPU implementation is exactly
by one function call. However, the separation makes
the implementation less convenient as we will show
in the next paragraph.

5.2 Simplify and implement GRU in Caffe

In Caffe, a layer is the fundamental unit of com-
putation. A blob is a wrapper over the actual data
providing synchronization capability between CPU
and GPU. We tried to implement the Gated Recur-
rent Units (GRU) (Cho et al., 2014) in Caffe. The
GRU updates for time step t given inputs xt, st−1

1https://developers.google.com/
protocol-buffers/docs/proto

are:

z = σ(Uzxt +Wzst−1 + bz)

r = σ(Urxt +Wrst−1 + br)

h = tanh(Uhxt +Wh(st−1 � r) + bh)

st = (1− z)� h+ z � st−1

(8)

where z is the update gate, r is the reset gate. s
is used as both hidden states and cell states. With
fewer parameters, GRU can reach a comparable per-
formance to LSTM (Jozefowicz et al.,). To imple-
ment GRU, we first wrote a MATLAB program to
check our BPTT2 gradient derivation. This is due
to the fact that automatic differentiation in Caffe
is not supported at layer units level. Followed by
our derivation, the calculated gradients only devi-
ate from the numerical gradients by around 10−5

relatively. However, implementing GRU in Caffe
is not straight forward since Caffe is based on a
complicated software architecture trying to provide
convenience for assembling, not further developing.
This is the bottleneck of GRU implementation. We
have tried a number of implementations based on the
original GRU (Equ. 8), with no good results. Finally
we simplified GRU model inspired by the simplified
SLTM in (Donahue et al.,). We omit the reset gate
and add a transfer gate to make it easily fit into the
current Caffe LSTM framework as:

z = σ(Uzxt +Wzst−1 + bz)

h = tanh(Uhxt +Whst−1 + bh)

ct = (1− z)� h+ z � ct−1

st = ct

(9)

Note that the omitted reset gate won’t bring back the
vanishing gradient problem which we see in tradi-
tional RNN because we still have the update gate z
acting as a weight between the previous state and the
current processed input. The added transfer gate, c,
seems to be less useful, but it is actually very impor-
tant for calculating the gradient in the framework.
The parameter gradients in an RNN within a sin-
gle step, t, depends not only on ∂Lt/∂st, but also
∂Lt/∂st−i where i = 1, 2, ..., t. In Caffe, ∂Lt/∂st
is calculated by outer layers automatically, while
∂Lt/∂st−i need to be calculated by inside layer unit.
To hold and transfer these two parts of gradients to

2Backward propagation through time

https://developers.google.com/protocol-buffers/docs/proto
https://developers.google.com/protocol-buffers/docs/proto

CNNs layer #param memory B-4

AlexNet 8 60 0.9 0.253
VGGNet 16 138 11.6 0.294
GoogLeNet 22 12 5.8 0.211

Table 1: Quantitative comparison of CNNs. The number of

parameter (#param) is in the unit of million, and the training

memory is in the unit of Gb. In experiment, we found that the

BLEU 4 performance is positively related to the number of pa-

rameters.

the next time step, we use another intermediate vari-
able, which is the added transfer gate c. This is
just an engineering issue that might not be avoided
while developing new models in Caffe. The theory
is always clear and concise (see Appendices for the
MATLAB program verifying our BPTT derivation
to the original GRU).

5.3 Training method

The neural network is trained using the mini-patch
stochastic gradient descent (SGD) method. The base
learning rate is 0.01. The learning rate drops 50%
in every 20,000 iterations. Because the number of
training samples is much smaller than the number of
parameters of the neural network, overfitting is our
big concern. Besides the dropout layer, we fixed the
parameters of the convolutional layers as suggested
by (Vinyals et al.,). All the network are trained in a
Linux machine with a Tesla K40c graphic card with
12Gb memory.

6 Results

6.1 Quantitative result

Evaluation metrics We use BLEU (Papineni et
al., 2002) to measure the similarity of the captions
generated by our method and human beings. BLEU
is a popular machine translation metric that analyzes
the co-occurrences of n-grams between the candi-
date and reference sentences. The unigram scores
(B-1) account for the adequacy of the translation,
while longer n-gram scores (B-2, B-3, B-4) account
for the fluency.

Different CNNs Table 1 compares the perfor-
mance of three CNN architectures (the RNN part

Method B-1 B-2 B-3 B-4

AlexNet
+ LSTM

0.650 0.467 0.324 0.221

AlexNet
+ GRU

0.623 0.433 0.292 0.194

VGGNet
+ LSTM

0.588 0.406 0.264 0.168

VGGNet
+ GRU

0.583 0.393 0.256 0.168

Table 2: AlexNet, VGGNet with different RNN models. Our

GRU model achieves comparable result with the LSTM model,

but with less parameter and training time. The beam size is 1.

use LSTM). The VGGNet achieves the best perfor-
mance (BLEU 4) and GoogLeNet has the lowest
score. It is out of our expectation at first because
GoogLeNet achieves the best performance in the Im-
ageNet classification task. We discussed this phe-
nomenon with our fellows students. One of them
pointed out that despite its slightly weaker classi-
fication performance, the VGGNet features outper-
form those of GoogLeNet in multiple transfer learn-
ing tasks (Karpathy, 2015). A downside of the VG-
GNet is that it is more expensive to evaluate and it
uses a lot more memory (11.6 Gb) and parameters
(138 million). It takes more time to train VGGNet
and GoogleNet than AlexNet (about 8 hours vs 4
hours).

Different RNNs Table 2 compares the perfor-
mance of LSTM and GRU. The GRU model
achieves comparable results with less parameters
and training time.

