
PROBLEM SET #4

DUE: NOVEMBER 15TH

This set will be run a little differently. Many of the problems will have a regular
version and a “hard form”. You can choose which ones you want to do (though the
harder one subsumes the easier). Additionally: hard ones are worth 15 total points
(so you can earn up to 5 extra credit points).

The Interplay between L(U, V ) and V ⊗ U∗.

Problem 1. Show for U = V = R2 that V ⊗ U∗ → L(U, V ) described in class is
an isomorphism. Show also that when we identify U∗ with row vectors and V with
column vectors that the isomorphism is “matrix multiplication”:

~v ⊗ ~ut 7→ ~v · ~ut.

Hard Form 1. Show that for general finite dimensional U and V ,

V ⊗ U∗ → L(U, V )

is given by v̄ ⊗ f 7→ f(−) · ~v and hence is also “matrix multiplication”.

Problem 2. Given a basis {~u1, . . . , ~un} of U and {~v1, . . . , ~vm} of V , we get a basis
{~viδ~uj

} of L(U, V ) by specifying

~viδ~uj
(~uk) =

{
~vi j = k

0 otherwise.

Show that under the map

L(U, V )⊗ L(U ′, V ′)→ L(U ⊗ U ′, V ⊗ V ′)
described in class, we have

(~viδ~uj
)⊗ (~v′kδ~u′`) 7→ (~vi ⊗ ~v′k)δ~uj⊗~u′` .

Playing with L
(
U,L(V,W )

) ∼= L(U ⊗ V,W ). For the next few parts, Let f ∈
L
(
U,L(V,W )

)
(so this is a linear transformation on U with values in the linear

transformations from V to W .
Define f̂ : U × V →W by

f̂(~u,~v) = f(~u)(~v).

Problem 3. Show that f̂ is bilinear.

Now let L : U ⊗ V →W be linear. Let fL : U → L(V,W ) be defined by

fL(~u)(~v) = L(~u⊗ ~v).

Problem 4. Show that if Lf is the map U ⊗ V → W associated to the bilinear

map f̂ , then the linear transformation fLf
is f .

Problem 5. Show that LfL is L. Conclude that the two maps are inverses and
thus the two spaces are [naturally] isomorphic.
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Hard Form 2. Show that L(U,L(V,−)) and L(U ⊗V,−) are naturally isomorphic
by showing that they represent the same collection of objects (naturally in the −
variable). In other words, show that (a) they give the same collection of objects for
each value of W , and (b) given a map W →W ′, the identifications are compatible
with the map.

Determinants. This problem completes the proof of the “coordinate free” form
of the determinant discussed in class.

Problem 6. Verify for n = 2 or 3, and V = Rn, and for L : V → V that Λn(L) is
multiplication by |[L]B| for some (and therefore any) basis B of V .

Hard Form 3. Show for a general n-dimensional vector space V over F and
L : V → V that Λn(L) is multiplication by |[L]B| for some (and again, for any)
basis B.

Invariant Form of the Trace. The vector space F has a distinguished basis
vector 1. We’ve seen that this gives an isomorphism

L(F,W ) ∼= W.

We can apply this to W = L(V, V ) = V ⊗ V ∗. There is a distinguished element in
this vector space: the identity map V → V . Thus we get a map

F→ V ⊗ V ∗

that sends 1 to the identity. We call this map “coevaluation”.

Problem 7. Let V = R3. Describe the image of 1 under this map as an element
of V ⊗ V ∗ and also as an element of L(V, V ) = M3(R).

Hard Form 4. Repeat this for V = Fn.

Problem 8. Now consider the map V ×V ∗ → F given by (~v, f) 7→ f(~v). Show this
is bilinear.

Let ev : V ⊗ V ∗ → F be the corresponding linear map, and compute for V = R3

what this map does to a general element (viewed as a 3× 3-matrix).

Hard Form 5. Repeat this for an arbitrary finite dimensional V and F. Conclude
that the composite

F→ V ⊗ V ∗ → F
is the dimension and is independent of choice of basis.

Since V ⊗V ∗ is the same thing as L(V, V ), given any T ∈ L(V, V ) we get a map
T∗ : V ⊗ V ∗ → V ⊗ V ∗ given by composing with T .

Problem 9. In the V = R2 case, after identifying V ⊗ V ∗ with M2(R), show that
this amounts to matrix multiplication.

Now we can define the trace: Tr(T ) is the composite

F coev−−−→ V ⊗ V ∗ T∗−→ V ⊗ V ∗ ev−→ F.
Since this is a linear map F → F it amounts to multiplication by a number. We
will also denote this number Tr(L).

Hard Form 6. After choosing a basis, show this coincides with the usual notion
of trace.


