Constructing the Squares

We'll give a geometric construction. An algebraic one follows by thinking in terms of chains instead.

Notation Let X be a pointed space, $*$ the base point, let π be a subgroup of Σ_n, \[X_n = K(R,n), \] R a fixed field.

Since X is pointed, X^n is filtered:
\[
X^n = \{ (x_1, \ldots, x_n) | \text{at most 1 } x_i \neq * \} \subseteq \cdots \subseteq \{ x_1, \ldots, x_n \} | \text{at most } n-1 \} \subseteq X^n
\]

\[F_0 = \bigwedge^n X \]

\[F_{n-1} = \text{"fat wedge"} \]

The group π acts on X^n:
\[
\sigma((x_1, \ldots, x_n)) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)})
\]

\[\dagger \] the group action respects the filtration (Say $F_i \to F_{i+1}$ is π-equivariant).

⇒ cofibers get a π-action.

Most important is

Def The n-fold smash power of X is
\[
X^{(n)} = X^n / F_{n-1}
\]

This is canonically a π-space. However, the π-action isn't free \[(\pi(x, \ldots, x) = (x, \ldots, x)) \].

Now we need an equivariant construction.

Def If X is a G-space, then the Borel construction is the orbit space
\[
X_{hG} := EG \times_G X = (EG \times X)_G
\]

Here EG is a free, contractible G-space \[\dagger \] G acts on $EG \times X$ diagonally: \[g(e, x) = (g(e), g(x)). \]
Prop 4.1 If G acts freely on X, then $X_{na} = X_G$.

If G acts trivially on X, then $X_{hG} = BG 	imes X$.

Idea is that if G acts freely, then $EG \times X \to X$ is G-equivariantly a homotopy equivalence.

Can realize $EG \times X$ as a bundle over BG:

1. $EG \times X \to X$ is a G-map \Rightarrow get a map
 $$EG \times X \to EG \times X = BG.$$
 This is the map

2. $G \to EG \xrightarrow{BG} \text{is a fibration. We form } EG \times X \text{ by replacing}$

 the fiber G with X using the G-action.

$$\Rightarrow X \to EG \times X \downarrow_{BG}$$

We can apply all of this to $X^{(n)} \downarrow \pi$.

\Rightarrow Have bundles over $B\pi$ w/ total space
$$E_\pi \times F_{n-1} \downarrow \pi \times X^n.$$

Since $F_{n-1} \leq X^n$ equivariantly,

$$E_\pi \times F_{n-1} \leq E_\pi \times X^n \text{ as a subbundle.}$$

Def. The π-extended power of X is

$$D_\pi X = \left(E_\pi \times X^n \right) \left/ E_\pi \times F_{n-1} \right.$$

We can rewrite the right-hand side as

$$E_\pi \left/ \pi \right. \downarrow \pi \times X^{(n)}.$$

The π-extended power construction is the source of all Steenrod \ast power operations.

We need to understand the cohomology, especially in the universal
case of K_n.

Thm 1. If $\overline{H}^r(x) = 0$ for $r < q$, then $\overline{H}^s(D, X) = 0$ for $s < q$.

Moreover, $\overline{H}^q(D, X) = (\overline{H}(x)^{\otimes n})^\pi$ invariant.

Can give a few proofs. For the first part, let's assume X is s.c.

- The q-skeleton of X is a wedge of q-spheres.
- The nq-skeleton of $X^{(n)}$ is a wedge of (nq)-spheres.
- The nq-skeleton of D, X is a wedge of (nq)-spheres.

To better understand $\overline{H}^q(D, X)$, we use the relative Serre SS:

Thm 2. If $F' \subseteq F$ are a bundle over a fixed base B, then there is a 1^s-quadrant SS with

$$E_2^{p, q} = H^p(B; \overline{H}^q(F, F'; R)) \Rightarrow H^{p+q}(E, E'; R).$$

In our case, $E' = E \hat{\times} F_{n-1}$, $E = E \hat{\times} X^n$, so $H^{p+q}(E, E'; R) = \overline{H}^{p+q}(D, X'; R)$.

Let $B = B_{\pi}$ has $\pi_{\pi} = \pi$. This acts non-trivially on $\overline{H}^*(F, F')$.

