Maximum Likelihood in Machine Learning

MATH 290J, UCLA
©Michael Lindstrom, 2020
Many machine learning algorithms require parameter estimation. In many cases this estimation is done using the principle of **maximum likelihood** whereby we seek parameters so as to maximize the probability the observed data occurred *given* the model with those prescribed parameter values.

Examples of where maximum likelihood comes into play includes, but is not limited to:

- linear and nonlinear regression
- binary classification with logistic regression
- feed forward neural networks to classify or fit data
- clustering via mixture of Gaussians (and kmeans to an extent)
Conditional Probability and Bayes’ Theorem

The **conditional probability** of event A given that event B happened is defined by

$$\Pr(A|B) = \frac{\Pr(A \land B)}{\Pr(B)}.$$

From this very definition, we uncover **Bayes’ Theorem**:

$$\Pr(A|B) = \frac{\Pr(A \land B)}{\Pr(B)} = \frac{\Pr(A \land B) \Pr(A)}{\Pr(A) \Pr(B)} = \frac{\Pr(B|A) \Pr(A)}{\Pr(B)}.$$
For the sake of introducing maximum likelihood, we consider fitting data to a model describing how the data are generated. We denote:

- D: the data/observations collected
- $M(\theta)$: the model M chosen parameterized by parameters θ

For example, if we believe values are chosen from the a normal distribution $\mathcal{N}(\mu = 3, \sigma^2 = 22)$ then $\theta = (\mu, \sigma^2)$ and M is a normal distribution.
Terminology

We define the following terms:

posterior (probability): \(\Pr(M(\theta) | D) \), i.e., the probability \(M(\theta) \) is correct given the observed data.

likelihood: \(\Pr(D | M(\theta)) \), i.e., the probability the data are observed given the model and parameters are true.

prior (probability): \(\Pr(M(\theta)) \), i.e., the probability mass/density for \(M(\theta) \).

Remark: often expressions like \(\Pr(D | M(\theta)) \) are not probabilities! They could be probability densities, too. That doesn’t stop the general community from this sort of notation.
Problems

\textbf{posterior}: \Pr(M(\theta)|D)

\textbf{likelihood}: \Pr(D|M(\theta))

\textbf{prior}: \Pr(M(\theta))

Most would generally agree that the “best model and parameters” would occur when the \textbf{posterior} is maximal. The trouble is that we cannot directly calculate it!

But by Bayes’ Theorem we can write that

\[\Pr(M(\theta)|D) = \frac{\Pr(D|M(\theta)) \Pr(M(\theta))}{\Pr(D)} \]
If we really wanted, we can express $\Pr(D)$ in terms of (many) likelihoods as

$$\Pr(D) = \int_M \Pr(D|m) d\mu(m)$$

where m ranges over M, all possible $M(\theta)$, and μ is a measure on M.

This isn’t really necessary as in trying to maximize $\Pr(M(\theta)|D)$, it is only a normalization constant.
Frequentist vs Bayesian Perspective

So how to we maximize

\[\text{Pr}(M(\theta)|D) \propto \text{Pr}(D|M(\theta)) \text{Pr}(M(\theta)) \]?

Frequentist: a **frequentist** would say, “knowing the prior does *not* make sense! How can we possibly know something about the probability density/mass of all possible models in existence with their associated sets of parameters? Let’s give up on the prior and focus on maximizing the likelihood!”

Bayesian: a **bayesian** person would say, “let’s make an assumption on the prior and then try to maximize the posterior.”
Least Squares

The classical **least squares** algorithm is the frequentist approach of estimating parameters. Let’s derive this famous result.

Let us denote $Y \in \mathbb{R}$ to be a random variable representing a measurement in an experiment. Given an input $x \in \mathbb{R}^n$, we assume

$$Y = f(x; \theta) + \epsilon$$

where

- f is a model parameterized by θ and
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is a Gaussian random variable (experimental error/uncertainty).

