Look today at the Serre SS for the case $F=S^n$
So if $S^n \rightarrow E \rightarrow B$ is a (simple) spherical fibration, then the
Serre SS is especially simple: it is a long exact sequence

\[H^*(B) \otimes H^n(S^n) \rightarrow \text{All Zero!} \rightarrow H^*(E) \]

As an algebra, $E_2 = H^*(B) \otimes H^*(S^n) = H^*(B) \otimes E(x_n)$
Since $H^*(B)$ sits on the zero line, everything in $H^*(B)$
is a permanent cycle. \Rightarrow differentials are completely determined
by those on x_n.

For degree reasons, only possibility is a d_{n+1}.
So $d_{n+1}(x) = e \in H^{n+1}(B)$, and if $b \in H^*(B)$,
\[d_{n+1}(x \cdot b) = d_{n+1}(x) \cdot b + (-1)^{x_1} x \cdot d_{n+1}(b) \]
\[= e \cdot b. \]
Thus $H^{*q}(E_{n+1}, d_{n+1}) = \begin{cases} \text{ker}(H^*(B) \cdot e \rightarrow H^*(B)) & \text{in } q=n, \\ 0 & \text{in } q=0, n, \\ \text{coker}(H^*(B) \cdot e \rightarrow H^*(B)) & \text{in } q=0 \end{cases}$

For degree reasons, this is also E_∞.
We'll return to reassembling this into $H^*(E)$ in a minute.

The class e is called the Euler class of the spherical fibration.

This notation comes from vector bundles & characteristic classes.
If $V \rightarrow B$ is a vector bundle w/ a metric (say B compact enough)
then we have an associated sphere bundle $S(V) \rightarrow B$
whose fiber over b is the unit sphere of V_b.
Then the class ξ for the same SS is the Euler class for the vector bundle V. (If V is the tangent bundle to a manifold M, the $\xi = (\text{Euler characteristic}) \cdot \text{Poincaré duality class}$)

Ex: $H^*(V_2(\mathbb{R}^{n+1}))$.

Def $V_2(\mathbb{R}^{n+1}) =$ space of orthogonal pairs of unit vectors in \mathbb{R}^{n+1}

So we can identify $V_2(\mathbb{R}^{n+1})$ with the unit sphere bundle to $T(S^n)$: $T(S^n) = \left\{ (x, \bar{v}) \in (\mathbb{R}^{n+1})^2 \mid \frac{x \cdot x}{x} = 1, \frac{x \cdot \bar{v}}{\bar{v}} = 0 \right\}$

so the unit sphere bundle is $S(T) = \left\{ (x, \bar{v}) \mid \frac{x \cdot x}{x} = 1, \frac{x \cdot \bar{v}}{\bar{v}} = 0 \right\}$ has fiber S^{n-1} over S^n.

Euler Class: $(1 + (-1)^n)[S^n]$.

$n=2$:

Euler class: $d(x_1) = z y_2$

E_3:

\[H^*(V_2(\mathbb{R}^3)) = \left\{ \begin{array}{ccc} \mathbb{Z}_4 & 3 \\ \mathbb{Z}/2 & 2 \\ 0 & 1 \end{array} \right. \]

We should expect this: Given $\underline{x}, \underline{v}$ s.t. $\underline{x} \cdot \underline{v} = 0$, $||\underline{x}|| = ||\underline{v}|| = 1$, there is a unique \underline{w} s.t. $[\underline{x}, \underline{v}, \underline{w}] \in SO(3)$.

So $V_2(\mathbb{R}^3) = SO(3) = \mathbb{R}P^3$

this is done by looking at the conjugation action of the unit quaternions on the imaginary ones.
n=3: \[S^2 \to V_2(\mathbb{R}^n) \]
\[\frac{S^3}{S^3} \]

\[e = 0, \text{ so} \]
\[E_2 = E_\infty \]

\[H^*(V_2(\mathbb{R}^n)) = \left\{ \begin{array}{ll}
\mathbb{Z} & n = 5 \\
\mathbb{Z} & n = 4 \\
\mathbb{Z} & n = 2 \\
0 & n = 0
\end{array} \right. \]

In general, \[H^*(V_2(\mathbb{R}^{n+1})) = \left\{ \begin{array}{ll}
E_{n-1}(x_{n-1}, x_n) & n \text{ odd} \\
\left\{ \begin{array}{c}
\mathbb{Z} \\
0 \\
\mathbb{Z}
\end{array} \right. & n \text{ even}
\end{array} \right. \]

Ex: Let \(S^1 \to E \to \mathbb{C}P^n \) be the spherical fibration with the class \(2x \in H^2(\mathbb{C}P^n) \) (this is the sphere bundle associated to \(L^2 \to \mathbb{C}P^n \), \(L \) the canonical line bundle and \(E \approx \mathbb{R}P^n \))

So \[E_3 : \]
\[E_\infty \]

\[\ast = \mathbb{Z}/2 \]

We can now return to the case of rebuilding the cohomology. First look at effects of the maps in the fibration.

Prop 1: \[\pi^*(H^*(B)) \] is the subring of \(H^*(E) \) given by \(E_\infty^* \)

2. The image of \(\iota^*(H^*(E)) \) in \(H^*(F) \) is given by \(E_\infty^{*,*} \)

We can see this by comparing with the SSS for the fibrations \(F \to E \to * \) and \(* \to B \to B \).
A more careful analysis of the filtration gives the following.

Prop 2 \(H^i(E) \) has a filtration \(F_i \) s.t.

\[
F_0 = E_\infty^0 \quad \downarrow \quad F_i/F_{i-1} = E_\infty^{-i,i}.
\]

So
\[
E_\infty^0 \subseteq F_1 \subseteq F_2 \subseteq \ldots \subseteq F_n \subseteq E_\infty^n.
\]

Now we piece together the Serre SS for \(S^\infty \to E \to B \) w/ euler class \(e \).

Already saw that we have a SES

\[
0 \to E_\infty^{k,n} \to H^k(B) \otimes H^n(S^\infty) \to H^k+n+1(B) \to E_\infty^{k,n+1} \to 0
\]

The previous props, together with sparceness, show that there is a SES

\[
0 \to E_\infty^{k,n} \to H^k(E) \to E_\infty^{k-n,n} \to 0
\]

Splicing these all together gives a long exact seq.

Thm 1 If \(S^n \to E \to B \) is a simple fibration, then

\[
\ldots \to H^{k+n}(E) \to H^k(B) \xrightarrow{\pi^*} H^{k+n+m}(B) \to H^{k+n+m}(E) \to \ldots
\]

is exact, where \(e \) is the euler class.

There is a big case where we don't want simple fibrations:

Def Let \(B_\text{Top} : \text{Top} \to \text{Top} \) be the classifying space functor.

If \(G \) is an abelian group, can choose \(BG \) to be one as well. Moreover, \(\Pi_{k+1} BG = \Pi_k G \neq \emptyset \).

Prop 3 If \(1 \to N \to G \to H \to 1 \) is a SES, then \(BN \to BG \to BH \) is a fibration.
Remark. In fact, \(G \rightarrow H \rightarrow BN \), etc are also fibrations. This is very often not simple.

Def. \(H^*(G) = H^*(BG) \).

We can incorporate non-trivial \(G \)-modules by looking at bundles over \(BG \) \(\triangleright \) homology w/ twisted coefficients.

The Hochschild-Serre SS is the SS associated to the fibration \(BN \rightarrow BG \rightarrow BH \):

\[
H^p(H; H^q(N; M)) \Rightarrow H^{p+q}(G; M)
\]

\(M \) a \(G \)-module, \(H^q(N; M) \) an \(H \)-module by twisting.

Ex. \(H^*(\mathbb{Z}_3; \mathbb{Z}_{(3)}) \).

Need some facts.

1. \(\mathbb{Z}/3 \rightarrow \mathbb{Z}/3 \rightarrow \mathbb{Z}/2 \) is exact
2. \(\mathbb{Z}/2 \) acts on \(\mathbb{Z}/3 \) by inversion.
3. If \(p \) is a unit in \(R \), then \(H^{*\geq 0}(\mathbb{Z}/p; R) \Rightarrow 0 \)

In our case, \(3 \) is satisfied. So the HS SS takes the form

\[
E_2^{p,q} \Rightarrow H^{p+q}(\mathbb{Z}/3; \mathbb{Z}_{(3)})
\]

1. If \(p > 0 \), then \(E_2^{p,q} = 0 \).

For \(p = 0 \), \(H^*(\mathbb{Z}/3; \mathbb{Z}_{(3)}) = \mathbb{Z}_{(3)}[x]/3x \) \(\triangleright \mathbb{Z}/2 \) acts by \(x_2 \mapsto -x_2 \). So \(H^0(\mathbb{Z}/2; \mathbb{Z}_{(3)}[x]/3x) = \mathbb{Z}_{(3)}[x^2]/3x^2 \) and this is also \(E_\infty ! \)