Different sentence generation methods Table 3
also analyze the impact of beam size in the Beam
Search for different CNN architectures. In general,
larger beam size achieves higher BLEU score. This
phenomenon is much more obvious in the VGGNet
than other two CNNs. When the beam size is 1,
AlexNet outperforms VGGNet. When the beam size
is 10, the VGGNet outperforms AlexNet. The most
probable reason is that AlexNet is good at detecting
a single or few objects in an image while VGGNet
is good at detecting multiple objects in the same im-
age. When the beam size becomes larger, the VG-
GNet based method can generate more accurate sen-
tences.

beam B-1 B-2 B-3 B-4

AlexNet
1 0.650 0.467 0.324 0.221
5 0.650 0.467 0.343 0.247
10 0.644 0.474 0.347 0.253

VGGNet
1 0.588 0.406 0.264 0.168
5 0.632 0.450 0.310 0.212
10 0.681 0.513 0.390 0.294

GoogLeNet
1 0.533 0.353 0.222 0.139
5 0.568 0.385 0.262 0.180
10 0.584 0.410 0.292 0.211

Table 3: AlexNet, VGGNet and GoogleNet with different
beam sizes. Using AlexNet, the impact of the number of beam

size is not significant. Using the VGG net, the impact is signif-

icant. Using the GoogLeNet net, the impact is moderate. The

best scores are highlighted.

Method B-1 B-2 B-3 B-4

LRCN 0.669 0.489 0.349 0.249
NIC N/A N/A N/A 0.277
VSA 0.584 0.410 0.292 0.211
This project 0.681 0.513 0.390 0.294

Table 4: Evaluation of image caption of different methods.

LRCN is tested on the validation set (5,000 images). NIC is

tested on the validation set (4,000 images). VSA is tested on

the test set (40,775 images). This project is tested on the vali-

dation set (1,000 images for B-1, B-2, B-3, and 100 images for

B-4).

Comparison with other systems Table 4 com-
pares BLEU scores of the results from LRCN, NIC,
VSA and this project. The BLEU score of the re-
sult of this project is comparable or better than those
from other systems although our project is tested on
less data set (1,000 images).

6.2 Qualitative result
Taking Fig. 4 as an example, we analyze
the captions generated by AlexNet, VGGNet and
GoogLeNet.

When beam size is 1, the captions are as follows,
• (AlexNet) A group of people sitting at a table

with a pizza.

• (VGGNet) A man and woman sitting at a table
with a pizza.
• (GoogLeNet) A group of people sitting at a din-

ner table.
When beam size is 5, the captions are as follows,
• (AlexNet) A group of people sitting at a table.
• (VGGNet) A man and woman sitting at a table

with food.
• (GoogLeNet) A group of people sitting at a din-

ner table.
When beam size is 10, the captions are as follows,
• (AlexNet) A group of people sitting at a table.
• (VGGNet) A man and woman sitting at a table.
• (GoogLeNet) A group of people sitting at a din-

ner table.
From the result listed above, we can see that when

the beam size is fixed, VGGNet can generate cap-
tions with more details. When the beam size in-
creases, the captions become short and detailed in-
formation disappears.

Although the sentence generated by our method
has the highest probability, we don’t know if there
are other sentences that can describe the image bet-
ter. So we use 3-best search to explore the top 3
captions. For Fig. 4, the captions generated by
GoogLeNet with beam size 5 using 3-best search are
listed as follows,
• A group of people sitting at a dinner table.
• A group of people sitting around a dinner table.
• A group of people sitting at a dinner table with

plates of food.
The above captions are listed in probability de-

scending order. We can see that the third sentence is
actually the best one, although it does not have the
highest probability. This is because when the sen-
tence is long, it is more probable to make mistakes.
So, sentences with high probability sometimes tend
to be short, which may miss some detailed informa-
tion. However, it does not mean that the sentence
with the highest probability is bad. In most cases
we observed, sentences with the highest probability
are good enough to describe an image while long
sentences often include redundant information and
often make grammatical mistakes.

Fig. 5 shows the good examples of the sentences
generated by this project. Most of them successfully
describe the main objects and events in images. Fig.
6 shows failed examples of the system. The errors

Figure 4: Sample image for qualitative analysis.

are mainly from object mis-detections such as an
airplane is mis-detected as a kite (row 3 column 1),
cellphones are detected as laptop (row 4 column 2).
The generated sentences are also has minor grammar
error. For example, “A motorcycle with a motorcy-
cle” (row 4 column 3) is hard to understand.

7 Lessons learned and future work

This project provides a valuable learning experience.
First, the LRCN method has a sophisticated pipeline
so that modifying part of the pipeline is complicated
than we expected. We learned how to use one of
the most popular deep learning frameworks Caffe
through the project.

Second, mathematics and the knowledge of par-
ticular software architecture are equally important
for the success of the project. Although we imple-
mented the MATLAB version of GRU very early
before the deadline of the project, we spent a large
amount of time on implementing the GRU layer in
Caffe. The benefit is that we learned valuable first-
hand experience on the developing level of Caffe in-
stead of purely using existing layers in Caffe.

Third, working in a team, we could discuss and
refine a lot of initial ideas. We could also antici-
pate problems that could become critical of the cases
we were working alone. Table 5 roughly shows the
work division among team members.

8 Evaluation

• The project is successful. We have finished all
the goals before the deadline. The system can
generate sentences that are semantically correct
according to the image. We also proposed a
simplified version of GRU that has less param-
eters and achieves comparable result with the

Task Wenqiang Minchen Jianhui
CNN 100%
GRU 70% 30%
Beam Search 100%
Writing 40% 20% 40%

Table 5: Division of work. These only measure the implemen-

tation and experimenting workload. All the analyses and dis-

cussions are conducted by all of us.

LSTM method.
• The strength of the method is on its end-to-end

learning framework. The weakness is that it
requires large number of human labeled data
which is very expensive in practice. Also, the
current method still has considerable errors in
both object detection and sentence generation.

9 Conclusion and future work

We analyzed and modified an image captioning
method LRCN. To understand the method deeply,
we decomposed the method to CNN, RNN, and sen-
tence generation. For each part, we modified or re-
placed the component to see the influence on the
final result. The modified method is evaluated on
the COCO caption corpus. Experiment results show
that: first the VGGNet outperforms the AlexNet and
GoogLeNet in BLEU score measurement; second,
the simplified GRU model achieves comparable re-
sults with more complicated LSTM model; third, in-
creasing the beam size increase the BLEU score in
general but does not necessarily increase the quality
of the description which is judged by humans.

