
LECTURE 28: ADJOINTS AND NORMAL OPERATORS

Today’s lecture will tie linear operators into our study of Hilbert spaces and
discuss an important family of linear operators.

Adjoints

We start with a generalization of the Riesz representation theorem.

Theorem 1 (Riesz Representation Theorem). Let V be a finite dimensional inner
product space. Then the map r : V → V ∗ defined by

r(~v) = 〈−, ~v〉
is a conjugate-linear isomorphism. The inverse will be denoted R

A word about notation: “conjugate linear” means that r(a~v) = ār(~v). This
arises because of the sesquilinearity: the second factor is only conjugate linear.

Proof. Our argument for bilinear forms can be repeated mutatis mutandis, so we
need not check injectivity. Surjectivity is a little easier in this context. If f ∈ V ∗,
then we can choose a ~u ∈ ker(f)⊥. Since V = 〈~u〉 ⊕ ker(f), and since this sum is
an orthogonal direct sum, we can easily check that

R(f) =
f(~u)

||~u||2
~u.

�

This will give us a very important construction which provides a beautiful sym-
metry for maps between inner product spaces.

Theorem 2. Let τ ∈ L(V,W ) where V and W are finite dimensional inner product
spaces. Then there is a unique τ∗ ∈ L(W,V ) such that

〈τ~v, ~w〉 = 〈~v, τ∗ ~w〉.

Definition 1. The linear transformation τ∗ is the adjoint of τ .

Proof. For each ~w ∈W , we consider the linear functional on V given by

~v 7→ 〈τ~v, ~w〉.
This gives us a conjugate linear map t : W → V ∗. By the Riesz representation
theorem, we have a conjugate linear map V ∗ → V that associates to each linear
functional its Riesz vector. Thus we let τ∗ = R◦t. Since both R and t are conjugate
linear, the composite is linear.

We check that τ∗ has the required property:

〈~v, τ∗ ~w〉 = 〈~v,R(t(~w))〉 = t(~w)(~v) = 〈τ~v, ~w〉,
where the middle equality is the definition of R.

For uniqueness, we assume that S is another linear transformation that has the
same properties as τ∗. Then for all ~v and ~w

〈~v, τ∗ ~w〉 = 〈~v, S ~w〉,
1
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and so S = τ∗. �

How can we make this more concrete? Add in having a basis.

Proposition 1. If A is an n × m-matrix representing a linear transformation

T : V →W , then T ∗ is represented by A
t
.

Why would this be true? Assume that our bases are orthonormal bases. Then
the inner product of ~v and ~w is ~vt · ~w. Thus

〈A~v, ~w〉 = (A~v)t · ~w = ~vt ·At · ~w = ~vt · (Āt ~w) = 〈~v, Āt ~w〉.
The operation of “conjugate transpose” is clearly compatible with conjugation by
an invertible matrix, so this also tells us the general case.

Passage to adjoints is a very nice operation. The map that sends τ to τ∗ is
conjugate linear, and moreover, the conjugate symmetry of the inner products
shows that

τ∗∗ = τ

for any linear operator.
There is a very close connection between adjunctions, orthogonality, and kernels

and images.

Proposition 2. Let T ∈ L(V,W ) where everything in sight is a finite dimensional
inner product space.

(1) ker(T ∗) = Im(T )⊥

(2) ker(T ∗T ) = ker(T )

Proof. Let ~u ∈ ker(T ∗). This is the same statement as T ∗~u = 0, and so in particular
for all ~v ∈ V , we see

0 = 〈T ∗~u,~v〉 = 〈~u, T~v〉.
In particular, we see that ~u is orthogonal to T~v for all ~v ∈ V , and therefore ~u ∈
Im(T )⊥.

For the second part, it is obvious that ker(T ) ⊂ ker(T ∗T ). Now let ~u ∈ ker(T ∗T ).
Then

0 = 〈T ∗T~u, ~u〉 = 〈T~u, T~u〉,
and so T~u = 0. �

Combining these, we also see

Im(T ∗T ) = ker(T ∗T )⊥ = ker(T )⊥ = Im(T ∗).

We learn a number of things on top of this. We see that T is surjective iff T ∗

is injective, and T is injective iff T ∗ is surjective. This should remind you of the
dual of short exact sequences being short exact. Here we’ve replaced the dual of a
linear operator with the adjoint.

Now we can focus on a few specific kinds of special linear transformations.

Definition 2. A linear operator T : V → V is

(1) Normal if T ∗T = TT ∗

(2) self-adjoint if T ∗ = T (Hermitian if F = C and symmetric if F = R)
(3) skew-self-adjoint if T ∗ = −T
(4) unitary if T ∗ = T−1

Proposition 3. If T is a normal operator and p(x) is any polynomial, then p(T )
is a normal operator. In particular, T − λI is normal.
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Normal Operators

We finish the class tying together this theory of normal operators with Jordan
form.

Theorem 3. If T is a normal operator, then T is diagonalizable. Moreover, the
eigenspaces are orthogonal.

We’ll quickly see that T is diagonalizable. Let λ1, . . . , λk be the eigenvalues
of T . We know that we can put T into Jordan form. The algorithm starts with
B = T − λiI, and then it considers the ascending chain

ker(B) ⊂ ker(B2) ⊂ · · · ⊂ ker(Br) = . . . .

The smallest value of r such that ker(Br) = ker(Br+1) is the size of the largest
Jordan block. Thus the diagonalizablity is equivalent to r = 1, since then all of
the Jordan blocks are 1× 1 blocks. We will have proved the theorem if we can see
ker(B) = ker(Br) for all r ≥ 1.

Lemma 1. If T is normal, then ker(T ) = ker(T r) for all r ≥ 1.

Proof. Let S = T ∗T . This is a self-adjoint linear operator. We can see that
ker(S) = ker(Sr) for all r ≥ 1. Assume ~u ∈ ker(Sr). Then we have

0 = 〈Sr(~u), Sr−2(~u)〉 = 〈Sr−1(~u), Sr−1(~u)〉,
and we therefore know that Sr−1(~u) = 0. By downward induction on r, we see that
~u ∈ ker(S).

Now let ~v ∈ ker(T r). Then since Sr = (T ∗)rT r,

~v ∈ ker(T r) ⊂ ker(Sr) = ker(S) = ker(T ),

and so ker(T ) = ker(T r) for all r ≥ 1. �

Now we can check that the eigenspaces are orthogonal.

Lemma 2. If T is normal, then

〈T~v, T ~w〉 = 〈T ∗~v, T ∗ ~w〉,
so ker(T ) = ker(T ∗).

Proof. We use normality to see this:

〈T~v, T ~w〉 = 〈T ∗T~v, ~w〉 = 〈TT ∗~v, ~w〉 = 〈T ∗~v, T ∗ ~w〉.
The second part follows from the first by considering

〈T~v, T~v〉 = 〈T ∗~v, T ∗~v〉.
�

In particular, this shows us that the eigenvalues of T ∗ are the conjugates of those
of T , and the eigenvectors are the same.

Proposition 4. If ~v and ~u are eigenvectors for T for distinct eigenvalues, then
~v ⊥ ~u.

Proof. Let λ be the eigenvalue for ~v and let µ be the eigenvalue for ~u. Then

λ〈~v, ~u〉 = 〈T~v, ~u〉 = 〈~v, T ∗~u〉 = 〈~v, µ̄~u〉 = µ〈~v, ~u〉.
Since λ 6= µ, we only have such an equality if 〈~v, ~u〉 = 0, and so ~v ⊥ ~u. �


