Math 215, Winter 2014
Midterm 1, January 30

Name: SID:

Instructor: Section:

Instructions
• The total time allowed is 60 minutes.
• The total score is 50 points.
• Use the reverse side of each page if you need extra space.
• Show all your work. A correct answer without intermediate steps will receive no credit.
• Calculators, phones and cheat sheets are not allowed.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. Solve the following differential equations for $y(t)$:
 a. $\frac{dy}{dt} = 6t^2 - \frac{y}{t}$, with $y(1) = 1$.

 Solution:

 b. $\frac{dy}{dt} = (y - y^2)te^{t^2}$, with $y(0) = 2$.

 Solution:
2. Match the direction fields with the differential equations by circling A, B, C, or D in each case. Some of these differential equations do not match any of the direction fields - for those cases circle “none”.

(1) \(y' = y^2(2 - y) \) A B C D none
(2) \(y' = y(2 - y) \) A B C D none
(3) \(y' = y(2 - y)^2 \) A B C D none
(4) \(y' = y - 2x \) A B C D none
(5) \(y' = y - \sin x \) A B C D none
(6) \(y' = y + 2x \) A B C D none
3. Consider the following system of differential equations with initial conditions.

\[\mathbf{x}'(t) = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{x}(t) \quad \mathbf{x}(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} \]

a. Solve the system for \(x_1(0) = 1, x_2(0) = 0. \)

Solution:
3 b. Find all possible initial conditions for the system so that $|\mathbf{x}(t)|$ does not go to infinity as $t \to \infty$.
4. For this question, assume that turkeys follow Newton’s law of cooling/heating. I start my oven heating at 12pm. The temperature of the oven increases linearly with time until it reaches 150°C at 12.30pm. The oven is initially at room temperature, 20°C.

a. Write an equation for the temperature of the oven as a function of t, the time in hours since 12pm.

b. A turkey is placed in the oven at 12pm. The relaxation time of the turkey is 1 hour. (Hint: this means that the constant in Newton’s law is ± 1/hour depending on your sign convention). The temperature of the turkey at 12pm is 4°C. Find the temperature of the turkey at 12.30pm (leave powers of e as part of your answer).