PROBLEM SET #4

DUE: NOVEMBER 15TH

This set will be run a little differently. Many of the problems will have a regular version and a "hard form". You can choose which ones you want to do (though the harder one subsumes the easier). Additionally: hard ones are worth 15 total points (so you can earn up to 5 extra credit points).

The Interplay between $\mathcal{L}(U,V)$ and $V\otimes U^*$.

Problem 1. Show for $U = V = \mathbb{R}^2$ that $V \otimes U^* \to \mathcal{L}(U,V)$ described in class is an isomorphism. Show also that when we identify U^* with row vectors and V with column vectors that the isomorphism is "matrix multiplication":

$$\vec{v} \otimes \vec{u}^t \mapsto \vec{v} \cdot \vec{u}^t$$
.

Hard Form 1. Show that for general finite dimensional U and V,

$$V \otimes U^* \to \mathcal{L}(U,V)$$

is given by $\bar{v} \otimes f \mapsto f(-) \cdot \vec{v}$ and hence is also "matrix multiplication".

Problem 2. Given a basis $\{\vec{u}_1, \ldots, \vec{u}_n\}$ of U and $\{\vec{v}_1, \ldots, \vec{v}_m\}$ of V, we get a basis $\{\vec{v}_i \delta_{\vec{u}_i}\}$ of $\mathcal{L}(U, V)$ by specifying

$$\vec{v}_i \delta_{\vec{u}_j}(\vec{u}_k) = \begin{cases} \vec{v}_i & j = k \\ 0 & otherwise. \end{cases}$$

Show that under the map

$$\mathcal{L}(U,V) \otimes \mathcal{L}(U',V') \to \mathcal{L}(U \otimes U',V \otimes V')$$

described in class, we have

$$(\vec{v}_i \delta_{\vec{u}_j}) \otimes (\vec{v}_k' \delta_{\vec{u}_\ell'}) \mapsto (\vec{v}_i \otimes \vec{v}_k') \delta_{\vec{u}_j \otimes \vec{u}_\ell'}.$$

Playing with $\mathcal{L}(U,\mathcal{L}(V,W)) \cong \mathcal{L}(U \otimes V,W)$. For the next few parts, Let $f \in \mathcal{L}(U,\mathcal{L}(V,W))$ (so this is a linear transformation on U with values in the linear transformations from V to W.

Define $\hat{f}: U \times V \to W$ by

$$\hat{f}(\vec{u}, \vec{v}) = f(\vec{u})(\vec{v}).$$

Problem 3. Show that \hat{f} is bilinear.

Now let $L: U \otimes V \to W$ be linear. Let $f_L: U \to \mathcal{L}(V, W)$ be defined by

$$f_L(\vec{u})(\vec{v}) = L(\vec{u} \otimes \vec{v}).$$

Problem 4. Show that if L_f is the map $U \otimes V \to W$ associated to the bilinear map \hat{f} , then the linear transformation f_{L_f} is f.

Problem 5. Show that L_{f_L} is L. Conclude that the two maps are inverses and thus the two spaces are [naturally] isomorphic.

Hard Form 2. Show that $\mathcal{L}(U, \mathcal{L}(V, -))$ and $\mathcal{L}(U \otimes V, -)$ are naturally isomorphic by showing that they represent the same collection of objects (naturally in the – variable). In other words, show that (a) they give the same collection of objects for each value of W, and (b) given a map $W \to W'$, the identifications are compatible with the map.

Determinants. This problem completes the proof of the "coordinate free" form of the determinant discussed in class.

Problem 6. Verify for n=2 or 3, and $V=\mathbb{R}^n$, and for $L\colon V\to V$ that $\Lambda^n(L)$ is multiplication by $|[L]_{\mathcal{B}}|$ for some (and therefore any) basis \mathcal{B} of V.

Hard Form 3. Show for a general n-dimensional vector space V over \mathbb{F} and $L: V \to V$ that $\Lambda^n(L)$ is multiplication by $|[L]_{\mathcal{B}}|$ for some (and again, for any) basis \mathcal{B} .

Invariant Form of the Trace. The vector space \mathbb{F} has a distinguished basis vector 1. We've seen that this gives an isomorphism

$$\mathcal{L}(\mathbb{F}, W) \cong W.$$

We can apply this to $W = \mathcal{L}(V, V) = V \otimes V^*$. There is a distinguished element in this vector space: the identity map $V \to V$. Thus we get a map

$$\mathbb{F} \to V \otimes V^*$$

that sends 1 to the identity. We call this map "coevaluation".

Problem 7. Let $V = \mathbb{R}^3$. Describe the image of 1 under this map as an element of $V \otimes V^*$ and also as an element of $\mathcal{L}(V, V) = M_3(\mathbb{R})$.

Hard Form 4. Repeat this for $V = \mathbb{F}^n$.

Problem 8. Now consider the map $V \times V^* \to \mathbb{F}$ given by $(\vec{v}, f) \mapsto f(\vec{v})$. Show this is bilinear.

Let $ev: V \otimes V^* \to \mathbb{F}$ be the corresponding linear map, and compute for $V = \mathbb{R}^3$ what this map does to a general element (viewed as a 3×3 -matrix).

Hard Form 5. Repeat this for an arbitrary finite dimensional V and \mathbb{F} . Conclude that the composite

$$\mathbb{F} \to V \otimes V^* \to \mathbb{F}$$

is the dimension and is independent of choice of basis.

Since $V \otimes V^*$ is the same thing as $\mathcal{L}(V, V)$, given any $T \in \mathcal{L}(V, V)$ we get a map $T_* \colon V \otimes V^* \to V \otimes V^*$ given by composing with T.

Problem 9. In the $V = \mathbb{R}^2$ case, after identifying $V \otimes V^*$ with $M_2(\mathbb{R})$, show that this amounts to matrix multiplication.

Now we can define the trace: Tr(T) is the composite

$$\mathbb{F} \xrightarrow{coev} V \otimes V^* \xrightarrow{T_*} V \otimes V^* \xrightarrow{ev} \mathbb{F}.$$

Since this is a linear map $\mathbb{F} \to \mathbb{F}$ it amounts to multiplication by a number. We will also denote this number Tr(L).

Hard Form 6. After choosing a basis, show this coincides with the usual notion of trace.