We shall denote

$$D = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$$

to be experimental points with inputs $x^{(i)}$ and measured value of Y given by $y^{(i)}$.
Least Squares

Model with Gaussian error.
Least Squares

For ease of notation, denote $\epsilon^{(i)} = y^{(i)} - f(x^{(i)}; \theta)$. Each $\epsilon^{(i)}$ is a random variable with pdf (probability density function)

$$p(z) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{z^2}{2\sigma^2}\right).$$

Assuming they are iid (independent identically distributed), to maximize the likelihood we want to maximize

$$L = \Pr(D|M(\theta))$$

$$= \prod_{i=1}^{N} \Pr(\epsilon^{(i)} = y^{(i)} - f(x^{(i)}; \theta))$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y^{(i)} - f(x^{(i)}; \theta))^2}{2\sigma^2}\right).$$
Least Squares

Often one seeks to maximize the log likelihood or minimize the negative log likelihood. Thus we wish to minimize

\[-\mathcal{L} = - \log L\]

\[= \sum_{i=1}^{N} \left(\log(\sqrt{2\pi\sigma}) + \frac{(y^{(i)} - f(x^{(i)}; \theta))^2}{2\sigma^2} \right)\]

\[= \frac{N}{2} \log(2\pi) + N \log \sigma + \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}; \theta))^2\]

The value of \(-\mathcal{L}\) is minimized when

- \(\theta\) minimizes \(\sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}; \theta))^2\) and
- \(\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - f(x^{(i)}; \theta))^2\) (yes, technically \(\sigma\) is a model parameter, too).
Aside: Too Many Parameters?

It is certainly possible to overfit data using maximum likelihood. Imagine fitting a polynomial of degree d through N points in the plane. The least squares error could be zero once $d = N - 1$.

The **Aikake Information Criterion (AIC)** is a means to penalize models with too many parameters. When comparing models, one compares their AIC values

$$\text{AIC} = 2d - 2 \log L^*$$

where d is the number of parameters in a model and L^* is the maximum likelihood for that model. The model with the lower AIC is often preferred: higher d is bad unless $\log L^*$ can increase enough to compensate.
When Maximum Likelihood Isn’t So Good

While maximum likelihood is often a good approach, in certain cases, it can lead to a heavily biased estimates for parameters, i.e., in expectation, the estimates are off. Here is a trivial example.

Suppose our model posits that $X \sim U([0, \alpha])$ is a random variable uniformly distributed on $[0, \alpha]$, i.e., the pdf is

$$p(x) = \begin{cases}
\frac{1}{\alpha}, & 0 \leq x \leq \alpha \\
0, & \text{otherwise}.
\end{cases}$$
We are given the set of sample points \(D = \{ x_1, x_2, \ldots, x_N \} \). Given the data, what estimate do we place on \(\alpha \)?

We adopt the **indicator function** notation. We write \(\mathbb{1}_{x_i \leq \alpha} \) to represent the value 1 if \(x_i \leq \alpha \) and 0 otherwise, etc.
When Maximum Likelihood Isn’t So Good

Assuming iid,

$$
\Pr(D|\alpha) = \prod_{i=1}^{N} \left(\frac{1}{\alpha} \mathbb{1}_{x_i \leq \alpha} \right)
$$

$$
= \frac{1}{\alpha^N} \mathbb{1}_{x_1 \leq \alpha, x_2 \leq \alpha, \ldots, x_N \leq \alpha}
$$

$$
= \frac{1}{\alpha^N} \mathbb{1}_{\max\{x_1, \ldots, x_N\} \leq \alpha}
$$

Since α^{-N} is monotonically decreasing in α, it is maximal when α is as small as possible. But from the $\mathbb{1}_{\max\{x_1, \ldots, x_N\} \leq \alpha}$ term, α can be no smaller than $\max\{x_1, \ldots, x_N\}$ or else the likelihood is 0 whence the maximum likelihood $\alpha = \max\{x_1, \ldots, x_N\}$.
When Maximum Likelihood Isn’t So Good

Is this estimate any good? Given N iid points X_i sampled from $U([0, \alpha])$, we can calculate $\mathbb{E}(Y = \max\{X_1, \ldots, X_N\})$.