Future work In the future, we would like to ex-
plore methods to generate multiple sentences with
different content. One possible way is to combine
interesting region detection and image captioning.
The VSA method (Karpathy and Fei-Fei,) gives a
direction of our future work. Taking Fig. 2 as an
example, we hope the output will be a short para-
graph: ”Jack has a wonderful breakfast in a Sunday
morning. He is sitting at a table with a bouquet of
red flowers. With his new iPad air on the left, he en-
joys a plate of fruits and a cup of coffee.” The short
paragraph naturally describes the image content in a
story-telling fashion which is more attractive to the
human beings.

Figure 5: A selection of evaluation results, when the method can generate accurate captions.

Figure 6: A selection of evaluation results, when the method cannot generate accurate captions.

References

[Chen et al.2015] Xinlei Chen, Hao Fang, Tsung-Yi Lin,
Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar,
and C Lawrence Zitnick. 2015. Microsoft coco cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

[Donahue et al.] Jeffrey Donahue, Lisa Anne Hendricks,
Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-
term recurrent convolutional networks for visual
recognition and description. In IEEE CVPR.

[Fang et al.] Hao Fang, Saurabh Gupta, Forrest Iandola,
Rupesh K Srivastava, Li Deng, Piotr Dollar, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C Platt,
et al. From captions to visual concepts and back. In
IEEE CVPR.

[Gupta and Mannem] Ankush Gupta and Prashanth Man-
nem. From image annotation to image description. In
Neural information processing.

[Jia et al.2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. 2014. Caffe:
Convolutional architecture for fast feature embedding.
In Proceedings of the ACM International Conference
on Multimedia, pages 675–678.

[Johnson et al.2016] Justin Johnson, Andrej Karpathy,
and Li Fei-Fei. 2016. Densecap: Fully convolutional
localization networks for dense captioning. In IEEE
CVPR.

[Jozefowicz et al.] Rafal Jozefowicz, Wojciech Zaremba,
and Ilya Sutskever. An empirical exploration of recur-
rent network architectures. In ICML.

[Karpathy and Fei-Fei] Andrej Karpathy and Li Fei-Fei.
Deep visual-semantic alignments for generating image
descriptions. In IEEE CVPR.

[Karpathy2015] Andrej Karpathy. 2015. Cs231n: Con-
volutional neural networks for visual recognition.
http://cs231n.github.io/. [Online; ac-
cessed 11-April-2015].

[Krizhevsky et al.2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. 2012. Imagenet classification
with deep convolutional neural networks. In Advances
in neural information processing systems.

[Microsoft] Microsoft. captionbot. https://www.
captionbot.ai/. [Online; accessed 22-April-
2015].

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on association
for computational linguistics, pages 311–318.

[Russakovsky et al.2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale
visual recognition challenge. IJCV, 115(3):211–252.

[Sermanet et al.2013] Pierre Sermanet, David Eigen, Xi-
ang Zhang, Michaël Mathieu, Rob Fergus, and Yann
LeCun. 2013. Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229.

[Simonyan and Zisserman2014] Karen Simonyan and
Andrew Zisserman. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

[Szegedy et al.2015] Christian Szegedy, Wei Liu,
Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. 2015. Going deeper with
convolutions. In IEEE CVPR.

[Venugopalan et al.] Subhashini Venugopalan, Marcus
Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. Sequence to
sequence-video to text. In IEEE ICCV.

[Vinyals et al.] Oriol Vinyals, Alexander Toshev, Samy
Bengio, and Dumitru Erhan. Show and tell: A neu-
ral image caption generator. In IEEE CVPR.

[Zhu et al.2016] Yuke Zhu, Oliver Groth, Michael Bern-
stein, and Li Fei-Fei. 2016. Visual7W: Grounded
Question Answering in Images. In IEEE CVPR.

http://cs231n.github.io/
https://www.captionbot.ai/
https://www.captionbot.ai/

Appendices
The MS COCO Caption corpus is in
http://mscoco.org/.

Here is a list of code:
• GoogleNet with LSTM script.
• GRU MATLAB version.
• GRU layer Caffe implemenation.
• GRU unit layer Caffe implementation in C++
• GRU unit layer Caffe implementation in

CUDA C (running on GPU)
• Sentence generation code.

http://mscoco.org/

 bottom: "inception_5b/pool_proj"
 top: "inception_5b/output"
}
layer {
 name: "pool5/7x7_s1"
 type: "Pooling"
 bottom: "inception_5b/output"
 top: "pool5/7x7_s1"
 pooling_param {
 pool: AVE
 kernel_size: 7
 stride: 1
 }
}
layer {
 name: "pool5/drop_7x7_s1"
 type: "Dropout"
 bottom: "pool5/7x7_s1"
 top: "pool5/7x7_s1"
 dropout_param {
 dropout_ratio: 0.4
 }
}
layer {
 name: "loss3/classifier"
 type: "InnerProduct"
 bottom: "pool5/7x7_s1"
 top: "loss3/classifier"
 param {
 lr_mult: 1
 decay_mult: 1
 }
 param {
 lr_mult: 2
 decay_mult: 0
 }
 inner_product_param {
 num_output: 1000
 weight_filler {
 type: "xavier"
 }
 bias_filler {
 type: "constant"
 value: 0
 }
 }
}

start LSTM
layer {

Figure 7: Page 51 in 55: connect the GoogLeNet to LSTM

 num_output: 1000
 weight_filler {
 type: "uniform"
 min: -0.08
 max: 0.08
 }
 bias_filler {
 type: "constant"
 value: 0
 }
 }
}
layer {
 name: "lstm1"
 type: "LSTM"
 bottom: "embedded_input_sentence"
 bottom: "cont_sentence"
 top: "lstm1"
 include { stage: "factored" }
 recurrent_param {
 num_output: 1000
 weight_filler {
 type: "uniform"
 min: -0.08
 max: 0.08
 }
 bias_filler {
 type: "constant"
 value: 0
 }
 }
}
layer {
 name: "lstm2"
 type: "LSTM"
 bottom: "lstm1"
 bottom: "cont_sentence"
 bottom: "loss3/classifier"
 top: "lstm2"
 include { stage: "factored" }
 recurrent_param {
 num_output: 1000
 weight_filler {
 type: "uniform"
 min: -0.08
 max: 0.08
 }
 bias_filler {
 type: "constant"
 value: 0

Figure 8: Page 53 in 55: connect two factored LSTM.

