HOMEWORK #6: ADAMS SPECTRAL SEQUENCE II

- (1) Using the method described in class, show that $\operatorname{Ext}_{\mathcal{A}(1)}(\mathbb{F}_2, \mathbb{F}_2)$ is periodic with period (4, 12).
- (2) We discussed Massey products in a differential graded algebra. If (M, d_M) is a differential graded module over a differential graded algebra (A, d_A) , then we can define Massey products $\langle a, b, m \rangle$ whenever $a \cdot b = 0$ in A and $b \cdot m = 0$ in M. The definition is the same as in the DGA case. Since $\operatorname{Ext}_{\mathcal{A}(1)}(\mathbb{F}_2, \mathbb{F}_2)$ is the cohomology of a DGA, and since $\operatorname{Ext}_{\mathcal{A}(1)}(M, \mathbb{F}_2)$ is the cohomology of a DGA, we can use these techniques.

Let $M = C(\eta)$ be the module from the previous homework set. Consider the LES in Ext induced by $\Sigma^2 \mathbb{F}_2 \to M \to \mathbb{F}_2$. Let *a* be the class in degree (2,0) from $\operatorname{Ext}^{0,2}(\Sigma^2 \mathbb{F}_2, \mathbb{F}_2)$, and let *b* denote the class in degree (7,3) from $\operatorname{Ext}^{3,7}(\mathbb{F}_2, \mathbb{F}_2)$ (we'll denote the class in (0,0) here by 1). The boundary map δ establishes a null-homotopy of $h_1^2 \cdot 1$: $h_1 \cdot a \mapsto h_1^2 \cdot 1$. Using the definition of $\langle h_1, h_1^2, 1 \rangle$, show that $h_0 \cdot (h_1^2 a) = b$. You may use that $b = \langle h_0, h_1, h_1^2 \rangle$.

- (3) Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequences of *R*-modules. Show that under the connecting homomorphisms $\delta \colon \operatorname{Hom}_R(M', M') \to \operatorname{Ext}^1_R(M'', M')$, the class of the identity maps to the class of the extension.
- (4) This problem and the following concern computing Ext over the full Steenrod algebra. Consider the filtration of the dual Steenrod algebra given by $|\xi_i^{2^j}| = 2i 1$. The associated graded Hopf algebra is the primitively generated exterior algebra on classes $[\xi_i^{2^j}]$ for all i, j. We therefore conclude that $\operatorname{Ext}_{Gr}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_{i,j}]$, where $h_{i,j}$ is represented by $\xi_i^{2^j}$. Run the May spectral sequence in low dimensions (through at least t s = 10 and for all s in this range). Use the following facts:
 - (a) The differentials arise from taking the coproduct on classes and then looking in successively lower filtrations.
 - (b) The differentials "commute" with the algebraic Steenrod operations, so $d_{?}(Sq^{j}(x)) = Sq^{j}d_{*}(x)$. The relation between * and ? in this formula depends on the filtration of $Sq^{j}d_{*}(x)$.
- (5) Continuing the previous problem, you will see some basic relations:
 - (a) $h_0 \cdot h_1 = 0$,
 - (b) $h_0 \cdot h_2^2 = 0$,
 - (c) $h_1^3 + h_0^2 h_2 = 0.$

Using the fact that Sq^0 is a ring homomorphism, deduce the generalizations of these relations to h_i , h_{i+1} and h_{i+2} .