Now $H^*(F, F'; R) = \overline{H}^*(F/F'; R) = \overline{H}^*(X^{(n)})$

$= \overline{H}^*(x)^{\otimes n}$, this is all π-equivariant. So we know that $H^*(F, F'; R) = 0$, $H^*(x)^{\otimes n} = n^q$.

$$\begin{array}{c}
\overline{H}^*(\pi; \overline{H}^q(x)^{\otimes n}) \\
\hline
n^q \\
\hline
\end{array}$$
So for $s < n \cdot q$, $E_2^{s, s} = 0 \Rightarrow$

1. everything in $E_2^{s, s}$ is a perm cycle
2. $\overline{H}^\ast(D_\pi X) = \begin{cases} 0 & \ast < n \cdot q \\ H^\ast(\Pi_j \overline{H}(x)^{\otimes n}) & \ast = n \cdot q \end{cases}$

Since $H^0(G, M) = M^G$ (by def), we conclude

$$\overline{H}^\ast(D_\pi X) = \begin{cases} 0 & \ast < n \cdot q \\ \left(H^\ast(x)^{\otimes n}\right)_\Pi & \ast = n \cdot q \end{cases}$$

We apply this to K_q.

Prop 2 $H^\ast(K_q; R) = \begin{cases} 0 & \ast < q \\ R & \ast = q \end{cases}$

Cor $\overline{H}^{n q}(D_\pi K_q; R) = R$, generated by a class $p_\pi L_q$ s.t. $p_\pi L_q \mapsto \overline{\Lambda}_q^{\otimes n} \overline{H}^{n q}(D_\pi K_q) \mapsto \overline{H}^{n q}(K_q^\ast)$

So in fact we have a map $D_\pi K_q \xrightarrow{p_\pi L_q} K_q$

Def Let $u \in H^q(x)$. Then the Total Steenrod power on u is the composite

$$D_\pi X \xrightarrow{D_\pi u} D_\pi K_q \xrightarrow{p_\pi} K_q$$

To get Steenrod ops in the usual form, we pull back along the diagonal $X \xrightarrow{\Delta} X^\ast$ is π_\ast equivariant \Rightarrow

$$E_{\pi_\ast} \overline{H}^\ast X \xrightarrow{\Delta} D_\pi X$$

$$B_{\pi_\ast} \overline{H}^\ast X$$

Now $\overline{H}^\ast(B_{\pi_\ast} \overline{H}^\ast X) = H^\ast(B_{\pi_\ast}) \otimes H^\ast(x)$, so

The composite $B_{\pi_\ast} \overline{H}^\ast X \xrightarrow{\Delta} D_\pi X \xrightarrow{p_{\pi_\ast} u} K_q$

is a sum $\sum b_i \otimes x_i$

$H^\ast(B_{\pi_\ast}) \otimes H^\ast(x)$
Let's restrict attention to $n = 8$, $\pi = \Sigma^2$, $\mathbb{R} = \mathbb{F}_2$.

Then $B\pi = \mathcal{R}P^\infty$, so $H^*(B\pi; \mathbb{F}_2) = \mathbb{F}_2[x]$, $|x| = 1$.

Def $\Delta^*(\mathbb{P}_2 L_q) = \sum x^iq_i \otimes Sq^i(u)$

This canonically defines elements $Sq^i(u) \in H^{2+i}(X; \mathbb{F}_2)$.

Prop $Sq^2 u = u^2$

PF Consider the "inclusion of the fiber" $K_q \hookrightarrow E_{\pi_+}^\pi K_q$

Then we have a square:

\[
\begin{array}{ccc}
E_{\pi_+}^\pi K_q & \xrightarrow{\Delta} & D_2 K_q \\
\uparrow \quad \quad \quad \uparrow \\
K_q & \xrightarrow{\Delta} & K_q^{(2)}
\end{array}
\]

and a map $D_2 K_q \rightarrow K_q^{(2)}$.

We look at what happens to $\mathbb{P}_2 L_q$ under these maps:

\[
\begin{array}{ccc}
\sum x^q \otimes Sq^i L_q & \xleftarrow{\text{Def of } Sq^i} & \mathbb{P}_2 L_q \\
\downarrow & & \downarrow \\
H^q(B\pi_+ K_q) & \xleftarrow{\text{Thm 1}} & H^q(D_2 K_q) \\
\downarrow & & \downarrow \\
Sq^q L_q & \xleftarrow{\text{def of } \Delta^2} & L_q^{(2)} \\
\downarrow & & \downarrow \\
L_q & \xrightarrow{\Delta} & L_q
\end{array}
\]

So $Sq^2 L_q = L_q^2$. Naturality gives the result.