1 % This program t e s t s the BPTT proce s s we manually developed f o r GRU.
% We c a l c u l a t e the g rad i en t s o f GRU parameters with chain ru le , and then

3 % compare them to the numerica l g r ad i en t s to check whether our chain ru l e
% de r i v a t i on i s c o r r e c t .

5

% Here , we provided 2 v e r s i o n s o f BPTT, backward di rect () and backward () .
7 % The former one i s the d i r e c t idea to c a l c u l a t e g rad i en t with in each step
% and add them up (O(s e n t e n c e s i z e ˆ2) time) . The l a t t e r one i s opt imized to

9 % ca l c u l a t e the con t r i bu t i on o f each step to the o v e r a l l grad ient , which i s
% only O(s e n t e n c e s i z e) time .

11

% This i s very h e l p f u l f o r people who wants to implement GRU in Caf fe s i n c e
13 % Caf fe didn ’ t support auto−d i f f e r e n t i a t i o n . This i s a l s o very h e l p f u l f o r

% the people who wants to know the d e t a i l s about Backpropagation Through
15 % Time algor i thm in the Reccurent Neural Networks (such as GRU and LSTM)

% and a l s o get a sense on how auto−d i f f e r e n t i a t i o n i s p o s s i b l e .
17

% NOTE: We didn ’ t i nvo lv e SGD t r a i n i n g here . With SGD tra in ing , t h i s
19 % program would become a complete implementation o f GRU which can be

% tra ined with sequence data . However , s i n c e t h i s i s only a CPU s e r i a l
21 % Matlab ve r s i on o f GRU, apply ing i t on l a r g e da ta s e t s w i l l be dramat i ca l l y

% slow .
23

% by Minchen Li , at The Un ive r s i ty o f B r i t i s h Columbia . 2016−04−21
25

. . .
27

% Forward propagate c a l c u l a t e s , y hat , l o s s and in te rmed ia t e v a r i a b l e s f o r each step
29 f unc t i on [s , y hat , L , z , r , c] = forward (x , y , . . .

U z , U r , U c , W z , W r , W c , b z , b r , b c , V, b V , s 0)
31 % count s i z e s

[vocabu la ry s i z e , s e n t e n c e s i z e] = s i z e (x) ;
33 iMem size = s i z e (V, 2) ;

35 % i n i t i a l i z e r e s u l t s
s = ze ro s (iMem size , s e n t e n c e s i z e) ;

37 y hat = ze ro s (vocabu la ry s i z e , s e n t e n c e s i z e) ;
L = ze ro s (s en t en c e s i z e , 1) ;

39 z = ze ro s (iMem size , s e n t e n c e s i z e) ;
r = ze ro s (iMem size , s e n t e n c e s i z e) ;

41 c = ze ro s (iMem size , s e n t e n c e s i z e) ;

43 % ca l c u l a t e r e s u l t f o r s tep 1 s i n c e s 0 i s not in s
z (: , 1) = sigmoid (U z∗x (: , 1) + W z∗ s 0 + b z) ;

45 r (: , 1) = sigmoid (U r∗x (: , 1) + W r∗ s 0 + b r) ;
c (: , 1) = tanh (U c∗x (: , 1) + W c∗ (s 0 . ∗ r (: , 1)) + b c) ;

47 s (: , 1) = (1−z (: , 1)) . ∗c (: , 1) + z (: , 1) . ∗ s 0 ;
y hat (: , 1) = softmax (V∗ s (: , 1) + b V) ;

49 L(1) = sum(−y (: , 1) . ∗ l og (y hat (: , 1))) ;
% c a l c u l a t e r e s u l t s f o r s tep 2 − s e n t e n c e s i z e s im i l a r l y

51 f o r wordI = 2 : s e n t e n c e s i z e
z (: , wordI) = sigmoid (U z∗x (: , wordI) + W z∗ s (: , wordI−1) + b z) ;

53 r (: , wordI) = sigmoid (U r∗x (: , wordI) + W r∗ s (: , wordI−1) + b r) ;
c (: , wordI) = tanh (U c∗x (: , wordI) + W c∗ (s (: , wordI−1) . ∗ r (: , wordI)) + b c) ;

55 s (: , wordI) = (1−z (: , wordI)) . ∗c (: , wordI) + z (: , wordI) . ∗ s (: , wordI−1) ;
y hat (: , wordI) = softmax (V∗ s (: , wordI) + b V) ;

57 L(wordI) = sum(−y (: , wordI) . ∗ l og (y hat (: , wordI))) ;
end

59 end

61 % Backward propagate to c a l c u l a t e g rad i en t us ing chain ru l e
% (O(s e n t e n c e s i z e) time)

63 f unc t i on [dV, db V , dU z , dU r , dU c , dW z , dW r , dW c , db z , db r , db c , ds 0] = . . .
backward (x , y , U z , U r , U c , W z , W r , W c , b z , b r , b c , V, b V , s 0)

65 % forward propagate to get the in t e rmed ia t e and output r e s u l t s
[s , y hat , L , z , r , c] = forward (x , y , U z , U r , U c , W z , W r , W c , . . .

67 b z , b r , b c , V, b V , s 0) ;
% count sentence s i z e

69 [˜ , s e n t e n c e s i z e] = s i z e (x) ;

71 % ca l c u l a t e g rad i en t us ing chain ru l e
d e l t a y = y hat − y ;

73 db V = sum(de l ta y , 2) ;

75 dV = ze ro s (s i z e (V)) ;

1

f o r wordI = 1 : s e n t e n c e s i z e
77 dV = dV + de l t a y (: , wordI) ∗ s (: , wordI) ’ ;

end
79

ds 0 = ze ro s (s i z e (s 0)) ;
81 dU c = ze ro s (s i z e (U c)) ;

dU r = ze ro s (s i z e (U r)) ;
83 dU z = ze ro s (s i z e (U z)) ;

dW c = ze ro s (s i z e (W c)) ;
85 dW r = ze ro s (s i z e (W r)) ;

dW z = ze ro s (s i z e (W z)) ;
87 db z = ze ro s (s i z e (b z)) ;

db r = ze ro s (s i z e (b r)) ;
89 db c = ze ro s (s i z e (b c)) ;

d s s i n g l e = V’ ∗ de l t a y ;
91 % ca l c u l a t e the d e r i v a t i v e con t r i bu t i on o f each step and add them up

ds cur = ze ro s (s i z e (d s s i n g l e , 1) , 1) ;
93 f o r wordJ = s e n t e n c e s i z e :−1:2

ds cur = ds cur + d s s i n g l e (: , wordJ) ;
95 ds cur bk = ds cur ;

