PROBLEM SET #1

DUE SEPTEMBER 8

- 1. Find 2 distinct bases for \mathbb{Q}^2 .
- 2. Find all 3 bases of \mathbb{F}_2^2 .

3. Are the vectors (1, 1, 1), (0, -1, 2), (2, 1, 3), and (4, 0, 11) linearly independent? If not, find a dependence relation.

4. Let $a, b \in \mathbb{F}$ and let $\vec{v}, \vec{w} \in V$. Show that

 $(a+b)(\vec{v}+\vec{w}) = a\vec{v} + a\vec{w} + b\vec{v} + b\vec{w}.$

5. Let $C(\mathbb{R})$ be the collection of all continuous functions from \mathbb{R} to itself. Let C_+ denote the subset of "even" functions:

$$C_{+} = \{ f | f(-x) = f(x) \},\$$

and let C_{-} denote the "odd" functions:

$$C_{-} = \{ f | f(-x) = -f(x) \}.$$

Show that both are subspaces of $C(\mathbb{R})$. Show also that $C(\mathbb{R}) = C_+ \oplus C_-$.

6. Let V be the vector space of all infinite sequences of real numbers. Show that the following are subspaces:

(1) ℓ_1 , the subset of absolutely convergent sequences:

$$\ell_1 = \{(a_1,\ldots) | \sum |a_n| < \infty\}.$$

(2) z_0 , the subset of eventually zero sequences.

- (3) c_0 , the subset of sequences which converge to zero.
- (4) c, the subset of sequence which converge.
- (5) ℓ_{∞} , the subset of bounded sequences:

$$\ell_{\infty} = \{(a_1, \dots) | \sup |a_n| < \infty\}.$$