
LECTURE 24: ORTHOGONALITY AND ISOMETRIES

Orthogonality

Definition 1. If ~v and ~u are vectors in an inner product space V , then ~u and ~v
are orthogonal, written ~u ⊥ ~v, if

〈~u,~v〉 = 0.

Since V is an inner product space “is orthogonal to” is a symmetric relationship.
If X is a subset of V , then we can define the orthogonal complement of X via

X⊥ = {~v ∈ V |〈~v, x〉 = 0 ∀x ∈ X}.

The following two results are clear:

Proposition 1. For any subset X,

X⊥ = 〈X〉⊥,

and

〈X〉 ⊂ X⊥⊥.

If V is finite dimensional, then the last inclusion is an equality.
Orthogonality provides a way to easily compute inner products. In particular,

if {~u1, . . . , ~un} is a basis such that ~ui ⊥ ~uj for i 6= j, then if ~v =
∑
ai~ui and

~w =
∑
bi~ui, then

〈~v, ~w〉 =
∑

aib̄j〈~ui, ~uj〉 =
∑

aib̄i〈~ui, ~ui〉.

Definition 2. A set X is orthonormal if for all ~ui, ~uj ∈ X, 〈~ui, ~uj〉 = δi,j .

Thus for an orthonormal basis, we can very easily compute inner products. More-
over, we can easily express any vector as a linear combination of basis vectors.

Proposition 2. If {~u1, . . . , ~un} is an orthonormal basis, then

~v =
∑
〈~v, ~ui〉~ui

for all ~v ∈ V .

Proposition 3. If X is an orthonormal set, then X is linearly independent.

Proof. Consider a linear dependence relation

a1~u1 + · · ·+ an~un = ~0.

Taking the inner product with ~ui yields ai = 0, and the result follows immediately.
�

A very important result is that given any (linearly independent set) X in an inner
product space, we can find an orthogonal (or orthonormal set) U with the same
span as X. In particular, given a basis, we can find an orthogonal or orthonormal
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basis. This is the Grahm-Schmidt orthogonalization process. If {~v1, . . . , ~vm} is a
linearly independent set, then let ~u1 = ~v1, and for i > 1, let

~ui = ~vi −
i−1∑
j=1

〈~vi, ~uj〉
〈~uj , ~uj〉

~uj .

Proposition 4. The set {~u1, . . . , ~un} defined above is orthogonal and

〈~u1, . . . , ~ui〉 = 〈~v1, . . . , ~vi〉
for all i.

Proof. The second part is immediate. Each of the vectors ~v1 through ~vi is a linear
combination of the vectors ~u1 through ~ui.

For the first part, we compute directly. Since orthogonality is a symmetric
relation, it will suffice to show that 〈~ui, ~uk〉 = 0 for k < i:

〈~ui, ~uk〉 = 〈~vi, ~uk〉 −
i−1∑
j=1

〈~vi, ~uj〉
〈~uj , ~uj〉

〈~uj , ~uk〉.

By induction on i, we see that the sum collapses into a single term:

〈~vi, ~uk〉
〈~uk, ~uk〉

〈~uk, ~uk〉 = 〈~vi, ~uk〉,

and so 〈~ui, ~uk〉 = 0. �

It is important to realize that this does not depend on the inner product space
being Rn or Cn. This works for any inner product space (since each expression only
involves finitely many terms, we can apply this in the infinite dimensional case. We
do lose control over the number of terms, however, and the span can change).

At the end of our discussion of isometries, we will see that Grahm-Schmidt
actually gives a rather deep connection with matrices. For now, we will set the
stage with the following:

Theorem 1. Choosing an orthonormal basis gives an isomorphism T : Fn → V ,
where we send the ith standard basis to the ith basis vector in V , and

〈T~v, T~u〉 = ~v · ~u
for all ~v, ~u ∈ Fn.

Isometries

Let L : V →W be a map of normed spaces.

Definition 3. L is an isometry if

||L~v|| = ||~v||
for all ~v.

Thus an isometry preserves distance. In particular, an isometry is necessarily an
injection, since if ~v ∈ ker(L), then

0 = ||L~v|| = ||~v||,
and so ~v = 0. On the other hand, if V and W are not finite dimensional, then an
isometry need not be an isomorphism.
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Proposition 5. An isometry is always continuous for the metric topologies.

Proof. In our ε-δ definition, we need only take δ to be ε. �

Thus we can explain part of the statement about metric spaces and completions:
any metric space admits an isometry to a complete metric space (in fact, we showed
that the inclusion of M into our M̄ was an isometry, so this is immediate).

For an inner product space, an isometry also preserves the inner product:

〈~v, ~w〉 = 〈L~v, L~w〉.

This is because of the polarization identities which relate the inner product to
the norms of various terms. We show the real case and leave the complex case as
an easy, similar exercise.

Proposition 6. For any ~v, ~u, we have

〈~u,~v〉 =
1

4

(
||~u+ ~v||2 − ||~u− ~v||2

)
.

Proof. Expand the right-hand side and use symmetry. �

This means that not only do isometries preserve distance but also they preserve
angles (ie they are “conformal”). So all geometry is preserved by an isometry.

Some of the most important isometries are “self-isometries”.

Definition 4. Let O(V ) be the set of self-isometries of V . This is a group under
composition.

Proposition 7. If {~u1, . . . , ~un} is an orthonormal set in V and A ∈ O(V ), then

{A~u1, . . . , A~un}

is an orthonormal set.

Proof. This is immediate from isometries preserving angles. �

Of course, the previous result is also true for isometries in general.
Thus given an ordered orthonormal basis for V , applying A gives another ordered

orthonormal basis. Our usual arguments then give us an interpretation of O(V ):
this is the collection of all “change-of-orthonormal-basis” matrices.

For V = Rn, we have a preferred orthonormal basis: the standard basis. Let
A ∈ O(Rn). Then since the columns of A are the values of A on an orthonormal
basis, they form an orthonormal set.

Proposition 8. If A ∈ O(Rn), then AtA = I, and therefore the inverse to A is
At.

Proof. The element in position (i, j) in AtA is the dot product of the ith column of
A with the jth column of A. Since the columns are orthonormal, we conclude that
AtA = I.

Since Rn is finite dimensional, if BA = I, then AB = I and B is the inverse to
A. We apply this to B = At. �

Elements of O(Rn) are called orthogonal matrices. We can restate Grahm-
Schmidt in the following way.
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Proposition 9. If M ∈ GLn is any matrix, then we can write M as

M = P ·R,
where P ∈ O(Rn) and where R is upper-triangular.

The matrix R essentially records the steps required to pass from the columns of
M as a set of vectors to an orthogonal set, and P is the normalized form of the
orthogonal vectors. This is the so-called “polar decomposition” of M . Singular
matrices also have a polar decomposition, but there is more choice here.

If we work over C, then we have a similar statement. The analogous result
for C1 is that any non-zero complex number z can be written as z = eiθr, where
r > 0. The eiθ part is exactly an element of O(C), and the other part is our “upper
triangular matrix”.

Why would polar form be nice? Two reasons: first the operation of putting
a matrix into polar form is continuous and second, the space of upper-triangular
matrices is very simple. Thus we see that the topology of the space of all matrices
or all invertible matrices is determined by that of the orthogonal matrices. That’s
a nice simplification.