97 dtanhInput = (ds cur . ∗(1−z (: , wordJ)) . ∗(1−c (: , wordJ) . ∗c (: , wordJ))) ;
db c = db c + dtanhInput ;

99 dU c = dU c + dtanhInput∗x (: , wordJ) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW c = dW c + dtanhInput∗ (s (: , wordJ−1) . ∗ r (: , wordJ)) ’ ;

101 dsr = W c ’ ∗dtanhInput ;
d s cur = dsr . ∗ r (: , wordJ) ;

103 ds i g Inpu t r = dsr . ∗ s (: , wordJ−1) . ∗ r (: , wordJ) . ∗(1− r (: , wordJ)) ;
db r = db r + ds i g Inpu t r ;

105 dU r = dU r + ds i g Inpu t r ∗x (: , wordJ) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW r = dW r + ds i g Inpu t r ∗ s (: , wordJ−1) ’ ;

107 ds cur = ds cur + W r ’ ∗ ds i g Inpu t r ;

109 ds cur = ds cur + ds cur bk . ∗z (: , wordJ) ;
dz = ds cur bk . ∗ (s (: , wordJ−1)−c (: , wordJ)) ;

111 ds i g Input z = dz . ∗z (: , wordJ) . ∗(1−z (: , wordJ)) ;
db z = db z + ds i g Input z ;

113 dU z = dU z + ds i g Input z ∗x (: , wordJ) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW z = dW z + ds i g Input z ∗ s (: , wordJ−1) ’ ;

115 ds cur = ds cur + W z ’ ∗ ds i g Input z ;
end

117

% s 1
119 ds cur = ds cur + d s s i n g l e (: , 1) ;

121 dtanhInput = (ds cur . ∗(1−z (: , 1)) . ∗(1−c (: , 1) . ∗c (: , 1))) ;
db c = db c + dtanhInput ;

123 dU c = dU c + dtanhInput∗x (: , 1) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW c = dW c + dtanhInput∗ (s 0 . ∗ r (: , 1)) ’ ;

125 dsr = W c ’ ∗dtanhInput ;
ds 0 = ds 0 + dsr . ∗ r (: , 1) ;

127 ds i g Inpu t r = dsr . ∗ s 0 . ∗ r (: , 1) . ∗(1− r (: , 1)) ;
db r = db r + ds i g Inpu t r ;

129 dU r = dU r + ds i g Inpu t r ∗x (: , 1) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW r = dW r + ds i g Inpu t r ∗ s 0 ’ ;

131 ds 0 = ds 0 + W r ’ ∗ ds i g Inpu t r ;

133 ds 0 = ds 0 + ds cur . ∗z (: , 1) ;
dz = ds cur . ∗ (s 0−c (: , 1)) ;

135 ds i g Input z = dz . ∗z (: , 1) . ∗(1−z (: , 1)) ;
db z = db z + ds i g Input z ;

137 dU z = dU z + ds i g Input z ∗x (: , 1) ’ ; %could be a c c e l e r a t ed by avo id ing add 0
dW z = dW z + ds i g Input z ∗ s 0 ’ ;

139 ds 0 = ds 0 + W z ’ ∗ ds i g Input z ;
end

testBPTT GRU.m

2

#include <string>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/filler.hpp"
#include "caffe/layer.hpp"
#include "caffe/sequence_layers.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
void GRULayer<Dtype>::RecurrentInputBlobNames(vector<string>* names) const {
 names->resize(2);
 (*names)[0] = "s_0";
 (*names)[1] = "c_0";
}

template <typename Dtype>
void GRULayer<Dtype>::RecurrentOutputBlobNames(vector<string>* names) const {
 names->resize(2);
 (*names)[0] = "s_" + this->int_to_str(this->T_);
 (*names)[1] = "c_T";
}

template <typename Dtype>
void GRULayer<Dtype>::RecurrentInputShapes(vector<BlobShape>* shapes) const {
 const int num_output = this->layer_param_.recurrent_param().num_output();
 const int num_blobs = 2;
 shapes->resize(num_blobs);
 for (int i = 0; i < num_blobs; ++i) {
 (*shapes)[i].Clear();
 (*shapes)[i].add_dim(1); // a single timestep
 (*shapes)[i].add_dim(this->N_);
 (*shapes)[i].add_dim(num_output);
 }
}

template <typename Dtype>
void GRULayer<Dtype>::OutputBlobNames(vector<string>* names) const {
 names->resize(1);
 (*names)[0] = "s";
}

// modified from lstm_layer.cpp
/* h -- > s
* c -- > c, omit the reset gate
*/

Figure 9: Page 1 in 5 GRU implementation in Caffe.

template <typename Dtype>
void GRULayer<Dtype>::FillUnrolledNet(NetParameter* net_param) const {
 const int num_output = this->layer_param_.recurrent_param().num_output();
 CHECK_GT(num_output, 0) << "num_output must be positive";
 const FillerParameter& weight_filler =
 this->layer_param_.recurrent_param().weight_filler();
 const FillerParameter& bias_filler =
 this->layer_param_.recurrent_param().bias_filler();

 // Add generic LayerParameter's (without bottoms/tops) of layer types we'll
 // use to save redundant code.
 LayerParameter hidden_param;
 hidden_param.set_type("InnerProduct");
 hidden_param.mutable_inner_product_param()->set_num_output(num_output * 2);
 hidden_param.mutable_inner_product_param()->set_bias_term(false);
 hidden_param.mutable_inner_product_param()->set_axis(2);
 hidden_param.mutable_inner_product_param()->
 mutable_weight_filler()->CopyFrom(weight_filler);

 LayerParameter biased_hidden_param(hidden_param);
 biased_hidden_param.mutable_inner_product_param()->set_bias_term(true);
 biased_hidden_param.mutable_inner_product_param()->
 mutable_bias_filler()->CopyFrom(bias_filler);