The cdf (cumulative distribution function) for Y,

$$F(y) = \Pr(Y \leq y) = \prod_{i=1}^{N} \Pr(X_i \leq y) = \prod_{i=1}^{N} \left(\begin{cases} 0, & y < 0 \\ y/\alpha, & 0 \leq y \leq \alpha \\ 1, & y > \alpha \end{cases} \right)$$

yielding a pdf

$$f(y) = F'(y) = \frac{N}{\alpha^N} y^{N-1} 1_{0 \leq y \leq \alpha}.$$ Integrating, we calculate $\mathbb{E}(Y) = \int_{0}^{\alpha} yf(y)\,dy = \frac{N}{N+1} \alpha$.

So as N increases, the estimate is better and better. But it tends to underestimate the true value.
Logistic Regression

Logistic regression is a supervised learning algorithm (we know some ground truths ahead of time and these are used to “train” the algorithm). In its basic form, it is used to classify a binary output: “cat” vs “not cat”, “cancerous” vs “benign”, etc.

As as a model, we denote \(x = (1, x_1, x_2, ..., x_n) \in \mathbb{R}^{n+1} \) to be a features vector (a 1 plus the values of \(n \) properties used to make a prediction plus). The 1 is useful later.

We assume there is a Bernoulli random variable \(Y \in \{0, 1\} \) to indicate a negative/positive result we wish to describe where

\[
Y \sim \text{Bernoulli}(p(x; \theta)),
\]

i.e., given an \(x \), we can say

\[
\Pr(Y = 1) = 1 - \Pr(Y = 0) = p(x; \theta).
\]

The parameters are represented by \(\theta \).
Logistic Regression

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>rent $</td>
<td></td>
</tr>
<tr>
<td># thefts</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>record 1</td>
<td>1</td>
</tr>
<tr>
<td>record 2</td>
<td>0</td>
</tr>
<tr>
<td>record N</td>
<td>0</td>
</tr>
<tr>
<td>1 1000</td>
<td>3</td>
</tr>
<tr>
<td>1 2300</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1 1600</td>
<td>0</td>
</tr>
</tbody>
</table>

Idea of using data to make predictions on a binary outcome.

Remark: often data are normalized before being placed in a logistic regression fit. Thus, we may convert all values to their z-scores or divide all values by the $\| \cdot \|_\infty$ value.
Logistic Regression

In logistic regression, we choose

\[
\theta = \begin{pmatrix}
\theta_0 \\
\theta_1 \\
\vdots \\
\theta_n
\end{pmatrix} \in \mathbb{R}^{n+1}
\]

and then let

\[
p(x; \theta) = \sigma(x\theta) = \sigma(\theta_0 + x_1\theta_1 + \ldots + x_n\theta_n)
\]

where \(\sigma\) is the \textbf{logistic} or \textbf{sigmoid} function

\[
\sigma(z) = \frac{\exp(z)}{1 + \exp(z)}.
\]
Logistic Regression

Plot of sigmoid function.
Logistic Regression

Given a data matrix $X \in \mathbb{R}^{N \times (n+1)}$ storing N records of features with corresponding ground truths stored in $y \in \{0, 1\}^N$, we assume each y_i is the realization of a Bernoulli trial with $x = X_i$: the i^{th} row of X.

Finding the optimal $\theta \in \mathbb{R}^{n+1}$ for logistic regression amounts to maximizing the likelihood:

$$L = \prod_{i=1}^{N} \Pr(Y = y_i | X_i, \theta)$$

nice trick

$$\approx \prod_{i=1}^{N} \Pr(Y = 0 | X_i, \theta)^{y_i=0} \Pr(Y = 1 | X_i, \theta)^{y_i=1}$$
Logistic Regression

The log likelihood is

\[L = \sum_{i=1}^{N} \mathbb{1}_{y_i=0} \log(1 - \sigma(X_i; \theta)) + \mathbb{1}_{y_i=1} \log(\sigma(X_i; \theta)) \]

\[= \sum_{i \text{ s.t. } y_i=0} \log(1 - \sigma(X_i; \theta)) + \sum_{i \text{ s.t. } y_i=1} \log(\sigma(X_i; \theta)) \]

