LECTURE 28: ADJOINTS AND NORMAL OPERATORS

Today’s lecture will tie linear operators into our study of Hilbert spaces and
discuss an important family of linear operators.

ADJOINTS
We start with a generalization of the Riesz representation theorem.

Theorem 1 (Riesz Representation Theorem). Let V' be a finite dimensional inner
product space. Then the map r: V. — V* defined by

r(7) = (=, 7)
is a conjugate-linear isomorphism. The inverse will be denoted R

A word about notation: “conjugate linear” means that r(av) = ar(v). This
arises because of the sesquilinearity: the second factor is only conjugate linear.

Proof. Our argument for bilinear forms can be repeated mutatis mutandis, so we
need not check injectivity. Surjectivity is a little easier in this context. If f € V*,
then we can choose a i € ker(f)%. Since V = (i) @ ker(f), and since this sum is
an orthogonal direct sum, we can easily check that

f(a)

B = i

O

This will give us a very important construction which provides a beautiful sym-
metry for maps between inner product spaces.

Theorem 2. Let 7 € L(V,W) where V and W are finite dimensional inner product
spaces. Then there is a unique 7 € L(W, V) such that

(17, W) = (T, 7).

Definition 1. The linear transformation 7* is the adjoint of 7.

Proof. For each w € W, we consider the linear functional on V given by

U (70, ).
This gives us a conjugate linear map ¢t: W — V*. By the Riesz representation
theorem, we have a conjugate linear map V* — V that associates to each linear
functional its Riesz vector. Thus we let 7* = Rot. Since both R and ¢ are conjugate

linear, the composite is linear.
We check that 7* has the required property:

(U, 7*w) = (¥, R(t(w))) = t(&)(0) = (70, @),
where the middle equality is the definition of R.

For uniqueness, we assume that S is another linear transformation that has the
same properties as 7*. Then for all ¥ and w
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and so S = 7*. O

How can we make this more concrete? Add in having a basis.

Proposition 1. If A is an n X m-matrix representing a linear transformation
T:V — W, then T* is represented by A

Why would this be true? Assume that our bases are orthonormal bases. Then

the inner product of ¥ and @ is @ - . Thus
(A, 0) = (AD) - @ =" - A -0 = o - (AMw) = (7, A'D).
The operation of “conjugate transpose” is clearly compatible with conjugation by
an invertible matrix, so this also tells us the general case.
Passage to adjoints is a very nice operation. The map that sends 7 to 7* is

conjugate linear, and moreover, the conjugate symmetry of the inner products
shows that

for any linear operator.
There is a very close connection between adjunctions, orthogonality, and kernels
and images.

Proposition 2. Let T € L(V,W) where everything in sight is a finite dimensional
inner product space.

(1) ker(T*) = Im(T)*

(2) ker(T*T) = ker(T)
Proof. Let @ € ker(T™). This is the same statement as T*@ = 0, and so in particular
for all v € V, we see

0= (T"u,v) = (u,T7).
In particular, we see that # is orthogonal to T¥ for all ¥ € V', and therefore u €
Im(T)*.
For the second part, it is obvious that ker(T') C ker(T*T). Now let @ € ker(T*T).
Then
0= (T"Tu,u)y = (Tu,Ta),

and so Tu = 0. O

Combining these, we also see
Im(T*T) = ker(T*T)* = ker(T)* = Im(T™).
We learn a number of things on top of this. We see that T is surjective iff T
is injective, and T is injective iff 7% is surjective. This should remind you of the
dual of short exact sequences being short exact. Here we’ve replaced the dual of a

linear operator with the adjoint.
Now we can focus on a few specific kinds of special linear transformations.

Definition 2. A linear operator T: V — V is

(1) Normal if T*T = TT*

(2) self-adjoint if T* = T (Hermitian if F = C and symmetric if F = R)

(3) skew-self-adjoint if T* = —T'

(4) unitary if T* =771
Proposition 3. If T is a normal operator and p(x) is any polynomial, then p(T)
is a normal operator. In particular, T — X is normal.
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NORMAL OPERATORS

We finish the class tying together this theory of normal operators with Jordan
form.

Theorem 3. If T is a normal operator, then T is diagonalizable. Moreover, the
etgenspaces are orthogonal.

We'll quickly see that T is diagonalizable. Let Aj,..., A\ be the eigenvalues
of T. We know that we can put T into Jordan form. The algorithm starts with
B =T — )\;I, and then it considers the ascending chain

ker(B) C ker(B?) C --- Cker(B") =....

The smallest value of r such that ker(B") = ker(B"t1) is the size of the largest
Jordan block. Thus the diagonalizablity is equivalent to » = 1, since then all of
the Jordan blocks are 1 x 1 blocks. We will have proved the theorem if we can see
ker(B) = ker(B") for all r > 1.

Lemma 1. If T is normal, then ker(T) = ker(T™) for all r > 1.

Proof. Let S = T*T. This is a self-adjoint linear operator. We can see that
ker(S) = ker(S™) for all » > 1. Assume % € ker(S™). Then we have

0 = (S"(@), S"*(a@)) = ($"~ (@), S"~ (@),

and we therefore know that S”~1(%) = 0. By downward induction on r, we see that
@ € ker(S).
Now let @ € ker(T"). Then since S™ = (T*)"T",

¥ € ker(T") C ker(S") = ker(S) = ker(T),
and so ker(T') = ker(T") for all r > 1. O
Now we can check that the eigenspaces are orthogonal.
Lemma 2. If T is normal, then
(TV, TW) = (T*7, T*w),
so ker(T') = ker(T™).
Proof. We use normality to see this:
(T, TwW) = (T*Tv, W) = (TT*V,w) = (T*0, T*0).
The second part follows from the first by considering
(Tv, TT) = (T*0,T*V).
O

In particular, this shows us that the eigenvalues of T* are the conjugates of those
of T, and the eigenvectors are the same.

Proposition 4. If ¥ and @ are eigenvectors for T for distinct eigenvalues, then
v L.
Proof. Let A be the eigenvalue for ' and let u be the eigenvalue for 4. Then

MU, @) = (T0, @) = (U, T*0) = (¥, au) = p(v, d).

Since A # pu, we only have such an equality if (¥, %) = 0, and so ¥ L . O