 LayerParameter sum_param;
 sum_param.set_type("Eltwise");
 sum_param.mutable_eltwise_param()->set_operation(
 EltwiseParameter_EltwiseOp_SUM);

 LayerParameter scalar_param;
 scalar_param.set_type("Scalar");
 scalar_param.mutable_scalar_param()->set_axis(0);

 LayerParameter slice_param;
 slice_param.set_type("Slice");
 slice_param.mutable_slice_param()->set_axis(0);

 LayerParameter split_param;
 split_param.set_type("Split");

 vector<BlobShape> input_shapes;
 RecurrentInputShapes(&input_shapes);
 CHECK_EQ(2, input_shapes.size());

 net_param->add_input("c_0");
 net_param->add_input_shape()->CopyFrom(input_shapes[0]);

 net_param->add_input("s_0");
 net_param->add_input_shape()->CopyFrom(input_shapes[1]);

Figure 10: Page 2 in 5 GRU implementation in Caffe.

 LayerParameter* cont_slice_param = net_param->add_layer();
 cont_slice_param->CopyFrom(slice_param);
 cont_slice_param->set_name("cont_slice");
 cont_slice_param->add_bottom("cont");
 cont_slice_param->mutable_slice_param()->set_axis(0);

 // Add layer to transform all timesteps of x to the hidden state dimension.
 // W_xc_x = W_xc * x + b_c
 {
 LayerParameter* x_transform_param = net_param->add_layer();
 x_transform_param->CopyFrom(biased_hidden_param);
 x_transform_param->set_name("x_transform");
 x_transform_param->add_param()->set_name("W_xc");
 x_transform_param->add_param()->set_name("b_c");
 x_transform_param->add_bottom("x");
 x_transform_param->add_top("W_xc_x");
 }

 if (this->static_input_) {
 // Add layer to transform x_static to the gate dimension.
 // W_xc_x_static = W_xc_static * x_static
 LayerParameter* x_static_transform_param = net_param->add_layer();
 x_static_transform_param->CopyFrom(hidden_param);
 x_static_transform_param->mutable_inner_product_param()->set_axis(1);
 x_static_transform_param->set_name("W_xc_x_static");
 x_static_transform_param->add_param()->set_name("W_xc_static");
 x_static_transform_param->add_bottom("x_static");
 x_static_transform_param->add_top("W_xc_x_static_preshape");

 LayerParameter* reshape_param = net_param->add_layer();
 reshape_param->set_type("Reshape");
 BlobShape* new_shape =
 reshape_param->mutable_reshape_param()->mutable_shape();
 new_shape->add_dim(1); // One timestep.
 // Should infer this->N as the dimension so we can reshape on batch size.
 new_shape->add_dim(-1);
 new_shape->add_dim(
 x_static_transform_param->inner_product_param().num_output());
 reshape_param->add_bottom("W_xc_x_static_preshape");
 reshape_param->add_top("W_xc_x_static");
 }

 LayerParameter* x_slice_param = net_param->add_layer();
 x_slice_param->CopyFrom(slice_param);
 x_slice_param->add_bottom("W_xc_x");
 x_slice_param->set_name("W_xc_x_slice");

 LayerParameter output_concat_layer;
 output_concat_layer.set_name("h_concat");

Figure 11: Page 3 in 5 GRU implementation in Caffe.

 output_concat_layer.set_type("Concat");
 output_concat_layer.add_top("s");
 output_concat_layer.mutable_concat_param()->set_axis(0);

 for (int t = 1; t <= this->T_; ++t) {
 string tm1s = this->int_to_str(t - 1);
 string ts = this->int_to_str(t);

 cont_slice_param->add_top("cont_" + ts);
 x_slice_param->add_top("W_xc_x_" + ts);

 // Add layers to flush the hidden state when beginning a new
 // sequence, as indicated by cont_t.
 // h_conted_{t-1} := cont_t * h_{t-1}
 //
 // Normally, cont_t is binary (i.e., 0 or 1), so:
 // h_conted_{t-1} := h_{t-1} if cont_t == 1
 // 0 otherwise
 {
 LayerParameter* cont_h_param = net_param->add_layer();
 cont_h_param->CopyFrom(scalar_param);
 cont_h_param->set_name("h_conted_" + tm1s);
 cont_h_param->add_bottom("s_" + tm1s);
 cont_h_param->add_bottom("cont_" + ts);
 cont_h_param->add_top("h_conted_" + tm1s);
 }

 // Add layer to compute
 // W_hc_h_{t-1} := W_hc * h_conted_{t-1}
 {
 LayerParameter* w_param = net_param->add_layer();
 w_param->CopyFrom(hidden_param);
 w_param->set_name("transform_" + ts);
 w_param->add_param()->set_name("W_hc");
 w_param->add_bottom("h_conted_" + tm1s);
 w_param->add_top("W_hc_h_" + tm1s);
 w_param->mutable_inner_product_param()->set_axis(2);
 }

 // Add the outputs of the linear transformations to compute the gate input.
 // gate_input_t := W_hc * h_conted_{t-1} + W_xc * x_t + b_c
 // = W_hc_h_{t-1} + W_xc_x_t + b_c
 {
 LayerParameter* input_sum_layer = net_param->add_layer();
 input_sum_layer->CopyFrom(sum_param);
 input_sum_layer->set_name("gate_input_" + ts);
 input_sum_layer->add_bottom("W_hc_h_" + tm1s);
 input_sum_layer->add_bottom("W_xc_x_" + ts);
 if (this->static_input_) {
 input_sum_layer->add_bottom("W_xc_x_static");

Figure 12: Page 4 in 5 GRU implementation in Caffe.