Note: The this value is hurt a lot when the algorithm is really sure that \(Y_i = 1 \) (\(\sigma \approx 1 \)) but \(y_i = 0 \) (\(\log(1 - \sigma) \downarrow -\infty \)). The same story applies when the algorithm believes \(Y_i = 0 \) but \(y_i \) is in fact 1.
Logistic Regression

Remarks: Mathematically, \(\sigma \in (0, 1) \). But through numerical roundoff errors, this can become 0 or 1. This will screw up computations. So from a practical perspective, it can be useful to define:

\[
\sigma(z) = \begin{cases}
\epsilon, & \text{if } \frac{\exp(z)}{1+\exp(z)} \leq \epsilon \\
1 - \epsilon, & \text{if } \frac{\exp(z)}{1+\exp(z)} \geq 1 - \epsilon \\
\frac{\exp(z)}{1+\exp(z)}, & \text{otherwise}
\end{cases}
\]

for some \(0 < \epsilon \ll 1 \). Pick \(\epsilon = 10^{-12} \), say.

The trick with the indicator function is quite useful: it allows us to write simpler sums that are not directly using the values of the response variable \(y_i \).
Logistic Regression

Finding the likelihood maximizing θ can be done with a method such as gradient descent upon $-\log \mathcal{L}$.

If we wish to find

$$\hat{\theta} = \arg\min_{\theta} (-\log \mathcal{L}(\theta))$$

we pick an initial guess $\theta^{(0)}$. Then denote

$$G(\theta) = \nabla_{\theta}(-\log \mathcal{L}(\theta)) \in \mathbb{R}^{n+1}.$$

We recursively define

$$\theta^{(i+1)} = \theta^{(i)} - \alpha G(\theta^{(i)})$$

where $0 < \alpha$ is a learning rate. Usually $\alpha \ll 1$, maybe 0.01 or something.
Logistic Regression

For predictions, one can vary a tolerance threshold $0 < \tau < 1$ such that we predict $Y = 0$ when $p(x; \theta) < \tau$ and $Y = 1$ otherwise. The choice of $\tau = 0.5$ is intuitive but not always the right choice. Generally as τ varies, there is a tradeoff between true positives (model predicts a positive outcome and observations confirm that) and false positives (observation results in a negative outcome but the model predicts a positive outcome).

If $\tau \downarrow 0$ then the model always predicts a positive outcome: the true positive rate is 100% (but so is the false positive rate - not good).

If $\tau \uparrow 1$ then the model always predicts a negative outcome: the false positive rate is 0% (but so is the true positive rate - not good).
Logistic Regression

One concern with logistic regressions is if they have predictive power in an unbalanced dataset: 95% of cases are positive, say. In that case, always predicting positive, regardless of the inputs would yield an accuracy of 95%.

To evaluate predictive power (besides validating against more data), we begin by imagining a perfect logistic regression algorithm.

For a perfect regression, we should be able to sort the N data points into

x_1, \ldots, x_m where $y_1 = 0, \ldots, y_m = 0$ with $p(x_1; \theta) \leq \ldots \leq p(x_m; \theta) < \tau$ and x_{m+1}, \ldots, x_N where $y_{m+1} = 1, \ldots, y_N = 1$ with $\tau \leq p(x_{m+1}; \theta) \leq \ldots \leq p(x_N; \theta)$.
For different τ, perfect (and useless) classifiers will change their predictions. Perfect classifiers can perfectly separate outcomes based on the p's and useless classifiers mix everything up.
Logistic Regression

In general then, as τ ranges on $[0, 1]$, we should see an ROC (receiver operator characteristic) curve moving from $(1, 1)$ to $(0, 1)$ then to $(0, 0)$ in the true positive vs false positive space.

A random regression where no insights can be drawn would mix up the positive and negative cases tracing a curve from $(1, 1)$ to $(0, 0)$.

