PROBLEM SET #4

DUE: NOVEMBER 15TH

This set will be run a little differently. Many of the problems will have a regular
version and a “hard form”. You can choose which ones you want to do (though the
harder one subsumes the easier). Additionally: hard ones are worth 15 total points
(so you can earn up to 5 extra credit points).

The Interplay between L(U,V) and V @ U*.

Problem 1. Show for U =V =R? that V@ U* — L(U,V) described in class is
an isomorphism. Show also that when we identify U* with row vectors and V with
column vectors that the isomorphism is “matriz multiplication”:

TR -
Hard Form 1. Show that for general finite dimensional U and V,
VeU"— LUYV)
is given by 0 ® f — f(=) - U and hence is also “matriz multiplication”.

Problem 2. Given a basis {U1,...,U,} of U and {¥1,...,0n} of V, we get a basis
{0:da;} of LU, V') by specifying

U;0; (k) = {

Show that under the map
LUV LU V)= LUQU V&V
described in class, we have
(Vida,;) ® (V.0a,) = (U; ® U)da, 0,
Playing with £(U,L(V,W)) = L(U @ V,W). For the next few parts, Let f €
L(U,L(V,W)) (so this is a linear transformation on U with values in the linear

transforma:cions from V to W.
Define f: U x V — W by

Ui j=k

0 otherwise.

f (i, 0) = f(i@)(0).
Problem 3. Show that f is bilinear.
Now let L: U ® V — W be linear. Let fr,: U — L(V, W) be defined by
fo (@) (V) = L(d ® 0).
Problem 4. Show that if Ly is the map U @ V. — W associated to the bilinear
map f, then the linear transformation fr, is f.

Problem 5. Show that Ly, is L. Conclude that the two maps are inverses and
thus the two spaces are [naturally] isomorphic.
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2 DUE: NOVEMBER 15TH

Hard Form 2. Show that L(U, L(V,—)) and L(U ®V, —) are naturally isomorphic
by showing that they represent the same collection of objects (naturally in the —
variable). In other words, show that (a) they give the same collection of objects for
each value of W, and (b) given a map W — W', the identifications are compatible
with the map.

Determinants. This problem completes the proof of the “coordinate free” form
of the determinant discussed in class.

Problem 6. Verify forn =2 or3, and V. =R", and for L: V — V that A™*(L) is
multiplication by |[L]|g| for some (and therefore any) basis B of V.

Hard Form 3. Show for a general n-dimensional vector space V over F and
L:V — V that A™(L) is multiplication by |[L]g| for some (and again, for any)
basis B.

Invariant Form of the Trace. The vector space F has a distinguished basis
vector 1. We’ve seen that this gives an isomorphism

LF,W)x=W.
We can apply this to W = L(V,V) =V @ V*. There is a distinguished element in
this vector space: the identity map V' — V. Thus we get a map

F-VeV*

that sends 1 to the identity. We call this map “coevaluation”.

Problem 7. Let V = R3. Describe the image of 1 under this map as an element
of V@ V* and also as an element of L(V,V) = M3(R).

Hard Form 4. Repeat this for V. =TF".

Problem 8. Now consider the map V x V* =T given by (U, f) — f(¥). Show this
is bilinear.

Let ev: V@ V* = T be the corresponding linear map, and compute for V. =R3
what this map does to a general element (viewed as a 3 X 3-matriz).

Hard Form 5. Repeat this for an arbitrary finite dimensional V and F. Conclude
that the composite
FoVeV" =T

is the dimension and is independent of choice of basis.

Since V ® V* is the same thing as L(V, V), given any T' € L(V, V) we get a map
T,: VRV*—=V®V* gven by composing with T
Problem 9. In the V = R? case, after identifying V @ V* with My(R), show that
this amounts to matriz multiplication.

Now we can define the trace: Tr(T) is the composite

coev ev

FO%verv Ivev: S F.

Since this is a linear map F — F it amounts to multiplication by a number. We
will also denote this number Tr(L).

Hard Form 6. After choosing a basis, show this coincides with the usual notion
of trace.