 }
 input_sum_layer->add_top("gate_input_" + ts);
 }

 // Add GRUUnit layer to compute the cell & hidden vectors c_t and s_t.
 {
 LayerParameter* gru_unit_param = net_param->add_layer();
 gru_unit_param->set_type("GRUUnit");
 gru_unit_param->add_bottom("c_" + tm1s);
 gru_unit_param->add_bottom("gate_input_" + ts);
 gru_unit_param->add_bottom("cont_" + ts);
 gru_unit_param->add_top("c_" + ts);
 gru_unit_param->add_top("s_" + ts);
 gru_unit_param->set_name("unit_" + ts);
 }
 output_concat_layer.add_bottom("s_" + ts);
 } // for (int t = 1; t <= this->T_; ++t)

 {
 LayerParameter* c_T_copy_param = net_param->add_layer();
 c_T_copy_param->CopyFrom(split_param);
 c_T_copy_param->add_bottom("c_" + this->int_to_str(this->T_));
 c_T_copy_param->add_top("c_T");
 }
 net_param->add_layer()->CopyFrom(output_concat_layer);
}

INSTANTIATE_CLASS(GRULayer);
REGISTER_LAYER_CLASS(GRU);

} // namespace caffe

Figure 13: Page 5 in 5 GRU implementation in Caffe. Note GRUUnit layer is used in this page.

#include <algorithm>
#include <cmath>
#include <vector>

#include "caffe/layer.hpp"
#include "caffe/sequence_layers.hpp"

namespace caffe {

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
 return 1. / (1. + exp(-x));
}

template <typename Dtype>
inline Dtype tanh(Dtype x) {
 return 2. * sigmoid(2. * x) - 1.;
}

template <typename Dtype>
void GRUUnitLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
 const vector<Blob<Dtype>*>& top) {
 const int num_instances = bottom[0]->shape(1);
 for (int i = 0; i < bottom.size(); ++i) {
 if (i == 2) {
 CHECK_EQ(2, bottom[i]->num_axes());
 } else {
 CHECK_EQ(3, bottom[i]->num_axes());
 }
 CHECK_EQ(1, bottom[i]->shape(0));
 CHECK_EQ(num_instances, bottom[i]->shape(1));
 }
 hidden_dim_ = bottom[0]->shape(2);
 CHECK_EQ(num_instances, bottom[1]->shape(1));
 CHECK_EQ(2 * hidden_dim_, bottom[1]->shape(2));
 top[0]->ReshapeLike(*bottom[0]);
 top[1]->ReshapeLike(*bottom[0]);
 X_acts_.ReshapeLike(*bottom[1]);
}

template <typename Dtype>
void GRUUnitLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
 const vector<Blob<Dtype>*>& top) {
 const int num = bottom[0]->shape(1);
 const int x_dim = hidden_dim_ * 2;
 const Dtype* C_prev = bottom[0]->cpu_data();
 const Dtype* X = bottom[1]->cpu_data();
 const Dtype* flush = bottom[2]->cpu_data();
 Dtype* C = top[0]->mutable_cpu_data();
 Dtype* S = top[1]->mutable_cpu_data();
 for (int n = 0; n < num; ++n) {
 for (int d = 0; d < hidden_dim_; ++d)
 {
 const Dtype z = (*flush == 0) ? 0 : (*flush * sigmoid(X[d]));
 const Dtype h = tanh(X[hidden_dim_ + d]);
 S[d] = C[d] = (1-z)*h + z*C_prev[d];
 }
 C_prev += hidden_dim_;
 X += x_dim;
 C += hidden_dim_;
 S += hidden_dim_;
 ++flush;
 }
}

Figure 14: GRU unit layer implementation in C++ page 1/2

template <typename Dtype>
void GRUUnitLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
 CHECK(!propagate_down[2]) << "Cannot backpropagate to sequence indicators.";
 if (!propagate_down[0] && !propagate_down[1]) { return; }

 const int num = bottom[0]->shape(1);
 const int x_dim = hidden_dim_ * 2;
 const Dtype* C_prev = bottom[0]->cpu_data();
 const Dtype* X = bottom[1]->cpu_data();
 const Dtype* flush = bottom[2]->cpu_data();
 const Dtype* C = top[0]->cpu_data();
 const Dtype* S = top[1]->cpu_data();
 const Dtype* C_diff = top[0]->cpu_diff();
 const Dtype* S_diff = top[1]->cpu_diff();
 Dtype* C_prev_diff = bottom[0]->mutable_cpu_diff();
 Dtype* X_diff = bottom[1]->mutable_cpu_diff();
 for (int n = 0; n < num; ++n) {
 for (int d = 0; d < hidden_dim_; ++d)
 {
 const Dtype z = (*flush == 0) ? 0 : (*flush * sigmoid(X[d]));
 const Dtype h = tanh(X[hidden_dim_ + d]);
 Dtype* c_prev_diff = C_prev_diff + d;
 Dtype* z_diff = X_diff + d;
 Dtype* h_diff = X_diff + hidden_dim_ + d;
 const Dtype c_term_diff = C_diff[d] + S_diff[d];
 *c_prev_diff = c_term_diff * z;
 *z_diff = c_term_diff * (C_prev[d] - h) * z * (1 - z);
 *h_diff = c_term_diff * (1 - z) * (1 - h*h);
 }
 C_prev += hidden_dim_;
 X += x_dim;
 C += hidden_dim_;
 S += hidden_dim_;
 C_diff += hidden_dim_;
 S_diff += hidden_dim_;
 X_diff += x_dim;
 C_prev_diff += hidden_dim_;
 ++flush;
 }
}

#ifdef CPU_ONLY
STUB_GPU(GRUUnitLayer);
#endif

INSTANTIATE_CLASS(GRUUnitLayer);
REGISTER_LAYER_CLASS(GRUUnit);