In general, the ROC curve is somewhere between the two for a predictive model. The AUC (area under the curve) will be bigger than 0.5.
Logistic Regression

ROC curves. The AUC is the area under the curve as τ varies from 0 to 1.
Let’s consider another problem, an **unsupervised learning** problem (ground truth is not known). We want to group observation points into clusters.

As a model, we assume there exist k different groups and each observation belongs to one of these groups. *We never know what group an observation truly belongs to!*
Mixture of Gaussians

We imagine a datum X_i being generated as follows:

- Choose

$$Z_i \sim \text{Multinomial}(p_1, \ldots, p_k)$$

to be a cluster index so $Z_i \in \{1, 2, \ldots, k\}$ with $\Pr(Z_i = j) = p_j$ for $1 \leq j \leq k$. We say Z_i is a **latent variable** because we never know it.

- After assigning a cluster, j, say, the observation is given a value in \mathbb{R}^n according to a **multivariable Gaussian**

$$X_i \sim \mathcal{N}(\mu_j, \Xi_j)$$

where $\mu_j \in \mathbb{R}^n$ is the mean for cluster j and $\Xi_j \in \mathbb{R}^{n \times n}$ is the **covariance** of points within cluster j, i.e.,

$$\Xi = \mathbb{E}((X_j - \mu_j) \otimes (X_j - \mu_j)).$$
Mixture of Gaussians

Case of 2 clusters with different means and covariances. Observations do come from one of the clusters but the real clustering is unknown.
Mixture of Gaussians

Notation: for brevity (context should make it clear), we may write

\(\Xi \) to represent all of \(\Xi_1, \ldots, \Xi_k \);

\(Z \) to represent all of \(Z_1, \ldots, Z_N \),

\(x \) to represent all of \(x_1, \ldots, x_N \);

etc.
Mixture of Gaussians

There is a lot we don’t know: the μ’s, Ξ’s, and p’s! Putting that aside for now, we can try to come up with a likelihood.

We shall denote

$$
\rho(u; \mu_i, \Xi_i) = \frac{1}{(2\pi)^{n/2}|\Xi_i|^{n/2}} \exp\left(-\frac{1}{2} \langle u - \mu_i, \Xi_i^{-1}(u - \mu_i) \rangle \right)
$$

to be the density of the multivariable Gaussian in cluster i.

For a single observation X_i (and playing fast and loose with densities and probabilities):

$$
\Pr(X_i = x_i|\rho, \mu, \Xi) = \sum_{\ell=1}^{k} \Pr(X_i = x_i|\mu_\ell, \Xi_\ell) \Pr(Z_i = \ell)
$$

$$
= \sum_{\ell=1}^{k} p_\ell \rho(x_i; \mu_\ell, \Xi_\ell)
$$

Not so bad...
Mixture of Gaussians

Now we consider our entire dataset. We have N realizations of these random variables x_1, \ldots, x_N. The likelihood, assuming each observation is iid is:

$$L = \prod_{i=1}^{N} \left(\sum_{\ell=1}^{k} p_{\ell} \rho(x_i; \mu_\ell, \Xi_\ell) \right).$$

And the log likelihood is

$$\mathcal{L} = \sum_{i=1}^{N} \log \left(\sum_{\ell=1}^{k} p_{\ell} \rho(x_i; \mu_\ell, \Xi_\ell) \right).$$

This is not much of an improvement. Maximizing this is difficult: we can’t maximize analytically here and gradients are difficult to compute.

Remark: one of the chief difficulties is having a log of a sum. The fact we don’t know the Z_i’s is a big challenge!
Mixture of Gaussians

Suppose we knew the Z_i’s... Then

$$\Pr(X_i = x_i \land Z_i = z_i | \rho, \mu, \Xi) = \Pr(X_i = x_i | \mu_{z_i}, \Xi_{z_i}) \Pr(Z_i = z_i)$$

$$= \rho_{z_i} \rho(x_i; \mu_{z_i}, \Xi_{z_i}),$$

not a sum anymore. So if we knew all the Z_i’s then the complete likelihood and complete log likelihoods are given by

$$L^* = \prod_{i=1}^{N} \rho_{z_i} \rho(x_i; \mu_{z_i}, \Xi_{z_i})$$

$$L^* = \prod_{i=1}^{N} \prod_{\ell=1}^{k} \left(\rho_{\ell} \rho(x_i; \mu_{z_\ell}, \Xi_{z_\ell}) \right)^{z_i = \ell} \implies$$

$$\mathcal{L}^* = \log L^* = \sum_{i=1}^{N} \sum_{\ell=1}^{k} \mathbb{1}_{z_i = \ell} \left(\log \rho_{\ell} + \log \rho(x_i; \mu_{\ell}, \Xi_{\ell}) \right)$$
Mixture of Gaussians

It can be proven that by *maximizing the expected value of the complete log likelihood with respect to posterior of the latent variables, we also maximize the true likelihood*. We want to maximize

$$\mathbb{E}_{Z|X}(\mathcal{L}^*).$$

$\mathbb{E}_{Z|X}$ means to compute an expectation conditioned on the observed data X. In particular:

$$\mathbb{E}_{Z|X}(\mathcal{L}^*) = \sum_{i=1}^{N} \sum_{\ell=1}^{k} \mathbb{E}_{Z|X}(\mathbb{1}_{Z_i = \ell} (\log p_\ell + \log \rho(x_i; \mu_\ell, \Xi_\ell)))$$

$$= \sum_{i=1}^{N} \sum_{\ell=1}^{k} \mathbb{E}_{Z|X}(\mathbb{1}_{Z_i = \ell}) (\log p_\ell + \log \rho(x_i; \mu_\ell, \Xi_\ell))$$

$$= \sum_{i=1}^{N} \sum_{\ell=1}^{k} \Pr(Z_i = \ell|X_i = x_i) (\log p_\ell + \log \rho(x_i; \mu_\ell, \Xi_\ell))$$
Mixture of Gaussians

From Bayes, we can write

\[
\Pr(Z_i = \ell | X_i = x_i) = \frac{\Pr(X_i = x | Z_i = \ell) \Pr(Z_i = \ell)}{\Pr(X_i = x)} = \frac{p_{\ell} \rho(x_i; \mu_{\ell}, \Xi_{\ell})}{\sum_{\ell=1}^k p_{\ell} \rho(x_i; \mu_{\ell}, \Xi_{\ell})} := \gamma_{i,\ell}
\]

This means for fixed parameters, we have

\[
\mathbb{E}_{Z|X}(L^*) = \sum_{i=1}^N \sum_{\ell=1}^k \gamma_{i,\ell} (\log p_{\ell} + \log \rho(x_i; \mu_{\ell}, \Xi_{\ell})).
\]
Mixture of Gaussians

If the γ’s were fixed, it wouldn’t be hard to maximize this. Since the $\log p_\ell$ and $\log \rho(x_i; \mu_{z_\ell}, \Xi_{z_\ell})$ terms are decoupled, we can maximize p separately from μ and Ξ. To maximize over p we wish to:

$$\text{maximize } F(p) = \sum_{i=1}^{N} \sum_{\ell=1}^{k} \gamma_{i,\ell} \log p_\ell$$

subject to $G(p) = \sum_{\ell=1}^{k} p_\ell - 1 = 0$, $\min p \geq 0$.

The Lagrange system is

$$\nabla F = \lambda \nabla G$$

$$G(p) = 0$$
Mixture of Gaussians

We can compute

$$\partial_{p_j} F = \sum_{i=1}^{N} \sum_{\ell=1}^{k} \gamma_{i,\ell} \frac{\delta_{\ell,j}}{p_{\ell}} = \sum_{i=1}^{N} \frac{\gamma_{i,\ell}}{p_j}$$

and

$$\partial_{p_j} G = 1.$$

Given that $$\sum_{i=1}^{N} \frac{\gamma_{i,\ell}}{p_j} = \lambda$$ for $$j = 1, \ldots, k$$, we get $$p_j = \lambda^{-1} \sum_{i=1}^{N} \gamma_{i,j}$$. And by the $$G$$ constraint,

$$\sum_{j=1}^{k} p_j = 1 = \lambda^{-1} \sum_{i=1}^{N} \sum_{j=1}^{k} \gamma_{i,j}$$

giving $$\lambda = N$$ so that

$$p_j = \frac{1}{N} \sum_{i=1}^{N} \gamma_{i,j}.$$
Mixture of Gaussians

Maximizing over μ and Ξ can be done, too, but the work is more cumbersome...