} // namespace caffe

Figure 15: GRU unit layer implementation in C++ page 2/2

#include <algorithm>
#include <cmath>
#include <vector>

#include "caffe/layer.hpp"
#include "caffe/sequence_layers.hpp"

namespace caffe {

template <typename Dtype>
__device__ Dtype sigmoid(const Dtype x) {
 return Dtype(1) / (Dtype(1) + exp(-x));
}

template <typename Dtype>
__device__ Dtype tanh(const Dtype x) {
 return Dtype(2) * sigmoid(Dtype(2) * x) - Dtype(1);
}

template <typename Dtype>
__global__ void GRUActsForward(const int nthreads, const int dim,
 const Dtype* X, Dtype* X_acts) {
 CUDA_KERNEL_LOOP(index, nthreads) {
 const int x_dim = 2 * dim;
 const int d = index % x_dim;
 if (d < dim) {
 X_acts[index] = sigmoid(X[index]);
 } else {
 X_acts[index] = tanh(X[index]);
 }
 }
}

template <typename Dtype>
__global__ void GRUUnitForward(const int nthreads, const int dim,
 const Dtype* C_prev, const Dtype* X, const Dtype* flush,
 Dtype* C, Dtype* H) {
 CUDA_KERNEL_LOOP(index, nthreads) {
 const int n = index / dim;
 const int d = index % dim;
 const Dtype* X_offset = X + 2 * dim * n;
 const Dtype z = (flush[n] == Dtype(0)) ? Dtype(0) : (flush[n] * X_offset[d]);
 const Dtype h = X_offset[dim + d];
 const Dtype c_prev = C_prev[index];
 H[index] = C[index] = z * c_prev + (Dtype(1)-z)*h;
 }
}

template <typename Dtype>
void GRUUnitLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
 const vector<Blob<Dtype>*>& top) {
 const int count = top[1]->count();
 const Dtype* C_prev = bottom[0]->gpu_data();
 const Dtype* X = bottom[1]->gpu_data();
 const Dtype* flush = bottom[2]->gpu_data();
 Dtype* X_acts = X_acts_.mutable_gpu_data();
 Dtype* C = top[0]->mutable_gpu_data();
 Dtype* H = top[1]->mutable_gpu_data();
 const int X_count = bottom[1]->count();
 // NOLINT_NEXT_LINE(whitespace/operators)
 GRUActsForward<Dtype><<<CAFFE_GET_BLOCKS(X_count), CAFFE_CUDA_NUM_THREADS>>>(
 X_count, hidden_dim_, X, X_acts);
 CUDA_POST_KERNEL_CHECK;
 // NOLINT_NEXT_LINE(whitespace/operators)

Figure 16: GRU unit layer implementation in CUDA C (running on GPU) page 1/3

 GRUUnitForward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(
 count, hidden_dim_, C_prev, X_acts, flush, C, H);
 CUDA_POST_KERNEL_CHECK;
}

template <typename Dtype>
__global__ void GRUUnitBackward(const int nthreads, const int dim,
 const Dtype* C_prev, const Dtype* X, const Dtype* C, const Dtype* H,
 const Dtype* flush, const Dtype* C_diff, const Dtype* H_diff,
 Dtype* C_prev_diff, Dtype* X_diff) {
 CUDA_KERNEL_LOOP(index, nthreads) {
 const int n = index / dim;
 const int d = index % dim;
 const Dtype* X_offset = X + 2 * dim * n;
 const Dtype z = (flush[n] == Dtype(0)) ? Dtype(0) : (flush[n] * X_offset[d]);
 const Dtype h = X_offset[dim + d];
 const Dtype c_prev = C_prev[index];
 const Dtype c = C[index];
 Dtype* c_prev_diff = C_prev_diff + index;
 Dtype* X_diff_offset = X_diff + 2 * dim * n;
 Dtype* z_diff = X_diff_offset + d;
 Dtype* h_diff = X_diff_offset + dim + d;
 const Dtype c_term_diff = C_diff[index] + H_diff[index];

 *c_prev_diff = c_term_diff * z;
 *z_diff = c_term_diff * (c_prev - h);
 *h_diff = c_term_diff * (Dtype(1) - z);
 }
}

template <typename Dtype>
__global__ void GRUActsBackward(const int nthreads, const int dim,
 const Dtype* X_acts, const Dtype* X_acts_diff, Dtype* X_diff) {
 CUDA_KERNEL_LOOP(index, nthreads) {
 const int x_dim = 2 * dim;
 const int d = index % x_dim;
 const Dtype X_act = X_acts[index];
 if (d < dim) {
 X_diff[index] = X_acts_diff[index] * X_act * (Dtype(1) - X_act);
 } else {
 X_diff[index] = X_acts_diff[index] * (Dtype(1) - X_act * X_act);
 }
 }
}

template <typename Dtype>
void GRUUnitLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
 const vector<bool>& propagate_down,
 const vector<Blob<Dtype>*>& bottom) {
 CHECK(!propagate_down[2]) << "Cannot backpropagate to sequence indicators.";
 if (!propagate_down[0] && !propagate_down[1]) { return; }

 const int count = top[1]->count();
 const Dtype* C_prev = bottom[0]->gpu_data();
 const Dtype* X_acts = X_acts_.gpu_data();
 const Dtype* flush = bottom[2]->gpu_data();
 const Dtype* C = top[0]->gpu_data();
 const Dtype* H = top[1]->gpu_data();
 const Dtype* C_diff = top[0]->gpu_diff();
 const Dtype* H_diff = top[1]->gpu_diff();
 Dtype* C_prev_diff = bottom[0]->mutable_gpu_diff();
 Dtype* X_acts_diff = X_acts_.mutable_gpu_diff();
 GRUUnitBackward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators)
 <<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>(count, hidden_dim_,

Figure 17: GRU unit layer implementation in CUDA C (running on GPU) page 2/3

 C_prev, X_acts, C, H, flush, C_diff, H_diff, C_prev_diff, X_acts_diff);
 CUDA_POST_KERNEL_CHECK;
 const int X_count = bottom[1]->count();
 Dtype* X_diff = bottom[1]->mutable_gpu_diff();
 GRUActsBackward<Dtype> // NOLINT_NEXT_LINE(whitespace/operators)
 <<<CAFFE_GET_BLOCKS(X_count), CAFFE_CUDA_NUM_THREADS>>>(
 X_count, hidden_dim_, X_acts, X_acts_diff, X_diff);
 CUDA_POST_KERNEL_CHECK;
}

INSTANTIATE_LAYER_GPU_FUNCS(GRUUnitLayer);

} // namespace caffe

Figure 18: GRU unit layer implementation in CUDA C (running on GPU) page 3/3

Figure 19: Sentence generation part 1.

Figure 20: Sentence generation part 2.

	Introduction
	Related work
	Description of problem
	Method
	Convolutional neural network
	Recurrent neural network
	Sentence generation

	Implementation
	Caffe architecture
	Simplify and implement GRU in Caffe
	Training method

	Results
	Quantitative result
	Qualitative result

	Lessons learned and future work
	Evaluation
	Conclusion and future work
	Appendices