To maximize $\mathbb{E}_{Z \mid X}(\mathcal{L}^*)$, we employ the famous EM (Expectation Maximization) algorithm:

- **E-step:** calculate $\gamma^{(t+1)}$ with fixed $p^{(t)}, \mu^{(t)}, \Xi^{(t)}$.
- **M-step:** with $\gamma^{(t+1)}$ fixed, let $(p^{(t+1)}, \mu^{(t+1)}, \Xi^{(t+1)}) = \arg \max_{p, \mu, \Xi} \mathbb{E}_{Z \mid X}(\mathcal{L}^*)$.
- Iterative between Expectation and Maximization until convergence.

The appropriate cluster for x_i is $\ell = \arg \max_{\ell} \gamma_i, \ell$.
In general $\mathbb{E}_{Z \mid X}(\mathcal{L}^*)$ gives a lower bound for \mathcal{L}. Iteratively, we can maximize \mathcal{L}.

Mixture of Gaussians
Mixture of Gaussians

Remarks: The value \(k \) is a **hyperparameter** (we choose it ahead of time) although there are means of justifying what \(k \) should be.

The **EM** algorithm is very general and is often used in models where there are latent variables.

The **kmeans** algorithm can be thought of as a mixture of Gaussians where all of the covariance matrices \(\Xi \) are equal to \(\sigma^2 I \) where \(\sigma^2 \) is a variance and \(I \) is the identity: in other words, all the clusters are “spherically” symmetric with the same spread.
The basic kmeans algorithm clusters N points $x_i \in \mathbb{R}^n, i = 1, ..., N$, into k clusters. To implement:

1. Begin by randomly assigning each point to a cluster from 1 to k.
2. Calculate $\mu_1, ..., \mu_k$, the centre of mass of each cluster given the assignments.
3. For each point x_i, place it in the cluster index ℓ where $\ell = \arg \min_\ell \text{dist}(x_i, \mu_\ell)$.
4. Repeat (2) and (3) until convergence.

Step (3) can be thought of calculating $\gamma_{i,\ell}$ and “rounding” $\gamma_{i,\ell}$ up to 1 where it is maximal. Step (2) can be thought of as estimating the parameters $\mu_1, ..., \mu_k$ with the γ’s fixed.
Mixture of Gaussians

We can justify maximizing $\mathbb{E}_{Z \mid L}(L^*)$ to maximize L as follows:

$$L(p, \mu, \Xi) = \log \Pr(X \mid p, \mu, \Xi) = \log \sum_{z \in \{1, 2, \ldots, k\}^N} \Pr(X \wedge (Z = z) \mid p, \mu, \Xi)$$

$$= \log \sum_{z \in \{1, 2, \ldots, k\}^N} \Pr(Z = z \mid X) \frac{\Pr(X \wedge (Z = z) \mid p, \mu, \Xi)}{\Pr(Z = z \mid X)}$$

Jensen

$$\geq \sum_{z \in \{1, 2, \ldots, k\}^N} \Pr(Z = z \mid X) \log \frac{\Pr(X \wedge (Z = z) \mid p, \mu, \Xi)}{\Pr(Z = z \mid X)}$$

$$= \sum_{z \in \{1, 2, \ldots, k\}^N} \left(\Pr(Z = z \mid X) \log \Pr(X \wedge (Z = z) \mid p, \mu, \Xi) \right)$$

$$- \Pr(Z = z \mid X) \log \Pr(Z = z \mid X))$$

$$= \mathbb{E}_{Z \mid L}(L^*(p, \mu, \Xi)) - \sum_{z \in \{1, 2, \ldots, k\}^N} \Pr(Z = z) \log \Pr(Z = z).$$